Modulhandbuch Studiengang Bachelor of Science Materialwissenschaft (Materials Science)

Prüfungsordnung: 2016

Wintersemester 2016/17 Stand: 10. Oktober 2016

Inhaltsverzeichnis

100) Basismodule
	10230 Einführung in die Chemie
	39340 Grundlagen der Experimentalphysik I + II
	39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik
	45780 Höhere Mathematik 1 / 2 für İngenieurstudiengänge
	17220 Höhere Mathematik 3 (vertieft)
	25850 Physikalische Chemie I: Thermodynamik, Elektrochemie und Kinetik
	10370 Physikalisches Praktikum 1
	10340 Praktische Einführung in die Chemie
	17690 Statistische Thermodynamik
	10420 Theoretische Chemie (Atom- und Molekülbau)
200) Kernmodule
	11120 Computergestützte Materialwissenschaft
(68860 Einführung Materialwissenschaft
	69080 Grundlagen der Organischen und Makromolekularen Chemie
	58840 Keramische Werkstoffe
	58870 Materialwissenschaft im Überblick
	58850 Physikalische Materialeigenschaften
	58830 Praktikum Materialwissenschaft
(68880 Strukturanalyse und Materialmikroskopie
400) Cablianalavalifikationan
40(Schlüsselqualifikationen
4	410 Numerische Methoden
	31740 Numerische Grundlagen
	420 Ingenieur- und Naturwissenschaften

100 Basismodule

Zugeordnete Module: 10230 Einführung in die Chemie

10340 Praktische Einführung in die Chemie

10370 Physikalisches Praktikum 1

10420 Theoretische Chemie (Atom- und Molekülbau)

17220 Höhere Mathematik 3 (vertieft)17690 Statistische Thermodynamik

25850 Physikalische Chemie I: Thermodynamik, Elektrochemie und Kinetik

39340 Grundlagen der Experimentalphysik I + II

39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik

45780 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

Stand: 10. Oktober 2016 Seite 3 von 48

Modul: 10230 Einführung in die Chemie

2. Modulkürzel:	030230001	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	12.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	9.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf. Thomas Schleid		
9. Dozenten:		Clemens Richert Thomas Schleid Joris Slageren		
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Materialwissenschaft (M → Basismodule	Materials Science), PO 2008, 1. Semester	
		B.Sc. Materialwissenschaft (M → Basismodule	Materials Science), PO 2016, 1. Semester	
11. Empfohlene Voraussetzungen:		Keine		
12. Lernziele:		Die Studierenden beherrschen grundlegende Konzepte der Chemie wir Atomismus, Periodensystem, Bindungsverhältnisse, Formelsprache und Stöchiometrie und können diese eigenständig anwenden, erkenne Struktur-Eigenschaftsbeziehungen am Beispiel ausgewählter Elemente und Verbindungen.		
13. Inhalt:		Physikalische Chemie:		

Chemische Thermodynamik: Gleichgewicht, Arbeit und Wärme, Temperatur, Wärmeaustausch, Wärmekapazität, isotherme, adiabatische Prozesse; Intensive, extensive Größen; ideales Gasgesetz; Mischungen, Partialdruck, Molenbruch; 1. HS, Bildungsund Reaktionsenthalpie, Heßscher Satz, 2. HS, Entropie und freie Enthalpie; Statistische Thermodynamik : Wahrscheinlichkeit und Verteilungsfunktion, Boltzmann-Statistik, Innere Energie und Zustandssumme, Entropie; Quantentheorie: Atombau, Welle-Teilchen-Dualismus, atomare Spektrallinien, Schrödinger-Gleichung, Teilchen im Kasten, Teilchen auf einer Oberfläche; Chemische Kinetik: Reaktionsordnung, Geschwindigkeitsgesetze, kinetische Herleitung des Massenwirkungsgesetzes, Temperaturabhängigkeit der Reaktionsgeschwindigkeit, Katalyse; Elektrochemie: Ionenbeweglichkeit, Hydratation von Ionen, Leitfähigkeit, Kohlrauschsches Quadratwurzelgesetz, Debye-Hückel-Onsager-Theorie, Ostwaldsches Verdünnungsgesetz, Bestimmung der Grenzleitfähigkeit, Überführungszahlen.

Anorganische Chemie:

Periodisches System der Elemente: Edelgaskonfiguration, Gruppen, Perioden und Blöcke, Periodizität der physikalischen und chemischen Eigenschaften von Atomen und Ionen, Elektronegativität. Ionische und molekulare Verbindungen: Grundprinzipien von ionischen und Elektronenpaarbindungen, Lewis-Strukturformeln, Resonanzstrukturen, Metalle, Halbleiter und Isolatoren, chemische Strukturmodelle (VSEPR, LCAO-MO in 2-atomigen Molekülen mit Bindungen), Ladungsverteilung in Molekülen, Bindungsstärke und Bindungslänge, intermolekulare Wechselwirkungen, experimentelle Aspekte von Strukturbestimmungen, Molekülsymmetrie.

Stand: 10. Oktober 2016 Seite 4 von 48

Stöchiometrische Grundgesetze: Erhalt von Masse und Ladung, Gesetze der konstanten und der multiplen Proportionen, Reaktionsgleichungen. Chemische Gleichgewichte: Protonenübertragung (Brønsted-Lowry Säure/Base-Theorie, protochemische Spannungsreihe), Elektronenübertragung (Redoxreaktionen, galvanische Zellen und Zellpotentiale, elektrochemische Spannungsreihe, Elektrolyse) Lewis-Säure/Base-Gleichgewichte (Komplexgleichgewichte, Aquakomplexe), Löslichkeitsgleichgewichte.

Organische Chemie:

Historischer Überblick über Organische Chemie, Sonderstellung des Kohlenstoffs, Schreibweise von organischen Molekülen, Grundprinzipien der IUPAC-Nomenklatur, sigma-Bindungen, pi-Bindungen, Alkane: Homologe Reihe, Struktur, Konstitutions-/Konformationsisomere, Rotationsbarrieren, Aromaten: Resonanzstabilisierung, Struktur, Hückel-Regel, Molekülorbitaltheorie, mesomere Grenzstrukturen, Substituenteneffekte, Reaktive Intermediate: Radikale, Carbokationen, Carbanionen, Organische Säuren und Basen, Stereochemie: Konstitution, Konfiguration, Konformation, Chiralitätskriterien, Enantiomere, Diastereomere, CIP-Regeln, biologische Wirkung von Enantiomeren, D/L-Konfiguration, Grundlegende Reaktionstypen: Elektrophile Substitution am Aromaten, Nucleophile Substitution am gesättigten C-Atom, Elektrophile Addition an C,C-Doppelbindungen, 1,2-Eliminierungen

14. Literatur:

Physikalische Chemie:

- P. W. Atkins, J. de Paula, Physikalische Chemie, 4. Aufl. 2006.
- G. Wedler: Lehrbuch der Physikalischen Chemie, 5. Aufl. 2004.

Anorganische Chemie:

- E. Riedel: Anorganische Chemie, 8. Aufl., de Gruyter Verlag 2011.
- M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, Allgemeine und Anorganische Chemie, 2. Aufl., Spektrum-Verlag 2011.
- A. F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Aufl. de Gruyter Verlag 2007.

Organische Chemie:

- P. Sykes: Reaktionsmechanismen der Organischen Chemie, VCH Verlagsgesellschaft, 1988.
- K. P. C. Vollhardt, H. E. Shore: Organische Chemie, 5. Aufl., Wiley-VCH, 2012.
- P. Y. Bruice: Organische Chemie, 5. Aufl., Pearson Verlag 2011.
- R. Brückner: Reaktionsmechanismen, 3. Aufl., Spektrum-Verlag 2011.

15. Lehrveranstaltungen und -formen:

- 102301 Vorlesung Einführung in die Chemie
- 102302 Seminar / Übung Einführung in die Chemie

16. Abschätzung Arbeitsaufwand:

Vorlesung

Präsenzstunden: 6 SWS * 14 Wochen = 84 h Vor- und Nachbereitung: 1,5 h pro Präsenzstunde = 126 h

Übung/Seminar

Präsenzstunden: 3 SWS * 14 Wochen = 42 h

Vor- und Nachbereitung: 2,0 h pro Präsenzstunde = 84 h

2 Übungsklausuren á 2 h = 4 h

Stand: 10. Oktober 2016 Seite 5 von 48

	Abschlussprüfung incl. Vorbereitung : 20 h
	Summe: 360 h
17. Prüfungsnummer/n und -name:	 10231 Einführung in die Chemie (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Teilnahme an den Übungsklausuren V Vorleistung (USL-V), schriftliche Prüfung, 120 Min.
18. Grundlage für :	 10380 Grundlagen der Anorganischen und Analytischen Chemie 10390 Thermodynamik, Elektrochemie und Kinetik 10400 Organische Chemie I 10440 Biochemie
19. Medienform:	
20. Angeboten von:	

Stand: 10. Oktober 2016 Seite 6 von 48

Modul: 39340 Grundlagen der Experimentalphysik I + II

2. Modulkürzel:	081200103	5. Moduldauer:	2 Semester	
3. Leistungspunkte:	15.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	6.0	7. Sprache:	Deutsch	
8. Modulverantwortliche	er:	UnivProf. Clemens Bechinge	er	
9. Dozenten:		Martin Dressel		
10. Zuordnung zum Cu Studiengang:	rriculum in diesem	B.Sc. Materialwissenschaft (N → Basismodule	faterials Science), PO 2016	
11. Empfohlene Voraus	ssetzungen:		ik und Physik (gymnasiale Oberstufe). ntialgleichungen und Mehrfachintegrale	
12. Lernziele:		(Mechanik, Thermodynamik u In den Übungen werden Lösu	Erwerb von Grundlagen aus dem Bereich der klassischen Physik (Mechanik, Thermodynamik und Elektrodynamik). In den Übungen werden Lösungsstrategien zur Bearbeitung konkreter Probleme in diesen Teilgebieten vermittelt.	
13. Inhalt:		 WiSe: Mechanik und Wärmelehre: Mechanik starrer Körper Mechanik deformierbarer Körper Schwingungen und Wellen Grundlagen der Thermodynamik SoSe: Thermodynamik und Elektrodynamik: Mikroskopische Thermodynamik Elektrostatik Materie im elektrischen Feld Stationäre Ladungsströme Magnetostatik Induktion, zeitlich veränderliche Felder Materie im Magnetfeld Wechselstrom Maxwellgleichungen Elektromagnetische Wellen im Vakuum 		
14. Literatur:		 Demtröder, Experimentalphysik 1, Mechanik und Wärme, und Experimentalphysik 2, Elektrizität und Optik, Springer Verlag Paus, Physik in Experimenten und Beispielen, Hanser Verlag (19) Bergmann, Schaefer, Lehrbuch der Experimentalphysik, Band 1, Mechanik, Akustik, Wärme, und Band 2, Elektromagnetismus, De Gruyter Feynman, Leighton, Sands, Vorlesungen über Physik, Band 1 und Band 2, Oldenbourg Verlag (1997) Halliday, Resnick, Walker, Physik, Wiley-VCH Gerthsen, Physik, Springer Verlag; Daniel, Physik 1 und 2, de Gruyter, Berlin (1997) 		
15. Lehrveranstaltungen und -formen:		 393401 Vorlesung Grundlag 393402 Vorlesung Grundlag 393403 Übung Grundlagen of 393404 Übung Grundlagen of 	en der Experimentalphysik II der Experimentalphysik I	

Stand: 10. Oktober 2016 Seite 7 von 48

16. Abschätzung Arbeitsaufwand:	Vorlesung Präsenzstunden: 3h (4 SWS)*28 Wochen 84 h Vor- u. Nachbereitung: 1,5 h pro Präsenzstunde 126 h Übungen		
	Präsenzstunden: 1,5h (2 SWS)*28 Wochen 42 h Vor- u. Nachbereitung: 2,5 h pro Präsenzstunde 105 h		
	Prüfung incl. Vorbereitung 93 h Gesamt: 450 h		
17. Prüfungsnummer/n und -name:	 39341 Grundlagen der Experimentalphysik I + II (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftlich, eventuell mündlich, erfolgreiche Teilnahme an den Übungen 393403 oder 393404 (Schein zu Teil I oder Teil II) 		
18. Grundlage für :			
19. Medienform:	Demonstrationsexperimente, Projektion, Overhead, Tafel		
20. Angeboten von:	Mathematik und Physik		

Stand: 10. Oktober 2016 Seite 8 von 48

Modul: 39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik

2. Modulkürzel:	-	5. Moduldauer:	1 Semester
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	6.0	7. Sprache:	Deutsch
8. Modulverantwortliche	r:	UnivProf. Jörg Wrachtrup	
9. Dozenten:		Gert DenningerPeter MichlerHarald GießenJörg Wrachtrup	
10. Zuordnung zum Cur Studiengang:	riculum in diesem	B.Sc. Materialwissenschaft → Basismodule	(Materials Science), PO 2016
11. Empfohlene Vorauss	setzungen:	Inhalte der Module Experim	nentalphysik I - IV
12. Lernziele:		Die Studierenden sollen gru Molekül- und Festkörperphy	undlegende Kenntnisse im Bereich der ysik erwerben.
13. Inhalt:		Molekülphysik	
		Chemische BindungMolekülspektroskopie (Ro	sche Eigenschaften der Moleküle otation- und Schwingungsspektren) Molekülspektren (Franck-Condon Prinzip,
		Festkörperphysik	
		 Bindungsverhältnisse in I Reziprokes Gitter und Kri Kristallwachstum und Fel Gitterdynamik (Phononer Wärmeleitung) Fermi-Gas freier Elektron Energiebänder Halbleiterkristalle 	istallstrukturanalyse hlordnung in Kristallen nspektroskopie, Spezifische Wärme,
14. Literatur:		 Haken/Wolf, "Molekülphysik und Quantenchemie", Springer Atkins, Friedmann, "Molecular Quantum Mechanics", Oxford Kittel, "Einführung in die Festkörperphysik", Oldenbourg Ibach/Lüth, "Festkörperphysik, Einführung in die Grundlagen", Sprin Ashcroft/Mermin, "Festkörperphysik", Oldenbourg Kopitzki/Herzog, "Einführung in die Festkörperphysik", Teubner 	
15. Lehrveranstaltungen	und -formen:		agen der Experimentalphysik V en der Experimentalphysik V
16. Abschätzung Arbeits	saufwand:	Präsenzzeit: 84 h	
		Selbststudiumszeit: 186 h	
		Gesamt: 270 h	
17. Prüfungsnummer/n ı	und -name:	V Vorleistung (USL-V	y), schriftlich, eventuell mündlich

Stand: 10. Oktober 2016 Seite 9 von 48

 39372 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

	· · · · · · · · · · · · · · · · · ·	
18. Grundlage für :		
19. Medienform:	Overhead, Projektion, Tafel, Demonstration	
20. Angeboten von:		

Stand: 10. Oktober 2016 Seite 10 von 48

Modul: 45780 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

2. Modulkürzel:	080410501	5. Moduldauer:	2 Semester
3. Leistungspunkte:	18.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	14.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Apl. Prof. Markus Stroppel	
9. Dozenten:		Markus Stroppel	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	B.Sc. Materialwissenschaft (M → Basismodule	daterials Science), PO 2008, 1. Semester
		B.Sc. Materialwissenschaft (M → Basismodule	flaterials Science), PO 2016, 1. Semester
11. Empfohlene Vorau	ssetzungen:	Hochschulreife, Schulstoff in I	Mathematik
12. Lernziele:		Die Studierenden	
		 verfügen uber grundlegende Kenntnisse der Linearen Algebra, der Differential- und Integralrechnung für Funktionen einer reellen Veränderlichen und der Differentialrechnung für Funktionen mehrerer Veränderlicher, sind in der Lage, die behandelten Methoden selbstständig sicher, kritisch und kreativ anzuwenden besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften. können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen. 	
13. Inhalt:		<u> </u>	ahlen, Matrizenalgebra, lineare eterminanten, Eigenwerttheorie, Quadriko
		höhere Ableitungen, Taylor-Fo Stammfunktion, partielle Integ	hnung für Funktionen einer eihen, Stetigkeit, Differenzierbarkeit, ormel, Extremwerte, Kurvendiskussion, iration, Substitution, Integration rationaler nann-)Integral, uneigentliche Integrale.
		Kettenregel, Gradient und Ric	ektorräumen, partielle Ableitungen, htungsableitungen, Tangentialebene, unter Nebenbedingungen), Sattelpunkte enz.
		Kurvenintegrale: Bogenlänge, Arbeitsintegral, F	Potential
14. Literatur:			ineare Algebra und Geometrie. Edition

Stand: 10. Oktober 2016 Seite 11 von 48

• W. Kimmerle - M.Stroppel: Analysis . Edition Delkhofen.

• K. Meyberg, P. Vachenauer: Höhere Mathematik 1. Differential- und Integralrechnung. Vektor- und Matrizenrechnung. Springer.

• A. Hoffmann, B. Marx, W. Vogt: Mathematik

• G. Bärwolff: Höhere Mathematik, Elsevier.

	 Mathematik Online: w 	vww.mathematik-online.org.
15. Lehrveranstaltungen und -formen:	 457801 Vorlesung HM 1/2 für Ingenieurstudiengänge 457802 Gruppenübungen HM 1/2 für Ingenieurstudiengänge 457803 Vortragsübungen HM 1/2 für Ingenieurstudiengänge 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 196 h Selbststudiumszeit / Nacharbeitszeit: 344 h Gesamt: 540 h	
17. Prüfungsnummer/n und -name:	 45781 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge (Pl schriftliche Prüfung, 180 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftlich, eventuell mündlich 	
18. Grundlage für :		
19. Medienform:	Beamer, Tafel, persönliche Interaktion	
20. Angeboten von:	Mathematik und Physik	

Stand: 10. Oktober 2016 Seite 12 von 48

Modul: 17220 Höhere Mathematik 3 (vertieft)

2. Modulkürzel:	080410502	5. Moduldauer:	1 Semester
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	7.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Apl. Prof. Markus Stroppel	
9. Dozenten:		Dozenten der Mathematik	_
10. Zuordnung zum C Studiengang:	urriculum in diesem	B.Sc. Materialwissenschaft (M → Basismodule	Materials Science), PO 2008, 3. Semester
		B.Sc. Materialwissenschaft (M → Basismodule	flaterials Science), PO 2016, 3. Semester
11. Empfohlene Vorau	issetzungen:	HM 1 / 2	
12. Lernziele:		Die Studierenden	
		 verfügen über grundlegende Kenntnisse zu den Themenbereichen Integralrechnung für Funktionen mehrerer Veränderlicher, Gewöhnliche Differentialgleichungen, Fourierreihen und Integraltransformationen, partielle Differentialgleichungen, sowie Stochastik. sind in der Lage, die behandelten Methoden selbstständig, sicher, kritisch, korrekt und kreativ anzuwenden. besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften. können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen. 	
13. Inhalt:		Integralrechnung für Funkti	onen von mehreren Veränderlichen:
		Gebietsintegrale, iterierte Inte von Stokes und Gauß	grale, Transformationssätze, Integralsätz
		Stochastik:	
		Zufallsexperimente und Wahrs diskrete Verteilungen, bedingt Unabhängigkeit	scheinlichkeitsmodelle, Zufallsgrößen, e Wahrscheinlichkeiten und
		Gewöhnliche Differentialgle	ichungen:
			ätze, einige integrierbare Typen, Systeme en (Fundamentalsystem, spezielle und ungen.
		Fourierreihen und Integraltr	ansformationen:
		Fourierreihen; Fouriertransfor	mation.
		Partielle Differentialgleichur	
		_	eller Differentialgleichungen, Transport,

Stand: 10. Oktober 2016 Seite 13 von 48

14. Literatur:	 A. Hoffmann, B. Marx, W. Vogt: Mathematik für Ingenieure 1, 2. Pearson Studium. K. Meyberg, P. Vachenauer: Höhere Mathematik 1, 2. Springer. G. Bärwolff: Höhere Mathematik. Elsevier. W. Kimmerle: Analysis einer Veränderlichen, Edition Delkhofen. W. Kimmerle: Mehrdimensionale Analysis, Edition Delkhofen. Mathematik Online: www.mathematik-online.org.
15. Lehrveranstaltungen und -formen:	172201 Vorlesung HM 3172202 Gruppenübungen HM 3172203 Vortragsübungen HM 3
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 98 h Selbststudiumszeit / Nacharbeitszeit: 172 h Gesamt: 270 h
17. Prüfungsnummer/n und -name:	17221 Höhere Mathematik 3 (vertieft) (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Vorleistungen: Scheinklausuren
18. Grundlage für :	
19. Medienform:	Beamer, Tafel, persönliche Interaktion
20. Angeboten von:	

Stand: 10. Oktober 2016 Seite 14 von 48

Modul: 25850 Physikalische Chemie I: Thermodynamik, Elektrochemie und Kinetik

2. Modulkürzel:	030710505	5. Moduldauer:	1 Semester
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	6.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Frank Gießelmann	1
9. Dozenten:			
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	B.Sc. Materialwissenschaft (N → Basismodule	Materials Science), PO 2016
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Die Studierenden	
		Elektrochemie und der Kine diese problemorientiert an,	r chemischen Thermodynamik, der etik chemischer Reaktionen und wenden en physikalisch-chemischer Meßmethoder
13. Inhalt:		etc., kinetische Gastheorie. Thermodynamik: Erster Hauptsatz mit Anwende charakteristische Funktionen, Phasengleichgewichte und Pheterogene chemische Gleich Elektrochemie: Grundbegriffe der Elektrocher elektrische Doppelschichten, elektrochemisches Gleichgew Elektrodenpotentiale, Diffusion Elektrolyse, Anwendungen de Kinetik: Grundbegriffe und Messmethe Geschwindigkeitsgesetze (Fo Reaktionen, Temperaturabhä	Ionentransport in Elektrolytlösungen, vicht, galvanische Zellen, nspotentiale und Konzentrationsketten,
14. Literatur:		s. gesonderte Liste des aktue	llen Semesters
15. Lehrveranstaltunge	en und -formen:	I)	ynamik, Elektrochemie und Kinetik (PC mik, Elektrochemie und Kinetik (PC I)
16. Abschätzung Arbe	itsaufwand:	Vorlesung Präsenzstunden: 4 SWS * 14 Vor- und Nachbereitung: 2 h p	

Stand: 10. Oktober 2016 Seite 15 von 48

Summe: 270 h

17. Prüfungsnummer/n und -name:	25851 Physikalische Chemie I: Thermodynamik, Elektrochemie und Kinetik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsklausuren bestanden	
18. Grundlage für :	 10410 Instrumentelle Analytik 10450 Grundlagen der Makromolekularen Chemie 10460 Technische Chemie 	
19. Medienform:		
20. Angeboten von:	Physikalische Chemie I	

Stand: 10. Oktober 2016 Seite 16 von 48

Modul: 10370 Physikalisches Praktikum 1

2. Modulkürzel:	081200007	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe		
4. SWS:	4.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	ner:	Arthur Grupp			
9. Dozenten:		Dozenten der Physik	Dozenten der Physik		
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Materialwissenschaft (→ Basismodule	(Materials Science), PO 2008, 3. Semester		
		B.Sc. Materialwissenschaft (→ Basismodule	(Materials Science), PO 2016, 3. Semester		
11. Empfohlene Vorau	issetzungen:	Modul: Einführung in die Phy	ysik		
12. Lernziele:		 - Durchführung einzelner Experimente unter Anleitung - Protokollierung von Messdaten - Auswertung von Messdaten und Erstellung eines schriftlichen Bei (Protokoll) 			
13. Inhalt:		Gebiete der Experimentalphysik: Mechanik, Wärmelehre, Strömungslehre, Akustik Optik, Elektrodynamik, Atomphysik			
14. Literatur:		Lehrbücher der Experimenta Anleitungstexte zum Praktik	alphysik; um, darin aufgeführte Literatur		
15. Lehrveranstaltunge	en und -formen:	103701 Praktikum Physika	lisches Praktikum 1		
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit: 8 Versuche x 3	h 24 h		
		Selbststudiumszeit / Nachbe	earbeitungszeit: 66 h		
		Gesamt:	90 h		
17. Prüfungsnummer/ı	n und -name:	10371 Physikalisches Prak schriftlicher Ausarbe	tikum 1 (USL), Sonstiges, 8 Versuche mit		
18. Grundlage für :		10450 Grundlagen der Mak10460 Technische Chemie10410 Instrumentelle Analy			
19. Medienform:					
20. Angeboten von:		Mathematik und Physik			

Stand: 10. Oktober 2016 Seite 17 von 48

Modul: 10340 Praktische Einführung in die Chemie

2. Modulkürzel:	030230002	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	9.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf. Thomas Schleid	
9. Dozenten:		Ingo Hartenbach	
10. Zuordnung zum Currio Studiengang:	culum in diesem	B.Sc. Materialwissenschaft (N → Basismodule	Materials Science), PO 2008, 2. Semester
		B.Sc. Materialwissenschaft (N → Basismodule	Materials Science), PO 2016, 2. Semester
11. Empfohlene Vorausse	etzungen:	Keine	
12. Lernziele:		Gefahren beim Umgang mit (und beherrschen Grundlagen wissenschaftliche Dokumenta	en elementare Laboroperationen, können Chemikalien und Geräten richtig einordnen der Arbeitssicherheit. Sie können die ation von Experimenten übersichtlich und wie Verknüpfungen zwischen Theorie und
13. Inhalt:		Molmassenbestimmung, Teile Periodensystem der Element	System der Elemente: Gasgesetz, chen im Kasten, Spektroskopie, e, Haupt- und Nebengruppen, lische Eigenschaften (7 Versuche)
		Massenwirkungsgesetz, Säur und Löslichkeitsgleichgewich	r, Thermodynamik und Reaktionskinetik re-Base-Gleichgewichte, Fällungs- te, Redox-Gleichgewichte, rrimetrie, Reaktionskinetik (7 Versuche)
			beitstechniken: Destillation, Sublimation, Umkristallisation, Synthese einfacher im Labor (7 Versuche)
		Das Praktikum wird von ein begleitet.	em wöchentlichen 2 stündigen Semina
14. Literatur:		Physikalische Chemie:	
			Physikalische Chemie, 4. Aufl. 2006. hysikalischen Chemie, 5. Aufl. 2004.
		Anorganische Chemie:	
		 G. Jander, E. Blasius, Lehr anorganischen Chemie, 16 	nemie, 8. Aufl. de Gruyter Verlag 2011. buch der analytischen und präparativen . Aufl., 2006. ührung in das anorganisch-chemische
		Organische Chemie:	
		K. Schwetlick, Organikum,	23. Aufl. 2009
15. Lehrveranstaltungen	und -formen:	103401 Praktikum Praktisch	ne Einführung in die Chemie

Stand: 10. Oktober 2016 Seite 18 von 48

16. Abschätzung Arbeitsaufwand:	Praktikum:
	21 Praktikumsnachmittage à 4 h = 84 h
	Vorbereitung u. Protokolle: 3,5 h pro Praktikumstag = 73,5 h
	Seminar zur Unterstützung der Vor- und Nachbereitung der Praktikumsnachmittage:
	Präsenzstunden: 9 Seminartage à 2 h = 18 h
	Vor- und Nachbereitung 0.5 h pro Seminartag = 4,5 h
	Summe: 180 h
17. Prüfungsnummer/n und -name:	Summe: 180 h 10341 Praktische Einführung in die Chemie (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Testat aller Versuchsprotokolle
17. Prüfungsnummer/n und -name: 18. Grundlage für :	10341 Praktische Einführung in die Chemie (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Testat aller
	 10341 Praktische Einführung in die Chemie (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Testat aller Versuchsprotokolle 10380 Grundlagen der Anorganischen und Analytischen Chemie 10390 Thermodynamik, Elektrochemie und Kinetik

Stand: 10. Oktober 2016 Seite 19 von 48

Modul: 17690 Statistische Thermodynamik

2. Modulkürzel:	030710022	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	5.0	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlich	ner:	UnivProf. Frank Gießelmann		
9. Dozenten:		Dozenten der Physikalischen	Chemie	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	B.Sc. Materialwissenschaft (N → Basismodule	Materials Science), PO 2016	
11. Empfohlene Vorau	ssetzungen:	B.Sc. in Chemie oder Materia	B.Sc. in Chemie oder Materialwissenschaft (Materials Science)	
12. Lernziele:		Die Studierenden		
13. Inhalt:		thermodynamischer Funktion rotatorische, vibratorische u	akrozustände, Postulate und Verteilung, Zustandssummen, Berechnung onen, Quantenstatistiken; translatorische, und elektronische Zustandssummen idealer ngewichtskonstanten chem. Reaktionen.	
		 Reale Gase und Flüssigkeit Virialkoeffizienten, intermole Theorie. 	ten: Konfigurationsintegral, ekulare Wechselwirkungen, Debye-Hückel-	
		 Festkörper: Spezifische Wä 	irme, Einstein- und Debye-Theorie.	
		 Transportphänomene: Diffu und Wärmeleitung, Kreuzef 	ision, Viskosität, elektrische Leitfähigkeit fekte.	
		 Schwankungserscheinunge der Brownschen Bewegung 	en: Thermische Fluktuationen und Theorie g, kritische Phänomene.	
		 Grundzüge der molekularen Reaktionsdynamik: Stoßtheorie, Theorie des aktivierten Komplexes, Potentialhyperflächen 		
14. Literatur:		P.W. Atkins, J. de Paula, Phy	sikalische Chemie, 4. Auflage, Wiiley, 2007	
15. Lehrveranstaltunge	en und -formen:	 176901 Vorlesung Statistische Thermodynamik 176902 Übung Statistische Thermodynamik 176903 Praktikum Statistische Thermodynamik 		
16. Abschätzung Arbe	itsaufwand:	Vorlesung:		
		Präsenzzeit: 28 h;		
		Vor- und Nachbereitung (2 h pro Präsenzstunde): 56 h		
		Übung:		
		Präsenzzeit: 14 h;		
		Vor- und Nachbereitung (1 h	oro Präsenzstunde): 14 h	
		FOR ANA MACHIDOLORUNG (111)	pro : 14001120ta1140). 17 11	

Stand: 10. Oktober 2016 Seite 20 von 48

	Praktikum: 4 Versuche à 6 h: 24 h; Vorbereitung und Protokoll: 6 h pro Versuch: 24 h Abschlussprüfung: Prüfung, inkl. Vorbereitung: 20 h Gesamt: 180 h
17. Prüfungsnummer/n und -name:	 17691 Statistische Thermodynamik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftlich, eventuell mündlich, erfolgreiche Übungsteilnahme, alle Versuchsprotokolle testiert
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Physikalische Chemie I

Stand: 10. Oktober 2016 Seite 21 von 48

Modul: 10420 Theoretische Chemie (Atom- und Molekülbau)

		Abschlussklausur incl. Vorber	
		Übungen: Präsenzstunden: 1 SWS: 14,0 Vor- und Nachbereitung: 52,5	
16. Abschätzung Arbeitsaufwand:		Vorlesung: Präsenzstunden: 3 SWS: 42,0 Vor- und Nachbereitung: 52,5	
15. Lehrveranstaltung	en und -formen:		sche Chemie (Atom- und Molekülbau) e Chemie (Atom- und Molekülbau)
14. Literatur:		Edition, Oxford University PI. R. Levine, Quantum Cher	n, Molecular Quantum Mechanics, Fourth Press, 2008 mistry, Sixth Edition, Prentice Hall, 2009 hanik der Moleküle, Vorlesungsskript
13. Inhalt:		Theorie der chemischen Bindr folgenden Bereichen: Quantis Dualismus, Schrödinger Gleic Unschärferelation, einfache ei im Kasten, harmonischer Osz Schwingungsspektren von 2-a Pauli Prinzip, Aufbauprinzip, F	ng in die Quantenmechanik und die ung. Es vermittelt die Grundlagen in sierung der Energie, Welle-Teilchen chung, Operatoren und Observablen, xakte Lösungen (freie Bewegung, Teilchen illator, starrer Rotator, H-Atom), Rotationstatomigen Molekülen, Elektronenspin, Periodensystem, Atomzustände, Bornmen und Molekülorbitale, Theorie der Theorie, Molekülsymmetrie
12. Lernziele:		Relevanz für die mikroskop	n der Quantentheorie und erkennen deren ische Beschreibung der Materie, emische Bindung auf quantenmechanische
		Höhere Mathematik Teil 1 u Einführung in die Physik Te	und 2
11. Empfohlene Vorau	issetzungen:	Empfohlen werden: • Mathematik für Chemiker T	eil 1 und 2 oder
		B.Sc. Materialwissenschaft (M → Basismodule	Materials Science), PO 2016, 3. Semester
10. Zuordnung zum C	urriculum in diesem	B.Sc. Materialwissenschaft (M → Basismodule	Materials Science), PO 2008, 3. Semester
9. Dozenten:		Johannes Kästner	
8. Modulverantwortlich	ner:	UnivProf. Johannes Kästner	
4. SWS:	4.0	7. Sprache:	Deutsch
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
2. Modulkürzel:	031110008	5. Moduldauer:	1 Semester

Stand: 10. Oktober 2016 Seite 22 von 48

17. Prüfungsnummer/n und -name:	 10421 Theoretische Chemie (Atom- und Molekülbau) (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Votieren von 50% der Übungsaufgaben V Vorleistung (USL-V), schriftliche Prüfung, 120 Min.
18. Grundlage für :	10480 Atome, Moleküle und ihre Spektroskopie
19. Medienform:	
20. Angeboten von:	Theoretische Chemie

Stand: 10. Oktober 2016 Seite 23 von 48

200 Kernmodule

Zugeordnete Module: 11120 Computergestützte Materialwissenschaft

68830 Praktikum Materialwissenschaft

68840 Keramische Werkstoffe

68850 Physikalische Materialeigenschaften
 68860 Einführung Materialwissenschaft
 68870 Materialwissenschaft im Überblick
 68880 Strukturanalyse und Materialmikroskopie

69080 Grundlagen der Organischen und Makromolekularen Chemie

Stand: 10. Oktober 2016 Seite 24 von 48

Modul: 11120 Computergestützte Materialwissenschaft

2. Modulkürzel:	031430007		5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP		6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0		7. Sprache:	Deutsch
8. Modulverantwortlicher:		Apl Pr	of. Joachim Bill	
9. Dozenten:		· · · · · · · · · · · · · · · · · · ·	ed Schmauder	
10. Zuordnung zum Ci Studiengang:	urriculum in diesem	B.Sc. N		Materials Science), PO 2008, 5. Semeste
otaalongang.		B.Sc. N		faterials Science), PO 2016, 5. Semesto
11. Empfohlene Vorau	ssetzungen:		hrung Materialwissens ere Mathematik IV	chaft I / II
12. Lernziele:		Die Stu	ıdierenden	
		Mode • Könr Prog • Sind natur über	elle. nen die Modelle selbstä rammierung von Comp in der Lage, sich mit S wissenschaftlichen un	·
13. Inhalt:		Betracl atomisi - Mode Anwen Zeit- ur - Molek - Krista - Mikro - Finite	ischen Ebene bis zum Ilierung auf unterschied	haftlicher Modelle auf unterschiedlicher zungstheorie nik
14. Literatur:		• Text	oücher	
15. Lehrveranstaltung	en und -formen:	 111201 Vorlesung Computergestützte Materialwissenschaft 111202 Übungen / Seminare Computergestützte Materialwissenschaft 		Computergestützte
16. Abschätzung Arbe	itsaufwand:	Präsen	zzeit:	56 h
		Selbststudiumszeit / Nacharbeits:		eitszeit: 126 h
		Gesam	t:	182 h
17. Prüfungsnummer/ı	n und -name:	11121	Prüfung, 90 Min., Gev	aterialwissenschaft (PL), schriftliche vichtung: 1.0, Zulassung: Teilnahme Verkstoffmodellierung (Do 14.00 - 15.30
				_

Stand: 10. Oktober 2016 Seite 25 von 48

20. Angeboten von:

Stand: 10. Oktober 2016 Seite 26 von 48

Modul: 68860 Einführung Materialwissenschaft

2. Modulkürzel:	-	5. Moduldauer:	2 Semester
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	7.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Anke Weidenkaff	
9. Dozenten:		Ralf SchacherlAnke WeidenkaffMarc Widenmeyer	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	B.Sc. Materialwissenschaft (N → Kernmodule	Materials Science), PO 2016
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Die Studierenden	
TZ. EGITIZIOIO.		und deren Eigenschaften, • beherrschen das Lesen und Phasendiagrammen, • können Eigenschaften und zur Konstitution und zu Phabehandelten Materialsyster • verstehen grundlegende Mauf mikrostruktureller und aphänomenologischen Basis • sind in der Lage über eleme Materialeigenschaften und	
13. Inhalt:		Teil I:	

Struktur der Materie

Atombau, Periodensystem der Elemente und chemische Bindung

Kristallstruktur

Formale Beschreibung von Kristallstrukturen; Translationsgitter/ Bravaisgitter; Kristallsysteme; Ebenen + Richtungen; Kristallstrukturen von Metallen, einfacher Legierungen und Keramiken; Polymorphie und Polytypie; Kristallstruktur bestimmende Faktoren; Grundlagen von Beugungsexperimenten

Gitterbaufehler

Punktdefekte; Liniendefekte (Versetzungen); Korngrenzen

Zustandsdiagramme

Gibbsche Phasenregel; Hebelregel; Reaktionstypen, Gefügeentwicklung, Grundlagen der Mikroskopie.

Atomarer Transport

Diffusionsmechanismen; 1. u. 2. Ficksche Gesetz;

Teil II:

Atomarer Transport

Stand: 10. Oktober 2016 Seite 27 von 48

Generische Lösungen der Fickschen Gleichungen, Ionenleitung, Elektround Thermotransport

Phasenumwandlungen

homogene Keimbildung, Erstarrungsreaktionen, Ausscheidungsreaktionen, spinodale Entmischung

Metallische Werkstoffe

Fe-C Zustandsdiagramme und Mikrostruktur von Fe-C Legierungen Snoek-Effekt; Ledeburit-, Perlitt-, Sorbit-, Trostit-Gefuege; Zwischenstufengefuege, Martensit; Isothermes ZTU Diagramm; Phasenumwandlungen in Al-Cu Legierungen.

Hybridmaterialien

	Materialien in der Anwendung		
14. Literatur:	Textbücher:		
	Fundamentals of Materials Science, E.J. Mittemeijer, Springer, 2010		
	Materials Science and Engineering: An Introduction, W. D. Callister, John Wiley & Sons		
	Physikalische Grundlagen der Materialkunde, G. Gottstein, 1998, Springer		
15. Lehrveranstaltungen und -formen:	 688601 Vorlesung Einführung Materialwissenschaft I 688602 Übung Einführung Materialwissenschaft I 688603 Vorlesung Einführung Materialwissenschaft II 688604 Übung Einführung Materialwissenschaft II 		
16. Abschätzung Arbeitsaufwand:	Vorlesung Einf. I		
	Präsenzstunde: 2SWS * 15 Wochen = 30h		
	Vor-und Nachbereitung 1h pro Präsenzstunde = 30h		
	Übung Einf. I		
	Präsenzstunde: 1SWS * 15 Wochen = 15h		
	Vor-und Nachbereitung: 1h pro Präsenzstunde = 15h		
	Vorlesung Einf. II		
	Präsenzstunde: 2SWS * 15 Wochen = 30h		
	Vor-und Nachbereitung 1h pro Präsenzstunde = 30h		
	Übung Einf. II		
	Präsenzstunde: 2SWS * 15 Wochen = 30h		
	Vor-und Nachbereitung: 3h pro Präsenzstunde = 90h		
	Gesamt: 270h		
17. Prüfungsnummer/n und -name:	 68861 Einführung in die Materialwissenschaft (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftlich, eventuell mündlich 		

Stand: 10. Oktober 2016 Seite 28 von 48

1Ω	Grundlage	⊳für ∙
10.	Grunulaye	= iui

19. Medienform:

20. Angeboten von:

Stand: 10. Oktober 2016 Seite 29 von 48

Modul: 69080 Grundlagen der Organischen und Makromolekularen Chemie

2. Modulkürzel:	-	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, WiSe		
4. SWS:	4.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	ner:	UnivProf. Michael Buchmeiser			
9. Dozenten:		Bernd Plietker Michael Buchmeiser Sabine Ludwigs			
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	B.Sc. Materialwissenschaft (N → Kernmodule	Materials Science), PO 2016		
11. Empfohlene Voraussetzungen:		Einführung in die Chemie, Praktische Einführung in die Chemie, Thermodynamik, Kinetik und Elektrochemie			
12. Lernziele:		Die Studierenden			
		(Atomismus, Periodensystem	den Konzepte der Organischen Chemie , Formelsprache, Stöchiometrie, Molekülbau önnen sie eigenständig anwenden,		
		- kennen die Grundtypen organisch-chemischer Stoffe (Substanzklassen und deren Reaktivitäten			
		- wissen um Einsatz und Anwendung der organischen Chemie in der Materialwissenschaft,			
		Chemie, der Synthese, Chara	nisse auf dem Gebiet der Makromolekularen akterisierung von Polymeren, Polymer- und einen allgemeinen Überblick zu aften erworben.		
13. Inhalt:		Grundlagen der organischen Chemie:			
		Allgemeine Grundlagen:			
		Elektronenkonfiguration des Kohlenstoffs, Hybridisierung; Grundtypen			

Elektronenkonfiguration des Kohlenstoffs, Hybridisierung; Grundtypen von Kohlenstoffgerüsten: C-C-Einfach-/Zweifach-/Dreifachbindungen, cyclische Strukturen, Nomenklatur (IUPAC); Isomerie: Konstitution, Konfiguration (Chiralität), Konformation

Stoffklassen:

Alkane, Alkene, Alkine, Halogenalkane, Alkohole, Amine, Carbonsäuren und ihre Derivate, Aromaten, Aldehyde u. Ketone, Aminosäuren, Polymere,

Reaktionsmechanismen:

Radikalische Substitution, Nucleophile Substitution, Eliminierung, Addition, elektrophile aromatische Substitution, 1,2-Additionen; Veresterung, Reduktion, Grignard-Reaktion, Reaktionen C-H-acider Verbindungen, pericyclische Reaktionen

Grundlagen der makromolekularen Chemie:

Stand: 10. Oktober 2016 Seite 30 von 48

- Grundbegriffe der Makromolekularen Chemie
- Konformation von Makromolekülen
- Molekulargewichtsmittelwerte und -verteilungskurven
- Polyreaktionen (radikalische (Co)Polymerisation, Emulsionspolymersiation, Ionische Polymerisation, Polykondensation, Polyaddition, Ziegler-Natta-Polymerisation, Methatese-Polymerisation)
- Polymercharakterisierung (Membran- und Dampfdruckosmometrie, statische Lichtstreuung, Viskosimetrie, Gelpermeationschromatographie)
- Thermodynamik von Polymer-Lösungen und -Mischungen
- Grundzüge Polymer-Festkörpereigenschaften

14. Literatur:	"Organische Chemie", Klaus-Peter Vollhardt		
	"Makromoleküle", Hans-Georg Elias		
	·		
	"Makromolekulare Chemie", Bernd Tieke		
	Koltzenburg, Maskos, Nuyken, Polymere, Springer, 2014		
15. Lehrveranstaltungen und -formen:	690801 Vorlesung Organische Chemie690802 Seminar Organische Chemie		
	 690803 Vorlesung Grundlagen der Makromolekularen Chemie 690804 Seminar Grundlagen der Makromolekularen Chemie 		
16. Abschätzung Arbeitsaufwand:	Organische Chemie (Vorlesung und Seminar)		
	Präsenzzeit: 60 h,		
	Selbststudiumszeit / Nacharbeitszeit: 30 h		
	Gesamt: 90 h		
	Grundlagen der Makromolekularen Chemie:		
	Vorlesung		
	Präsenzzeit: 31,50 h		
	Selbststudiumszeit / Nacharbeitszeit: 47,25 h		
	Übungen		
	Präsenzzeit: 10,50 h		
	Selbststudiumszeit / Nacharbeitszeit: 42,00 h		
	Abschlussprüfung incl. Vorbereitung: 48,75 h		
	Gesamt: 180 h		

Stand: 10. Oktober 2016 Seite 31 von 48

17. Prüfungsnummer/n und -name:	 69081 Grundlagen der Organischen Chemie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 69082 Grundlagen der Makromolekularen Chemie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 2.0 		
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:			

Stand: 10. Oktober 2016 Seite 32 von 48

Modul: 68840 Keramische Werkstoffe

2. Modulkürzel:	031430003	5. Moduldauer:	1 Semester			
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe			
4. SWS:	5.0	7. Sprache: Deutsch				
8. Modulverantwortlicher:		Apl. Prof. Joachim Bill	Apl. Prof. Joachim Bill			
9. Dozenten:		Joachim Bill	Joachim Bill			
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Materialwissenschaft (Materials Science), PO 2016 → Kernmodule				
11. Empfohlene Voraussetzungen:		Einführung in die Materialwissenschaft I + II				
12. Lernziele:		Die Studierenden				
		•beherrschen die Verfahren zu	ur Herstellung von keramischen Materialie			
		 haben Kenntnis über die grun Aufbau dieser Werkstoffklasse 	ndlegenden Konzepte zum strukturellen e,			
		•verstehen die Zusammenhänge zwischen der Struktur und den Eigenschaften,				
		•haben einen Überblick über die Anwendungsfelder von keramischen Materialien.				
13. Inhalt:		Einleitung				
		Geschichte keramischer Materialien, Begriffsbildung und Definition				
		Werkstoffvielfalt und technische Bedeutung				
		Klassische Verfahren der Keramikherstellung, pulvertechnologische Herstellung				
		Pulverfreie Herstellverfahren				
		Bauteile und Anwendung				
		Typische Formgebungsverfahren				
		Struktur und Gefüge				
		Chemische und physikalische Eigenschaften				
14. Literatur:		Salmang, Scholze, "Keramik", Springer-Verlag				
		Vorlesungsskript				
15. Lehrveranstaltungen und -formen:		688401 Vorlesung Keramische Werkstoffe688402 Übung Keramische Werkstoffe				
16. Abschätzung Arbei	tsaufwand:	Vorlesung:				
		Präsenzstunden: 2 SWS X 14 Wochen 28 h				
		Vor- und Nachbereitung: 62 h				

Stand: 10. Oktober 2016 Seite 33 von 48

	Präsenzstunden: 2 SWS X 14 Wochen 28 h Vor und Nachbereitung: 62 h Gesamt: 180 h		
17. Prüfungsnummer/n und -name:	 68841 Keramische Werkstoffe (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftliche Prüfung, Lösung schriftliche Übungsaufgaben zu "Keramische Werkstoffe" 		
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:			

Stand: 10. Oktober 2016 Seite 34 von 48

Modul: 68870 Materialwissenschaft im Überblick

2. Modulkürzel:	-		5. Moduldauer:	1 Semester		
3. Leistungspunkte:	6.0 LP		6. Turnus:	jedes 2. Semester, SoSe		
4. SWS:	3.0		7. Sprache:	Deutsch		
8. Modulverantwortlich	er:	Univ	UnivProf. Guido Schmitz			
9. Dozenten:		• Mich • Sabi • Guid	 Joachim Bill Michael Buchmeiser Sabine Ludwigs Guido Schmitz Anke Weidenkaff 			
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem		B.Sc. Materialwissenschaft (Materials Science), PO 2016 → Kernmodule			
11. Empfohlene Voraussetzungen:			Empfohlen: Grundlegende und vertiefende Vorlesung des Bachelorstudiengangs Materialwissenschaften			
12. Lernziele:		Die Studierende kennen die interdisziplinären Zusammenhänge ihres Fachgebietes in anorganischer und organischer Chemie, Festkörperphysik und Ingenieurswissenschaften. Sie können Phänomene und Technologien entsprechend einordnen und wissenschaftlich deuten.				
13. Inhalt:		(z.B. l		icklung und Anwendung von Materialien nostrukturierung, Faserverbundmaterialien, k)		
		(z.B. I Wech Strukt	Hochleistungsmikrosko selwirkung zwischen m	terisierung und Verständnis von Materialien pie, Struktur-Eigenschaftsbeziehung, iikrostrukturellen Defekten, chemische Quantenmechanik-basiertes Design,		
14. Literatur:		Je na	Je nach gewähltem Seminar			
15. Lehrveranstaltungen und -formen:			688701 Semiar Materialwissenschaft im Überblick 688702 Kolloquium Materialwissenschaft im Überblick			
16. Abschätzung Arbeitsaufwand:		Semir	nar: Präsenzzeit: 30 h			
		Vorbereitung des eigenen Vortrags: 45 h				
		Kolloquium: Präsenzzeit: 12 h				
		Prüfungsvorbereitung: 93 h				
		Gesamt: 180 h				
17. Prüfungsnummer/r	und -name:		71 Materialwissenschaft 45 Min., Gewichtung Dauer zu Grundlage Materialwissenschaft	t im Überblick (PL), mündliche Prüfung, : 1.0, Mündliche Prüfung von 45 min n und aktuellen Forschungsthemen der t. schriftlich und mündlich, Vortrag im		
 18. Grundlage für :			30.1.3.1.1.3.1. 30.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			

Stand: 10. Oktober 2016 Seite 35 von 48

20. Angeboten von:

Stand: 10. Oktober 2016 Seite 36 von 48

Modul: 68850 Physikalische Materialeigenschaften

2. Modulkürzel:	-	5. Moduldauer:	1 Semester			
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 4. Semester, SoSe			
4. SWS:	5.0	7. Sprache:	Deutsch			
8. Modulverantwortlich	ner:	UnivProf. Guido Schmitz				
9. Dozenten:		Guido Schmitz				
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Materialwissenschaft (M → Kernmodule	B.Sc. Materialwissenschaft (Materials Science), PO 2016 → Kernmodule			
11. Empfohlene Voraussetzungen:		Empfohlen: Einführende Veranstaltungen in Chemie, Physik, Materialwissenschaften				
12. Lernziele:		- Die Studierenden				
		- können grundlegende Phase	endiagramme physikalisch begründen			
		 kennen thermische, elektronische und ionische Leitfähigkeit, atomaren Transport sowie Dia- Para, Ferro- und Antiferromagnetismus. Sie könner diese grundlegenden physikalischen Eigenschaften mittels Kontinuums- Modellen beschreiben. 				
		 können unterschiedliche Aspekte mechanischen Verhaltens voneinander abgrenzen und erklären. 				
		- beherrschen die Berechnung einfacher elastischer Probleme anisotroper Elastizität.				
		 können den Zusammenhang zwischen makroskopischer Verformung, Kristallsymmetrie und der Erzeugung und Bewegung mikroskopischer Defekte erklären. 				
		- verstehen die grundlegenden Strategien zur Härtung von Materialien.				
		- kennen Fragestellungen aktueller wissenschaftliche Forschung in der Mechanik nanoskalierter Materialien				
13. Inhalt:		- Thermodynamik und physikalische Ableitung von binären Phasendiagrammen,				
		Theorie des mittleren Feldes und reguläre Lösungsmodelle				
		 Wärmeleitungsgleichung und Ficksche Gleichungen, ihre mathematischen Lösungsverfahren und typische Lösungen, Statistis Deutung der Diffusion 				
		- Drude Modell der elektronischen Leitung, Einführung in die Bändervorstellung				
			ismus, Grundzüge ihrer physikalischen gskurven, Hysterese, Koerzitivfeldstärke			

Stand: 10. Oktober 2016 Seite 37 von 48

Bruch

- Phänomenologie mechanischer Eigenschaften: Elastizität, Anelastizität,

Pseudoelastitizität, Viskosität, Plastizität, Härte, Zähigkeit, Ermüdung,

	- Mechanische Prüfverfahren			
	 Elastizitätstheorie: Spannung, Verzerrung, Elastische Moduli, Tensorformalismus Messung elastischer Moduli Energie- und Entropie-Elastizität Plastische Verformung und Versetzungen 			
	- Grundzüge der Versetzungstheorie			
	- Prinzipien des mechanischen Materialdesigns			
	- Materialversagen durch Bruch, Fraktographie			
	- Materialermüdung unter Wechselbelastung			
	- Mechanische Eigenschaften Nanostrukturierter Materialien			
	- Prinzipien der Materialauswahl			
14. Literatur:	- A. Guinier, R. Jullien, Die physikalischen Eigenschaften von Festkörpern, Hanser Verlag, Münschen 1992			
	- T. H. Courtney, Mechanical Behaviour of Materials, Long Grove 200			
	- S.P. Timoshenko, J. N. Goodier, Theory of Elastisity, New York 1970			
	- M. Ashby, Materials Selection in Mechanical Design, Oxford 1999			
	- G. Weidman et al., Structural Materials, London 1990			
15. Lehrveranstaltungen und -formen:	 688501 Vorlesung Physikalische Materialeigenschaften 688502 Übung Mechanische Eigenschaften der Strukturmaterialien 			
16. Abschätzung Arbeitsaufwand:	Vorlesung: Präsenzzeit: 15*4 h=60 h, Selbststudium: 60 h			
	Übung: Präsenzzeit: 15 h, Selbststudium: 45 h			
17. Prüfungsnummer/n und -name:	68851 Physikalische Materialeigenschaften (PL), mündliche Prüfung 30 Min., Gewichtung: 1.0			
	 V Vorleistung (USL-V), schriftliche Prüfung, Lösung von schriftlichen Übungsaufgaben. (Übungsblätter in vierzehntägigem Rhythmus) 			
18. Grundlage für :				
19. Medienform:				
20. Angeboten von:				

Stand: 10. Oktober 2016 Seite 38 von 48

Modul: 68830 Praktikum Materialwissenschaft

2. Modulkürzel:	0314100003	5. Moduldauer: 1 Semester				
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, WiSe			
4. SWS:	4.0	7. Sprache: Deutsch				
8. Modulverantwortlich	er:	UnivProf. Guido Schmitz				
9. Dozenten:		Joachim BillMichael BuchmeiserSabine LudwigsGuido SchmitzAnke Weidenkaff	Michael BuchmeiserSabine LudwigsGuido Schmitz			
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	B.Sc. Materialwissenschaft (I → Kernmodule	B.Sc. Materialwissenschaft (Materials Science), PO 2016 → Kernmodule			
11. Empfohlene Vorau	ssetzungen:		Empfohlen: "Einführung in die Materialwissenschaft"", "Einführung in die Chemie", "Grundlagen der Experimental-Physik"			
12. Lernziele:		Die Studierenden				
		 kennen Funktionsweise und Bedienung der einschlägigen Messinstrumente, 				
		- können selbständig Experimente u. Versuche durchzuführen,				
		- können Messergebnisse aufbereiten, interpretieren und schriftlich darstellen,				
		- Kennen grundlegende statistische Werkzeuge zur Einschätzung und Verbesserung der Messgenauigkeit.				
13. Inhalt:			Experimenten zur Struktur- Keramiken, Metallen, und polymeren nd Beispiele möglicher Versuche			
		 Anwendung thermodynamischer Datenbanken und Modellierung vor Phasendiagrammen Untersuchung der Gefügeumwandlungen in Fe-C Legierungen Messung des Spannungsdehnungsverhaltens von fcc Metallen Kaltverformung, Erholung und Rekristallisation von Aluminium Sinterversuch/Dilatometrie Gefriergießen Herstellung von Polystyrol über freie radikalische Polymerisation & Herstellung eines Polyurethans über eine Polyadditionsreaktion Bestimmung des Molekulargewichtes und seiner Verteilung mittels 				
		Gelpermeationschromatographie (GPC) • Untersuchung der thermischen Eigenschaften von Polymeren mittels Wärmeflußkalorimetrie (DSC)				
14. Literatur:		G. Gottstein, die Physikalischen Grundlagen der Materialkunde				
		J.E. Mittemeijer, "Fundamentals of Materials"				
		M. Sardela, "Practical Materials Characterization"				
15. Lehrveranstaltungen und -formen:		688301 Praktikum Material	wissenschaft			

Stand: 10. Oktober 2016 Seite 39 von 48

16. Abschätzung Arbeitsaufwand:	Angaben zum (geschätzten) studentischen Arbeitsaufwand zum erfolgreichen Absolvieren des Moduls Benötigte Angaben:			
	Präsenzzeit 10 x 5h =50h Selbststudium 220 h			
17. Prüfungsnummer/n und -name:	68831 Praktikum Materialwissenschaft (USL), Sonstiges, Gewichtung: 1.0, 10 testierte Protokolle mit Originaldaten und quantitativer Versuchsauswertung			
18. Grundlage für :				
19. Medienform:				
20. Angeboten von:				

Stand: 10. Oktober 2016 Seite 40 von 48

Modul: 68880 Strukturanalyse und Materialmikroskopie

2. Modulkürzel:	031420004	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 4. Semester, SoSe		
4. SWS:	4.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	er:	UnivProf. Guido Schmitz			
9. Dozenten:		Guido Schmitz Patrick Stender			
10. Zuordnung zum Cւ Studiengang։	urriculum in diesem	B.Sc. Materialwissenschaft (Materials Science), PO 2016 → Kernmodule			
11. Empfohlene Voraussetzungen:		Empfohlen: Einführende Vorlesung zur Materialwissenschaft und Experimentalphysik, Physikalisches Praktikum			
12. Lernziele:		Die Studierenden			
		- kennen grundlegende Prüf- u Bestimmung der Mikrostruktur	und Charakterisierungsmethoden zur r von Materialien		
		 verstehen den Aufbau und die Funktionsweise eines Lichtmikroskops seiner Auflösungsgrenze und Abbildungsfehler 			
		 können die Grundzüge der Wellenoptik und gängige Beugungsverfahren erläutern 			
		- können einfache Diffraktogramme interpretieren			
		- können den Aufbau eines Elektronenmikroskops im Raster- und Transmissionsverfahren erläutern			
		 kennen die grundlegenden Kontrastprinzipien der Transmissionselektronenmikroskopie und können verschiedene Bildkontraste erklären 			
		- können die Funktionsprinzipen der Atomsondentomographie und der Rastersondenmikroskopie erklären.			
13. Inhalt:		- Verfahren der zerstörungsfreien Werkstoffprüfung			
		- Quantitative Metallographie			
		- Grundzüge der Strahlenoptik	k, Linsen und Linsenfehler		
		- Aufbau eines Lichtmikroskops, Prinzip des Phasenkontrasts un konfokalen Mikroskopie			
		- Grundzüge der Wellenoptik, Beugung und Abbildung			
		- Verfahren und Kontraste der Röntgen und Neutronenbeugung			
		 Symmetrie von Kristallen, Punktgruppensymmetrie (Hermann- Mauguin-Symbolik), Translationsymmetrie/Bravaisgitter, Raumg Kristallklassen, Reziproker Raum, Laue-Klassen 			
		- Umgang mit Kristallstrukturinformationen, Datenbanken			

Stand: 10. Oktober 2016 Seite 41 von 48

- Raster- und Transmissionselektronenmikroskopie

20. Angeboten von:				
19. Medienform:				
18. Grundlage für :				
17. Prüfungsnummer/n und -name:	 68881 Strukturanalyse und Materialmikroskopie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftlich, eventuell mündlich, Lösung von Übungsaufgaben (erreichen einer Mindestpunktzahl) und aktive Teilnahme an den Übungstreffen 			
	Gesamt: 180 h			
	Selbststudium: 45 h			
	Präsenzzeit: 15 h			
	Übung:			
	Selbststudium: 60 h			
	Präsenzzeit: 60 h			
16. Abschätzung Arbeitsaufwand:	Vorlesung:			
15. Lehrveranstaltungen und -formen:	688801 Vorlesung Strukturanalyse und Materialmikroskopie 688802 Übung Strukturanalyse und Materialmikroskopie			
	 Fultz B, Howe JM, Transmission Electron Microscopy and Diffractometry of Materials, Springer 2001, 2002 			
	 - Alexander H, Physikalische Grundlagen der Elektronenmikroskopie, Vieweg 1997 			
	- Spieß L, Schwarzer R, Behnken H, Teichert G, Moderne Röntgenbeugung, Vieweg + Teubner 2005			
	 Kittel C, Einführung in die Festkörperphysik, Verlag Oldenbourg, München, Introduction to Solid State Physics, John Wiley & Sons, New York 			
	- Gerthsen, Experimentalphysik			
	 vander Voort GF, Metallography: Principles and Practice, McGraw-Hill New York 1984 			
14. Literatur:	- Ilschner B et al., Werkstoffwissenschaften und Fertigungstechnik, Springer, Berlin 2002			
	- Rastersondenmikroskopien			
	Grundlegende Kontrastverfahren der Transmissionsmikroskopie und Interpretation der Abbildungen - Analytische Elektronenmikroskopie - Atomsondentomographie			
	Grundlegende Kontrastverfahren der Transmissionsmikroskopie und			

Stand: 10. Oktober 2016 Seite 42 von 48

400 Schlüsselqualifikationen

Zugeordnete Module: 410 Numerische Methoden

420 Ingenieur- und Naturwissenschaften

Stand: 10. Oktober 2016 Seite 43 von 48

410 Numerische Methoden

Zugeordnete Module: 31740 Numerische Grundlagen

Stand: 10. Oktober 2016 Seite 44 von 48

Modul: 31740 Numerische Grundlagen

2. Modulkürzel:	080310505		5. Moduldauer:	1 Semester		
3. Leistungspunkte:	3.0 LP	6. Turnus: jedes 2. Semester, SoSe				
4. SWS:	3.0	·		Deutsch		
8. Modulverantwortlicher:		UnivF	Prof. Christian Rohde			
9. Dozenten:		Christian Rohde Bernard Haasdonk Kunibert Gregor Siebert Dominik Göddeke				
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Materialwissenschaft (Materials Science), PO 2016 → Schlüsselqualifikationen>Numerische Methoden →				
11. Empfohlene Vorau	ssetzungen:	Höhere	Höhere Mathematik 1-3			
12. Lernziele:		Die Stu	udierenden			
		Math sind (z.B. besid	nematik erworben. in der Lage, die erlernt durch rechnergestützte	wesentlichen Grundlagen der numerische en Grundlagen selbständig anzuwenden e Lösung numerischer Problemstellungen) Grundlagen zur Anwendung quantitativer Modelle.		
13. Inhalt:		Numerische Lösung linearer Gleichungssysteme mit direkten und iterativen Methoden, numerische Lösung nichtlinearer Gleichungssysteme, Quadraturverfahren, approximative Lösung gewöhnlicher Anfangswertprobleme. Wahlweise: Approximation und Interpolation, Finite-Differenzen Methode und/oder Finite-Element Methode				
14. Literatur:		 M. Bollhöfer, V. Mehrmann: Numerische Mathematik, Vieweg 2004. W. Dahmen, A. Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer (2006). MATLAB/Simulink-Skript, RRZN Hannover. 				
		Mathematik Online:				
		www.mathematik-online.org				
15. Lehrveranstaltunge	en und -formen:		317401 Vorlesung Numerische Grundlagen317402 Vortragsübung Numerische Grundlagen			
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 31,5 h Selbststudiumszeit / Nacharbeitszeit: 58,5 h Gesamt: 90 h		eitszeit: 58,5 h		
17. Prüfungsnummer/r	und -name:	31741	Gewichtung: 1.0, Währests statt. In der vo Min. schriftliche Prüfu	nen (BSL), Sonstiges, 90 Min., nrend der Vorlesungszeit finden Online rlesungsfreien Zeit findet eine 90 ng statt. Die BSL setzt sich aus 10% 6 Prüfungsergebnis zusammen.		
18. Grundlage für :						
19. Medienform:		Beame	er, Tafel, persönliche Int	teraktion, ILIAS, ViPLab		

Stand: 10. Oktober 2016 Seite 45 von 48

20. Angeboten von:

Mathematik und Physik

Stand: 10. Oktober 2016 Seite 46 von 48

420 Ingenieur- und Naturwissenschaften

Stand: 10. Oktober 2016 Seite 47 von 48

Modul: 80160 Bachelorarbeit Materialwissenschaft

2. Modulkürzel:	0301410009		5. Moduldauer:	1 Semester		
3. Leistungspunkte:	12.0 LP		6. Turnus:	jedes Semester		
4. SWS:	0.0	7. Sprache:		Nach Ankuendigung		
8. Modulverantwortlicher:		Univ	Prof. Guido Schmitz			
9. Dozenten:						
10. Zuordnung zum Curriculum in diesem Studiengang:			B.Sc. Materialwissenschaft (Materials Science), PO 2008 B.Sc. Materialwissenschaft (Materials Science), PO 2016			
11. Empfohlene Voraussetzungen:		Alle P	Alle Pflichtmodule des Bachelor-Studiengangs			
12. Lernziele:		Die St	udierenden			
		 können eine wissenschaftliche Aufgabenstellung selbständig bearbeiten. sind in der Lage die Ergebnisse aus einer wissenschaftlichen Arbeit ir einem Bericht zusammenzufassen und in form eines kurzen Vortrage zu präsentieren. 				
13. Inhalt:		 Einarbeitung in die Aufgabenstellung durch Literaturrecherche und Erstellung eines Arbeitsplanes. Durchführung und Auswertung der eigenen Untersuchungen Diskussion der Ergebnisse Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit Präsentation und Verteitigung der Ergebnisse in einem Seminarvorta 				
14. Literatur:		Textbücher				
15. Lehrveranstaltunge	en und -formen:					
16. Abschätzung Arbeitsaufwand:		Gesamtaufwand: 360h				
17. Prüfungsnummer/r	n und -name:	3999 Bachelorarbeit (PL), schriftliche Prüfung, Gewichtung: 12.0				
18. Grundlage für :						
19. Medienform:						
-						

Stand: 10. Oktober 2016 Seite 48 von 48