Kontaktpersonen:

Studiendekan/in: Prof. Dr.-Ing. Karl-Heinz Wehking
Institut für Fördertechnik und Logistik
Tel.:
E-Mail: karl-heinz.wehking@ift.uni-stuttgart.de

Studiengangsmanager/in: Dr. Rolf Ilg
Institut für Arbeitswissenschaft und Technologiemanagement
Tel.: 0711 970-2023
E-Mail: rolf.ilg@iat.uni-stuttgart.de

Prüfungsausschussvorsitzende/r: Apl. Prof. Dr. Rainer Friedrich
Institut für Energiewirtschaft und Rationelle Energieanwendung
Tel.: 0711 685 87812
E-Mail: rainer.friedrich@ier.uni-stuttgart.de

Fachstudienberater/in: Dr. Rolf Ilg
Institut für Arbeitswissenschaft und Technologiemanagement
Tel.: 0711 970-2023
E-Mail: rolf.ilg@iat.uni-stuttgart.de

Stundenplanverantwortliche/r: Stefan Scheuerle
Institut für Arbeitswissenschaft und Technologiemanagement
Tel.: 0711-970-2047
E-Mail: stefan.scheuerle@iat.uni-stuttgart.de
Inhaltsverzeichnis

Qualifikationsziele

1. Vertiefungsmodule des Masters

100 Vertiefungsmodule

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>39160</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>13310</td>
<td>Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre</td>
</tr>
<tr>
<td>13320</td>
<td>Grundzüge der Produktentwicklung I+II</td>
</tr>
<tr>
<td>13650</td>
<td>Höhere Mathematik 3 für Ingenieurstudiengänge</td>
</tr>
<tr>
<td>10540</td>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>11950</td>
<td>Technische Mechanik II + III</td>
</tr>
<tr>
<td>11960</td>
<td>Technische Mechanik IV</td>
</tr>
<tr>
<td>12170</td>
<td>Werkstoffkunde I+II mit Werkstoffpraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>30390 Festigkeitslehre I</td>
</tr>
<tr>
<td>32210 Grundlagen der Keramik und Verbundwerkstoffe</td>
</tr>
<tr>
<td>14010 Grundlagen der Kunststofftechnik</td>
</tr>
<tr>
<td>30400 Methoden der Werkstoffsimulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlmöglichkeit Gruppe 2: Konstruktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>13900 Ackerschlepper und Öhydraulik</td>
</tr>
<tr>
<td>13930 Arbeitswissenschaft</td>
</tr>
<tr>
<td>13920 Dichtungstechnik</td>
</tr>
<tr>
<td>17170 Elektrische Antriebe</td>
</tr>
<tr>
<td>13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
<tr>
<td>32220 Grundlagen der Biomedizinischen Technik</td>
</tr>
<tr>
<td>32230 Grundlagen der Mikrosystemtechnik</td>
</tr>
<tr>
<td>13590 Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14130 Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>14160 Methodische Produktentwicklung</td>
</tr>
<tr>
<td>14200 Schienenfahrzeugtechnik und -betrieb</td>
</tr>
<tr>
<td>14240 Technisches Design</td>
</tr>
<tr>
<td>14310 Zuverlässigkeitsstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlmöglichkeit Gruppe 3: Produktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau</td>
</tr>
<tr>
<td>32250 Design und Fertigung mikro- und nanoelektronischer Systeme</td>
</tr>
<tr>
<td>12330 Elektrische Signalverarbeitung</td>
</tr>
<tr>
<td>14060 Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>13550 Grundlagen der Umformtechnik</td>
</tr>
<tr>
<td>18610 Konzepte der Regelungstechnik</td>
</tr>
<tr>
<td>32260 Logistik</td>
</tr>
<tr>
<td>14140 Materialbearbeitung mit Lasern</td>
</tr>
<tr>
<td>30010 Modellierung und Simulation in der Mechatronik</td>
</tr>
<tr>
<td>17160 Prozessplanung und Leittechnik</td>
</tr>
<tr>
<td>36980 Simulationstechnik</td>
</tr>
<tr>
<td>14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
<tr>
<td>13570 Werkzeugmaschinen und Produktionsysteme</td>
</tr>
<tr>
<td>13580 Wissens- und Informationsmanagement in der Produktion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>18160 Berechnung von Wärmeübertragern</td>
</tr>
<tr>
<td>32270 Bioverfahrenstechnik</td>
</tr>
<tr>
<td>13910 Chemische Reaktionstechnik I</td>
</tr>
<tr>
<td>13940 Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>29200 Energiesysteme und effiziente Energieanwendung</td>
</tr>
</tbody>
</table>
200 Spezialisierungsfächer A (ING) ... 125

210 Gruppe: Produktdesign und Konstruktionstechnik .. 126
211 Konstruktionstechnik .. 127
2113 Ergänzungsfächer mit 3 LP .. 128
2112 Kern-/Ergänzungsfächer mit 6 LP .. 142
2111 Kernfächer mit 6 LP .. 163
32390 Praktikum Konstruktionstechnik .. 175

220 Gruppe Werkstoff- und Produktionsplanung .. 177
221 Fabrikbetrieb .. 178
2213 Ergänzungsfächer mit 3 LP .. 179
2212 Kern-/Ergänzungsfächer mit 6 LP .. 187
2211 Kernfächer mit 6 LP .. 200
32490 Praktikum Fabrikbetrieb .. 203

222 Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik ... 205
2223 Ergänzungsfächer mit 3 LP .. 206
2222 Kern-/Ergänzungsfächer mit 6 LP .. 214
2221 Kernfächer mit 6 LP .. 241
32550 Praktikum Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe u. Oberflächentechnik ... 249

223 Festigkeitsberechnung und Werkstoffmechanik ... 251
2233 Ergänzungsfächer mit 3 LP .. 252
2232 Kern-/Ergänzungsfächer mit 6 LP .. 261
2231 Kernfächer mit 6 LP .. 272
30910 Praktikum Werkstoff- und Bauteilprüfung .. 279

224 Fördertechnik und Logistik ... 281
2243 Ergänzungsfächer mit 3 LP .. 282
2242 Kern-/Ergänzungsfächer mit 6 LP .. 291
2241 Kernfächer mit 6 LP .. 306
32660 Praktikum Fördertechnik und Logistik .. 315

225 Kunststofftechnik ... 317
2253 Ergänzungsfächer mit 3 LP .. 318
2252 Kern-/Ergänzungsfächer mit 6 LP .. 337
2251 Kernfächer mit 6 LP .. 346
33790 Praktikum Kunststofftechnik .. 349

226 Laser in der Materialbearbeitung ... 351
2263 Ergänzungsfächer mit 3 LP .. 352
2262 Kern-/Ergänzungsfächer mit 6 LP .. 360
2261 Kernfächer mit 6 LP .. 369
33800 Praktikum Laserstechnik ... 374

227 Umformtechnik .. 376
2273 Ergänzungsfächer mit 3 LP .. 377
2272 Kern-/Ergänzungsfächer mit 6 LP .. 382
2271 Kernfächer mit 6 LP .. 389
32860 Praktikum Grundlagen der Umformtechnik .. 393

228 Werkzeugmaschinen ... 395
2283 Ergänzungsfächer mit 3 LP .. 396
<table>
<thead>
<tr>
<th>Modulhandbuch: Master of Science Technologiemanagement</th>
<th>Universität Stuttgart</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2282 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>400</td>
</tr>
<tr>
<td>2281 Kernfächer mit 6 LP</td>
<td>407</td>
</tr>
<tr>
<td>33910 Praktikum Werkzeugmaschinen</td>
<td>410</td>
</tr>
<tr>
<td>230 Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td>412</td>
</tr>
<tr>
<td>231 Biomedizinische Technik</td>
<td>413</td>
</tr>
<tr>
<td>2313 Ergänzungsfächer mit 3 LP</td>
<td>414</td>
</tr>
<tr>
<td>2312 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>423</td>
</tr>
<tr>
<td>2311 Kernfächer mit 6 LP</td>
<td>431</td>
</tr>
<tr>
<td>33510 Praktikum Biomedizinischen Technik</td>
<td>435</td>
</tr>
<tr>
<td>232 Elektronikfertigung</td>
<td>437</td>
</tr>
<tr>
<td>2323 Ergänzungsfächer mit 3 LP</td>
<td>438</td>
</tr>
<tr>
<td>2322 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>443</td>
</tr>
<tr>
<td>2321 Kernfächer mit 6 LP</td>
<td>463</td>
</tr>
<tr>
<td>33290 Praktikum Mikroelektronikfertigung</td>
<td>468</td>
</tr>
<tr>
<td>233 Feinwerktechnik</td>
<td>469</td>
</tr>
<tr>
<td>2333 Ergänzungsfächer mit 3 LP</td>
<td>470</td>
</tr>
<tr>
<td>2332 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>480</td>
</tr>
<tr>
<td>2331 Kernfächer mit 6 LP</td>
<td>496</td>
</tr>
<tr>
<td>33780 Praktikum Feinwerktechnik</td>
<td>503</td>
</tr>
<tr>
<td>234 Mikrosystemtechnik</td>
<td>505</td>
</tr>
<tr>
<td>2343 Ergänzungsfächer mit 3 LP</td>
<td>506</td>
</tr>
<tr>
<td>2342 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>516</td>
</tr>
<tr>
<td>2341 Kernfächer mit 6 LP</td>
<td>541</td>
</tr>
<tr>
<td>33810 Praktikum Mikrosystemtechnik</td>
<td>555</td>
</tr>
<tr>
<td>235 Technische Optik</td>
<td>557</td>
</tr>
<tr>
<td>2353 Ergänzungsfächer mit 3 LP</td>
<td>558</td>
</tr>
<tr>
<td>2352 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>569</td>
</tr>
<tr>
<td>2351 Kernfächer mit 6 LP</td>
<td>582</td>
</tr>
<tr>
<td>33460 Praktikum Technische Optik</td>
<td>589</td>
</tr>
<tr>
<td>240 Gruppe Energietechnik</td>
<td>591</td>
</tr>
<tr>
<td>241 Elektrische Maschinen und Antriebe</td>
<td>592</td>
</tr>
<tr>
<td>2413 Ergänzungsfächer mit 3 LP</td>
<td>593</td>
</tr>
<tr>
<td>2412 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>599</td>
</tr>
<tr>
<td>2411 Kernfächer mit 6 LP</td>
<td>609</td>
</tr>
<tr>
<td>30960 Praktikum Elektrische Maschinen und Antriebe</td>
<td>613</td>
</tr>
<tr>
<td>242 Energiesysteme und Energiewirtschaft</td>
<td>615</td>
</tr>
<tr>
<td>2423 Ergänzungsfächer mit 3 LP</td>
<td>616</td>
</tr>
<tr>
<td>2422 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>627</td>
</tr>
<tr>
<td>2421 Kernfächer mit 6 LP</td>
<td>640</td>
</tr>
<tr>
<td>32040 Praktikum Energiesysteme</td>
<td>645</td>
</tr>
<tr>
<td>243 Feuerungs- und Kraftwerkstechnik</td>
<td>647</td>
</tr>
<tr>
<td>2433 Ergänzungsfächer mit 3 LP</td>
<td>648</td>
</tr>
<tr>
<td>2432 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>663</td>
</tr>
<tr>
<td>2431 Kernfächer mit 6 LP</td>
<td>682</td>
</tr>
<tr>
<td>30620 Praktikum Feuerungs- und Kraftwerkstechnik</td>
<td>689</td>
</tr>
<tr>
<td>244 Gebäudeenergetik</td>
<td>691</td>
</tr>
<tr>
<td>2443 Ergänzungsfächer mit 3 LP</td>
<td>692</td>
</tr>
<tr>
<td>2442 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>700</td>
</tr>
<tr>
<td>2441 Kernfächer mit 6 LP</td>
<td>707</td>
</tr>
<tr>
<td>30680 Praktikum Gebäudeenergetik</td>
<td>712</td>
</tr>
<tr>
<td>245 Kernenergetik</td>
<td>714</td>
</tr>
<tr>
<td>2453 Ergänzungsfächer mit 3 LP</td>
<td>715</td>
</tr>
<tr>
<td>2452 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>718</td>
</tr>
<tr>
<td>2451 Kernfächer mit 6 LP</td>
<td>725</td>
</tr>
<tr>
<td>30730 Praktikum Kernenergetik</td>
<td>730</td>
</tr>
<tr>
<td>246 Methoden der Modellierung und Simulation</td>
<td>733</td>
</tr>
<tr>
<td>2463 Ergänzungsfächer mit 3 LP</td>
<td>734</td>
</tr>
<tr>
<td>2462 Kern-/Ergänzungsfächer mit 6 LP</td>
<td>742</td>
</tr>
</tbody>
</table>
2461 Kernfächer mit 6 LP ... 748
32190 Praktikum Methoden der Modellierung und Simulation 750
247 Rationale Energiennutzung ... 752
2473 Ergänzungsfächer mit 3 LP ... 753
2472 Kern-/Ergänzungsfächer mit 6 LP .. 766
2471 Kernfächer mit 6 LP ... 779
33130 Praktikum Rationale Energiennutzung ... 790
248 Strömungsmechanik und Wasserkraft ... 792
2483 Ergänzungsfächer mit 3 LP ... 793
2482 Kern-/Ergänzungsfächer mit 6 LP .. 800
2481 Kernfächer mit 6 LP ... 806
30780 Praktikum Strömungsmechanik und Wasserkraft ... 809
249 Thermische Turbomaschinen ... 811
2493 Ergänzungsfächer mit 3 LP ... 812
2492 Kern-/Ergänzungsfächer mit 6 LP .. 820
2491 Kernfächer mit 6 LP ... 827
30870 Praktikum Thermische Turbomaschinen ... 832
250 Gruppe Fahrzeug- und Motorentechnik ... 834
251 Agrartechnik .. 835
2513 Ergänzungsfächer mit 3 LP ... 836
2512 Kern-/Ergänzungsfächer mit 6 LP .. 842
2511 Kernfächer mit 6 LP ... 860
33720 Praktikum Agrartechnik .. 865
253 Kraftfahrzeuge .. 867
2533 Ergänzungsfächer mit 3 LP ... 868
2532 Kern-/Ergänzungsfächer mit 6 LP .. 870
2531 Kernfächer mit 6 LP ... 878
37810 Praktikum Kraftfahrzeuge .. 883
254 Verbrennungsmotoren .. 885
2543 Ergänzungsfächer mit 3 LP ... 886
2542 Kern-/Ergänzungsfächer mit 6 LP .. 891
2541 Kernfächer mit 6 LP ... 900
37830 Praktikum Verbrennungsmotoren ... 927
260 Gruppe Technologiemanagement ... 929
261 Technologiemanagement .. 930
2613 Ergänzungsfächer mit 3 LP ... 931
2612 Kern-/Ergänzungsfächer mit 6 LP .. 939
2611 Kernfächer mit 6 LP ... 956
33590 Praktikum Technologiemanagement .. 961
270 Gruppe Mechatronik und Technische Kybernetik ... 963
271 Regelungstechnik ... 964
2713 Ergänzungsfächer mit 3 LP ... 965
2712 Kern-/Ergänzungsfächer mit 6 LP .. 969
2711 Kernfächer mit 6 LP ... 977
33660 Praktikum Spezialisierungsfach Regelungstechnik 980
272 Steuerungstechnik ... 982
2723 Ergänzungsfächer mit 3 LP ... 983
2722 Kern-/Ergänzungsfächer mit 6 LP .. 993
2721 Kernfächer mit 6 LP ... 1003
33890 Praktikum Steuerungstechnik ... 1010
273 Systemdynamik ... 1012
2733 Ergänzungsfächer mit 3 LP ... 1013
2732 Kern-/Ergänzungsfächer mit 6 LP .. 1017
273 Technische Dynamik
- 274 Kernfach mit 3 LP
- 274 Ergänzungsfach mit 6 LP
- 274 Kernfach mit 6 LP
- 30070 Praktikum Technische Dynamik

275 Technische Mechanik
- 2753 Ergänzungsfach mit 3 LP
- 2752 Kern-/Ergänzungsfach mit 6 LP
- 2751 Kernfach mit 6 LP
- 33380 Praktikum Technische Mechanik

280 Gruppe Verfahrenstechnik
- 281 Angewandte Thermodynamik
 - 2813 Ergänzungsfach mit 3 LP
 - 2812 Kern-/Ergänzungsfach mit 6 LP
 - 2811 Kernfach mit 6 LP
 - 33210 Praktikum Angewandte Thermodynamik
- 282 Biomedizinische Verfahrenstechnik
 - 2823 Ergänzungsfach mit 3 LP
 - 2822 Kern-/Ergänzungsfach mit 6 LP
 - 2821 Kernfach mit 6 LP
 - 33250 Praktikum Medizinische Verfahrenstechnik
- 283 Chemische Verfahrenstechnik
 - 2833 Ergänzungsfach mit 3 LP
 - 2832 Kern-/Ergänzungsfach mit 6 LP
 - 2831 Kernfach mit 6 LP
 - 33080 Praktikum Verfahrenstechnik
- 284 Faser- und Textiltechnik
 - 2843 Ergänzungsfach mit 3 LP
 - 2842 Kern-/Ergänzungsfach mit 6 LP
 - 2841 Kernfach mit 6 LP
 - 33010 Praktikum Textiltechnik
- 285 Mechanische Verfahrenstechnik
 - 2853 Ergänzungsfach mit 3 LP
 - 2852 Kern-/Ergänzungsfach mit 6 LP
 - 2851 Kernfach mit 6 LP
 - 33080 Praktikum Verfahrenstechnik

300 Spezialisierungsfächer B (BWL)
- 310 Kernfach Gruppe 1
 - 12090 BWL I: Produktion, Organisation, Personal
 - 13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik
- 320 Kernfach Gruppe 2
 - 13370 Betriebliche Informationssysteme (WI 1)
 - 38550 Business Dynamics
 - 13210 Controlling
 - 13400 Informationsmanagement
 - 41890 Innovation
 - 31470 Internationales Management
 - 13220 Investitions- und Finanzmanagement
 - 13460 Logistik
 - 13470 Marketing
 - 13490 Organisation

80260 Masterarbeit Technologiemanagement

Stand: 23. Oktober 2012

Seite 7 von 1220
Qualifikationsziele

Das Qualifikationsprofil von Absolventen, die den Masterabschluss Technologiemanagement erworben haben, zeichnet sich durch die folgenden zusätzlichen, über die mit dem Bachelor-Abschluss verbundenen hinausgehenden Attribute aus:

1) Die Absolventen haben die Ausbildungsziele des Bachelor-Studiums in einem längeren fachlichen Reifeprozess weiter verarbeitet und haben eine größere Sicherheit in der Anwendung und Umsetzung der fachlichen und außerfachlichen Kompetenzen erworben.

2) Die Absolventen haben tiefgehende Fachkenntnisse in einem ausgewählten Technologiefeld oder ingenieurwissenschaftlichen Querschnittsthema sowie in einem betriebswirtschaftlichen Querschnittsthema erworben.

3) Die Absolventen sind fähig, die erworbenen naturwissenschaftlichen, mathematischen, ingenieurwissenschaftlichen und betriebswirtschaftlichen Methoden zur Abstraktion, Formulierung und Lösung komplexer Aufgabenstellungen in Forschung und Entwicklung in der Industrie oder in Forschungseinrichtungen erfolgreich einzusetzen, sie kritisch zu hinterfragen und sie bei Bedarf auch weiterzuentwickeln.

5) Die Absolventen sind insbesondere fähig, benötigte Informationen zu identifizieren, zu finden und zu beschaffen. Sie können analytische, modellhafte und experimentelle Untersuchungen planen und durchführen. Dabei bewerten sie Daten kritisch und ziehen daraus die notwendigen Schlussfolgerungen.

6) Die Absolventen verfügen über Tiefe und Breite, um sich sowohl in zukünftige Technologien im eigenen Fachgebiet wie auch in Randgebiete einzuarbeiten und neue aufkommende Technologien zu untersuchen und zu bewerten.

7) Die Absolventen haben verschiedene technische, betriebswirtschaftliche und soziale Kompetenzen (Abstraktionsvermögen, systemanalytisches Denken, Team- und Kommunikationsfähigkeit, internationale und interkulturelle Erfahrung usw.) erworben, die gut auf Führungsaufgaben vorbereiten.

Masterabsolventen/innen erwerben die wissenschaftliche Qualifikation für eine Promotion.
19 Auflagenmodule des Masters

Zugeordnete Module:

10540 Technische Mechanik I
11950 Technische Mechanik II + III
11960 Technische Mechanik IV
12170 Werkstoffkunde I+II mit Werkstoffpraktikum
13310 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre
13320 Grundzüge der Produktentwicklung I+II
13650 Höhere Mathematik 3 für Ingenieurstudiengänge
39160 Grundlagen der Betriebswirtschaftslehre
Modul: 39160 Grundlagen der Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100110001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr. Wolfgang Burr

9. Dozenten: • Wolfgang Burr • Torsten Frohwein • Xenia Prich

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011, 1. Semester</th>
<th>Schlüsselqualifikationen fachaffin</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Auflagenmodule des Masters</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

• Die Studierenden können die zentrale betriebswirtschaftliche Definitionen wiedergeben und lernen auf deren Basis zu argumentieren
• Die Studierenden können die verschiedene Teilbereiche der Betriebswirtschaft benennen und in das Gesamtkonzept der Betriebswirtschaft einordnen sowie dortige Problemstellungen angeben und eingesetzte Instrumente anwenden
• Die Studierenden sind in der Lage ausgewählte betriebswirtschaftlichen Theorien zu erklären und auf bestimmte Problemstellungen anzuwenden

13. Inhalt:

Dieses einführende Modul bringt zunächst den Studierenden den Gegenstand der Betriebswirtschaftslehre näher und ermöglicht ein Kennenlernen erster betriebswirtschaftlicher Begriffe sowie eine Einordnung der Betriebswirtschaftslehre in den Rahmen der Wirtschaftswissenschaften.

Weiterhin werden die entscheidungstheoretischen Grundlagen und Modelle diskutiert. Anhand praxisorientierter Aufgaben wird die Entscheidungsproblematik begreiflich gemacht. Ferner werden die Einheiten der betrieblichen Leistungserstellung und die Instrumente zur Unterstützung dieser erläutert.

Schließlich lernen die Studierenden die Aufgaben und Probleme der Unternehmensführung kennen. Neben der Einführung in die Theorien, Methoden und Konzepte der Unternehmensführung, bekommen die Studierenden Einblick in weitere Bereiche wie z. B. Innovationsmanagement.

14. Literatur:

Folien zu Vorlesungen und Übungen

15. Lehrveranstaltungen und -formen:

• 391601 Vorlesung Grundlagen der Betriebswirtschaftslehre
• 391602 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 28 h</td>
<td>14h</td>
</tr>
<tr>
<td>Selbststudium: 32 h</td>
<td>16 h</td>
</tr>
<tr>
<td>Gesamtzeitaufwand: 60 h</td>
<td>30 h 90 h</td>
</tr>
</tbody>
</table>

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>39161 Grundlagen der Betriebswirtschaftslehre (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>ABWL, Forschungs-, Entwicklungs- und Innovationsmanagement</td>
</tr>
</tbody>
</table>
Modul: 13310 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072711100</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Thomas Maier</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Siegfried Schmauder
• Thomas Maier |
➤ Kernmodule
B.Sc. Technologiemanagement, PO 2011, 1. Semester
➤ Kernmodule
M.Sc. Technologiemanagement, PO 2011
➤ Auflagenmodule des Masters |
| 11. Empfohlene Voraussetzungen: | Inhaltlich: keine
Formal: keine |

Die Vorlesung und die Übungen vermitteln die Grundlagen

• der räumlichen Darstellung und des Technischen Zeichnens
• Einführung in die Produktentwicklung mit Übersicht über Produkte und Produktprogramme;
• der Festigkeitsberechnung (Zug und Druck, Biegung, Schub, Torsion (Verdrehung), Schwingende Beanspruchung, Allgemeiner Spannungs- und Verformungszustand, Kerbwirkung) und der konstruktiven Gestaltung;
• Grundlagen der Antriebstechnik;

Maier: Grundzüge der Maschinenkonstruktion I + II und Einführung ins Technische Zeichnen, Skripte zur Vorlesung und Übungsunterlagen;
Schmauder: Einführung in die Festigkeitslehre, Skripte zur Vorlesung und ergänzenden Folien im Internet;

Stand: 23. Oktober 2012
Ergänzende Lehrbücher:

- Roloff, Matek: Maschinenelemente, Vieweg-Verlag;
- Dietmann: Einführung in die Festigkeitslehre, Kröner-Verlag;
- Hoischen, Hesser: Technisches Zeichnen, Cornelsen-Verlag;

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 133101 Vorlesung Grundzüge der Maschinenkonstruktion I</td>
</tr>
<tr>
<td>• 133102 Übung Grundzüge der Maschinenkonstruktion I</td>
</tr>
<tr>
<td>• 133103 Vorlesung Einführung in die Festigkeitslehre</td>
</tr>
<tr>
<td>• 133104 Einführung in die Festigkeitslehre Vortragsübung</td>
</tr>
<tr>
<td>• 133105 Vorlesung Grundzüge der Maschinenkonstruktion II</td>
</tr>
<tr>
<td>• 133106 Übung Grundzüge der Maschinenkonstruktion II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 95 h</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit: 265 h</td>
</tr>
<tr>
<td>Gesamt: 360 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 13311 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>• 13313 Grundzüge der Maschinenkonstruktion I Schein (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>• 13314 Grundzüge der Maschinenkonstruktion II Schein (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>13320 Grundzüge der Produktentwicklung I+II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer-Präsentation von PPT-Folien, Videos, Animationen und Simulationen, Overhead-Projektor-Anschrift</td>
</tr>
</tbody>
</table>

| 20. Angeboten von: |
Modul: 13320 Grundzüge der Produktentwicklung I+II

2. Modulkürzel: 072010004

3. Leistungspunkte: 12.0 LP

4. SWS: 8.0

5. Modulduauer: 2 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Dieter Spath

9. Dozenten: • Dieter Spath
 • Stefan Scheuerle

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011, 3. Semester ➞ Kernmodule

 M.Sc. Technologiemanagement, PO 2011 ➞ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen:
Grundzüge der Maschinenkonstruktion I + II mit Einführung in die Festigkeitslehre

12. Lernziele:

 Erworbene Kompetenzen: Die Studierenden

 • haben Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt und in Projektarbeiten vertieft
 • können wichtige Produktentwicklungsmethoden sowie verschiedene Arten von Projektmanagement und Präsentations- bzw. Moderationstechniken in kooperativen Lernsituationen (Gruppenarbeiten im Rahmen der beiden Semesterprojekte) anwenden (Postershow)
 • können Handskizzen in Form von Prinzipskizzen bis zu Entwurfszeichnungen erstellen und daraus Technische Zeichnungen und CAD-Modelle in 2D- und 3D-CAD erarbeiten
 • kennen die Grundlagen der räumlichen Darstellung und deren Modellierung in 3D-CAD, sowie deren Umsetzung in Virtual Reality-Anwendungen
 • können normgerechte technische Zeichnungen erstellen und sind mit dem Umgang mit Normen und Richtlinien vertraut
 • haben Kenntnis von den wichtigsten Grundlagen des Methodischen Konstruierens und den wichtigsten Methoden im Umfeld der Produktentwicklung (QFD; TRIZ, TQM…)
 • sind in der Lage, Konstruktionsteile sicherheitstechnisch und ergonomisch angepasst auszulegen
 • können grundlegende Gestaltungssätze von der Konstruktion von Maschinenenelementen oder einfachen Maschinen/Geräten/Baugruppen anwenden
 • kennen die wichtigsten Elemente der Verbindungstechnik, können diese berechnen und mit ihnen konstruieren
 • sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren und Entwerfen und Ausarbeiten entsprechend VDI 2221/2222 etc. vertraut, können diese zielgerichtet anwenden und haben diese in den Semesterprojekten (Übungen) eingesetzt und vertieft
 • kennen die wesentlichen Methoden zur Qualitätssicherung in der Produktentwicklung, Fehlerbaumanalyse, FMEA, QFD, KVP / Kaizen und ansatzweise SPC / SixSigma
kennen die Grundlagen der sicherheitstechnischen- und
ergonomischen Produktgestaltung, sowie der umwelt- und
recyclinggerechten Produktgestaltung
kennen die Zusammenhänge zwischen Produktentwicklung,
Produkthaftung und Kosten in der Produktentwicklung
sind in der Lage, die Vorteile des Einsatzes von Methoden
der Simulation, des Rapid Prototypings und der Virtuellen
Realität im Rahmen des Virtual Engineerings und der Schnellen
Produktentwicklung (Rapid Product Development) zu verstehen

13. Inhalt:
Ziel der Vorlesungen und Übungen dieses Moduls ist es, einen
wesentlichen Beitrag zur Ingenieurausbildung durch Vermittlung
von Fach- und Methodenwissen sowie Fähigkeiten und Fertigkeiten
die Vorlesung vermittelt die Grundlagen
zum Entwickeln und Konstruieren technischer Produkte zu leisten.
Diese Kenntnisse und Fähigkeiten werden exemplarisch anhand
technischer Systeme und unter Einsatz von CAD-Systemen und 3D-
technischer Systeme und unter Einsatz von CAD-Systemen und 3D-
Arbeitsplatzsoftware gelehrt.

Die Vorlesung vermittelt die Grundlagen
• des Technischen Zeichnens mit CAD-Software
• des systematischen und methodischen Produktentwicklens mithilfe von
QFD (Quality Function Deployment), TRIZ (Theorie zur erfinderischen
Problemloesung) und Design for X (X für Montage, Fertigung,
Experiment etc.)
• begleitender Methoden der Produktentwicklung wie FMEA
(Fehlermöglichkeiten- und Einflussanalyse), TQM (Total Quality
Management) und KVP (Kontinuierlicher Verbesserungsprozess)
• der umwelt- und recyclinggerechten Produktentwicklung
• der angewandten Festigkeitsberechnung für Baugruppen
• des Virtual Engineerings (Concurrent, Collaborative und Visual
Engineering)
• der virtuellen Realität
• der 3D-Simulation von Produkten (Hardware und Software)
• von 3D-Arbeitsplatzsystemen und -software

In den Übungen werden anhand einer ganzheitlichen Aufgabenstellung
die vorgestellten Methoden und Vorgehensweisen der
Produktentwicklung angewandt und in Gruppenarbeit vertieft.
Dazu erfolgt eine Software-Schulung in 2D- und 3D-CAD-Kursen.
Eine Präsentation der Ergebnisse in Posterform ist Bestandteil der
Gruppenarbeit.

14. Literatur:
• Spath, D.: Grundzüge der Produktentwicklung I + II, Skript zur
Vorlesung + Übungsunterlagen
• Ehrlenspiel, Klaus: Integrierte Produktentwicklung, 4. Auflage; Carl
Hanser Verlag München, Wien, 2009

15. Lehrveranstaltungen und -formen:
• 133201 Vorlesung Grundzüge der Produktentwicklung I
• 133202 Übungen Grundzüge der Produktentwicklung I
• 133203 Vorlesung Grundzüge der Produktentwicklung II
• 133204 Übungen Grundzüge der Produktentwicklung II

16. Abschätzung Arbeitsaufwand:
Präsenzeit: 90 h
Selbststudiumszeit / Nachbearbeitung: 270 h
Gesamt: 360 h

17. Prüfungsnummer/n und -name:
• 13321 Grundzüge der Produktentwicklung I-ll (PL), schriftliche
Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>Vorlesungsskript, kombinierter Einsatz von Beamer-Präsentationen, Videos, Tafelanschrieb, Aufgabenstellung der Übungen als Papiervorlagen, Präsentation der Gruppenarbeit bzw. der Übungsergebnisse im Rahmen des Semesterprojekts per Poster</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
<tr>
<td>Institut für Arbeitswissenschaft und Technologiemanagement</td>
</tr>
</tbody>
</table>
Modul: 13650 Höhere Mathematik 3 für Ingenieurstudiengänge

2. Modulkürzel: 080410503 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr. Markus Stroppel
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011, 3. Semester ➞ Basismodule
 B.Sc. Technologiemanagement, PO 2011, 3. Semester ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➞ Auflagenmodule des Masters
11. Empfohlene Voraussetzungen: HM 1 / 2
12. Lernziele:
 - verfügen über grundlegende Kenntnisse der Integralrechnung für Funktionen mehrerer Veränderlicher, Gewöhnliche Differentialgleichungen, Fourierreihen.
 - sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden.
 - besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
 - können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.
13. Inhalt:
 Integralrechnung für Funktionen von mehreren Veränderlichen: Gebietsintegrale, iterierte Integrale, Transformationssätze, Guldinsche Regeln, Integralsätze von Stokes und Gauß
 Gewöhnliche Differentialgleichungen: Existenz- und Eindeutigkeitssätze, einige integrierbare Typen, lineare Differentialgleichungen beliebiger Ordnung (mit konstanten Koeffizienten), Anwendungen.
 Aspekte der Fourierreihen und der partiellen Differentialgleichungen: Darstellung von Funktionen durch Fourierreihen, Klassifikation partieller Differentialgleichungen, Beispiele, Lösungsansätze (Separation).
14. Literatur:
 - K. Meyberg, P. Vachenauer: Höhere Mathematik 1, 2, Springer.

Mathematik Online:
www.mathematik-online.org

| 15. Lehrveranstaltungen und -formen: | • 136501 Vorlesung HM 3 f. Bau etc.
• 136502 Gruppenübungen HM3 für bau etc.
• 136503 Vortragsübungen HM 3 für bau etc. |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 84 h
Selbststudiumszeit / Nacharbeitszeit: 96 h
Gesamt: 180 h |

| 17. Prüfungsnummer/n und -name: | • 13651 Höhere Mathematik 3 für Ingenieurstudiengänge (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Scheinlektüren,
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |

| 18. Grundlage für ... : |

| 19. Medienform: | Beamer, Tafel, persönliche Interaktion |

| 20. Angeboten von: | Mathematik und Physik |
Modul: 10540 Technische Mechanik I

2. Modulkürzel: 072810001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard

9. Dozenten:
• Peter Eberhard
• Michael Hanss
• Robert Seifried

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 1. Semester → Kernmodule
B.Sc. Technologiemanagement, PO 2011, 1. Semester → Kernmodule
M.Sc. Technologiemanagement, PO 2011, 1. Semester → Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: Grundlagen in Mathematik und Physik

12. Lernziele: Nach erfolgreichem Besuch des Moduls Technische Mechanik I haben die Studierenden ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Stereo-Statik. Sie beherrschen selbständig, sicher, kritisch und kreativ einfache Anwendungen der grundlegendsten mechanischen Methoden der Statik.

13. Inhalt:
• Grundlagen der Vektorrechnung: Vektoren in der Mechanik, Rechenregeln der Vektor-Algebra, Systeme gebundener Vektoren
• Stereo-Statik: Kräftesysteme und Gleichgewicht, Gewichtskraft und Schwerpunkt, ebene Kräftesysteme, Lagerung von Mehrkörpersystemen, Innere Kräfte und Momente am Balken, Fachwerke, Seilstatik, Reibung

14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungs- und Übungsunterlagen
• Hibbeler, R.C.: Technische Mechanik 1 - Statik. München: Pearson Studium, 2005

15. Lehrveranstaltungen und -formen:
• 105401 Vorlesung Technische Mechanik I
• 105402 Übung Technische Mechanik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
10541 Technische Mechanik I (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Tablet-PC/Overhead-Projektor, Experimente

20. Angeboten von:
Institut für Technische und Numerische Mechanik
Modul: 11950 Technische Mechanik II + III

4. SWS: 8.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard
9. Dozenten: • Peter Eberhard
• Michael Hanss
• Robert Seifried
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 2. Semester ➔ Kernmodule
 B.Sc. Technologiemanagement, PO 2011, 2. Semester ➔ Kernmodule
 B.Sc. Technologiemanagement, PO 2011, 2. Semester ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Auflagenmodule des Masters
11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik I
12. Lernziele:
 Die Studierenden haben nach erfolgreichem Besuch des Moduls Technische Mechanik II+III ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Elasto-Statik und Dynamik. Sie beherrschen selbständig, sicher, kritisch und kreativ einfache Anwendungen der grundlegendsten mechanischen Methoden der Elasto-Statik und Dynamik.
13. Inhalt:
 • Elasto-Statik: Spannungen und Dehnungen, Zug und Druck, Torsion von Wellen, Technische Biegelehre, Überlagerung einfacher Belastungsfälle
 • Kinematik: Punktbewegungen, Relativbewegungen, ebene und räumliche Kinematik des starren Körpers
 • Kinetik: Kinetische Grundbegriffe, kinetische Grundgleichungen, Kinetik der Schwerpunktsbewegungen, Kinetik der Relativbewegungen, Kinetik des starren Körpers, Arbeits- und Energiesatz, Schwingungen
 • Methoden der analytischen Mechanik: Prinzip von d'Alembert, Koordinaten und Zwangsbedingungen, Anwendung des d'Alembertschen Prinzips in der Lagrangeschen Fassung, Lagrangesche Gleichungen
14. Literatur:
 • Vorlesungsmitschrieb
 • Vorlesungs- und Übungsunterlagen
15. Lehrveranstaltungen und -formen:
- 119501 Vorlesung Technische Mechanik II
- 119502 Übung Technische Mechanik II
- 119503 Vorlesung Technische Mechanik III
- 119504 Übung Technische Mechanik III

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 84 h |
| Selbststudiumszeit / Nacharbeitszeit: | 276 h |
| Gesamt: | 360 h |

17. Prüfungsnummer/n und -name:
11951 Technische Mechanik II + III (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
- Beamer
- Tablet-PC/Overhead-Projektor
- Experimente

20. Angeboten von:
Institut für Technische und Numerische Mechanik
Modul: 11960 Technische Mechanik IV

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810003</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard

9. Dozenten: • Peter Eberhard • Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2008, 4. Semester ➔ Kernmodule
- B.Sc. Technologiemanagement, PO 2011, 4. Semester ➔ Kernmodule
- B.Sc. Technologiemanagement, PO 2011, 4. Semester ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011, 4. Semester ➔ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik I-III

12. Lernziele:
Nach erfolgreichem Besuch des Moduls Technische Mechanik IV besitzen die Studierenden ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Stoßmechanik, der kontinuierlichen Schwingungslehre, den Energiemethoden der Elasto-Statik und der finiten Elemente Methode. Sie beherrschen somit selbständig, sicher, kritisch und kreativ einfache Anwendungen weiterführender grundlegender mechanischer Methoden der Statik und Dynamik.

13. Inhalt:
- **Stoßprobleme:** elastischer und plastischer Stoß, schiefer Stoß, exzentrischer Stoß, rauer Stoß, Lagerstoß

- **Kontinuierliche Schwingungs-systeme:**
 - Transversalschwingungen einer Saite, Longitudinal-schwingungen eines Stabes, Torsionsschwingungen eines Rundstabes, Biegeschwingungen eines Balkens, Eigenlösungen der eindimensionalen Wellengleichung, Eigenlösungen bei Balkenbiegung, freie Schwingungen kontinuierlicher Systeme

- **Energiemethoden der Elasto-Statik:** Formänderungsenergie eines Stabes bzw. Balkens, Arbeitssatz, Prinzip der virtuellen Arbeit/Kräfte, Satz von Castigliano, Satz von Menabrea, Maxwellsscher Vertauschungssatz, Satz vom Minimum der potenziellen Energie

- **Methode der finiten Elemente:**
 - Einzelelement, Gesamtsystem, Matrixverschiebungsgrößen-verfahren, Ritzsches Verfahren

14. Literatur:
- Vorlesungsmitschrieb
- Vorlesungs- und Übungsunterlagen

15. Lehrveranstaltungen und -formen:
- 119601 Vorlesung Technische Mechanik IV
- 119602 Übung Technische Mechanik IV

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11961 Technische Mechanik IV (USL), schriftliche Prüfung, 90 Min., Gewichtung: 0.0

18. Grundlage für ...

19. Medienform:
- Beamer,
- Tablet-PC/Overhead-Projektor,
- Experimente

20. Angeboten von:
- Institut für Technische und Numerische Mechanik
Modul: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Michael Seidenfuß</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Seidenfuß</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technologiemanagement, PO 2011, 1. Semester → Basismodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011, 1. Semester → Auflagenmodule des Masters</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Atomarer Aufbau kristalliner Werkstoffe, Legierungsbildung, Thermisch aktivierte Vorgänge, Mechanische Eigenschaften, Eisenwerkstoffe, Nichteisenmetalle, Kunststoffe, Keramische Werkstoffe, Verbundwerkstoffe, Korrosion, Tribologie, Recycling</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
</tr>
<tr>
<td></td>
<td>Thermische Analyse, Kerbschlagbiegeversuch, Härteprüfung, Zugversuch, Schwingfestigkeitsuntersuchung Korrosion, Metallographie, Wärmebehandlung, Dillatometer</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>- ergänzende Folien zur Vorlesung (online verfügbar)</td>
</tr>
<tr>
<td></td>
<td>- Lecturnity Aufzeichnungen der Übungen (online verfügbar)</td>
</tr>
<tr>
<td></td>
<td>- Skripte zum Praktikum (online verfügbar)</td>
</tr>
<tr>
<td></td>
<td>- interaktive multimediale praktikumsbegleitende-CD</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 121701 Vorlesung Werkstoffkunde I</td>
</tr>
<tr>
<td></td>
<td>• 121702 Vorlesung Werkstoffkunde II</td>
</tr>
<tr>
<td></td>
<td>• 121703 Werkstoffpraktikum I</td>
</tr>
<tr>
<td></td>
<td>• 121704 Werkstoffpraktikum II</td>
</tr>
<tr>
<td></td>
<td>• 121705 Werkstoffkunde Übung II</td>
</tr>
<tr>
<td></td>
<td>• 121706 Werkstoffkunde Übung I</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumsszeit / Nacharbeitszeit: 138 h</td>
</tr>
</tbody>
</table>
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform: PPT auf Tablet PC, Skripte zu den Vorlesungen und zum Praktikum (online verfügbar), Animationen und Simulationen, interaktive multimediale praktikumsbegleitende CD, online Lecturnity Aufzeichnungen der Übungen, Abruf über Internet

20. Angeboten von:
100 Vertiefungsmodule

Zugeordnete Module:

110 Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit
120 Wahlmöglichkeit Gruppe 2: Konstruktion
130 Wahlmöglichkeit Gruppe 3: Produktion
140 Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik
110 Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14010</td>
<td>Grundlagen der Kunststofftechnik</td>
</tr>
<tr>
<td>30390</td>
<td>Festigkeitslehre I</td>
</tr>
<tr>
<td>30400</td>
<td>Methoden der Werkstoffsimulation</td>
</tr>
<tr>
<td>32210</td>
<td>Grundlagen der Keramik und Verbundwerkstoffe</td>
</tr>
</tbody>
</table>
Modul: 30390 Festigkeitslehre I

2. Modulkürzel: 041810010
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten: Thomas Fesich

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:
 • Einführung in die Festigkeitslehre
 • Werkstoffkunde I + II

12. Lernziele:

13. Inhalt:
 • Spannungs- und Formänderungszustand
 • Festigkeitshypothesen bei statischer und schwingender Beanspruchung
 • Werkstoffverhalten bei unterschiedlichen Beanspruchungsarten
 • Sicherheitsnachweise
 • Festigkeitsberechnung bei statischer Beanspruchung
 • Festigkeitsberechnung bei schwingender Beanspruchung
 • Berechnung von Druckbehältern
 • Festigkeitsberechnung bei thermischer Beanspruchung
 • Bruchmechanik
 • Festigkeitsberechnung bei von Faserverbundwerkstoffen

14. Literatur:
 - Manuskript zur Vorlesung
 - Ergänzende Folien (online verfügbar)
| 15. Lehrveranstaltungen und -formen: | • 303901 Vorlesung Festigkeitslehre I
• 303902 Übung Festigkeitslehre I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 30391 Festigkeitslehre I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 32210 Grundlagen der Keramik und Verbundwerkstoffe

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
9. Dozenten: Rainer Gadow

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kernfärcher mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studenten können:
 • Merkmale und Eigenheiten keramischer Werkstoffe unterscheiden, beschreiben und beurteilen.
 • Belastungsfälle und Versagensmechanismen verstehen und analysieren.
 • Werkstoffspezifische Unterschiede zwischen metallischen und keramischen Werkstoffen wiedergeben und erklären.
 • Technologien zur Verstärkung von Werkstoffen sowie die wirkenden Mechanismen benennen, vergleichen und erklären.
 • Verfahren und Prozesse zur Herstellung von massivkeramischen Werkstoffen benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
 • Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten und anwendungsbezogen auswählen.
 • in Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsyste the identifizieren, planen und auswählen.
 • Werkstoff- und Bauteilcharakterisierung erklären, bewerten, planen und anwenden.

13. Inhalt:

Stichpunkte:
• Grundlagen von Festkörpern im Allgemeinen und der Keramik.
• Einteilung der Keramik nach anwendungstechnischen und stofflichen Kriterien, Trennung in Oxid- / Nichtoxidkeramiken und Struktur- / Funktionskeramiken.
• Abgrenzung Keramik zu Metallen.
• Grundregeln der Strukturmechanik, Bauteilgestaltung und Bauteilprüfung.
• Klassische Herstellungsverfahren vom Rohstoff bis zum keramischen Endprodukt.
• Formgebungsverfahren, wie das Axialpressen, Heißpressen, Kalt-, Heißisostatpressen, Schlicker-, Spritz-, Foliengießen und Extrudieren keramischer Massen.
• Füge- und Verbindungstechnik.
• Sintertheorie und Ofentechnik.
• Industrielle Anwendungen (Überblick und Fallbeispiele).

14. Literatur: Skript

15. Lehrveranstaltungen und -formen:
• 322101 Vorlesung mit Übung Fertigungstechnik keramischer Bauteile I
• 322102 Vorlesung mit Übung Fertigungstechnik keramischer Bauteile II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32211 Grundlagen der Keramik und Verbundwerkstoffe (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei weniger als 5 Kandidaten: mündlich, 40 min

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 14010 Grundlagen der Kunststofftechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041710001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Christian Bonten</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Bonten</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
<td></td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule</td>
<td></td>
</tr>
<tr>
<td>→ Pflichtmodule 4 und 5 mit Wahlfähigkeit</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule</td>
<td></td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahlfähigkeit</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
</tr>
<tr>
<td>→ Kunststofftechnik</td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
</tr>
<tr>
<td>→ Kunststofftechnik</td>
<td></td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Vertiefungsmodul</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfähigkeit Gruppe 1: Werkstoffe und Festigkeit</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstarrung und Kraftübertragung der Kunststoffe
- Rheologie und Rheometrie der Polymerschmelze

13. Inhalt:

• Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymereigenschaften; Alterung der Kunststoffe
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
• Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
• Präsentation in pdf-Format
 • W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: *Werkstoffkunde Kunststoffe*, Hanser Verlag
 • W. Michaeli: *Einführung in die Kunststoffverarbeitung*, Hanser Verlag
 • G. Ehrenstein: *Faserverbundkunststoffe, Werkstoffe - Verarbeitung - Eigenschaften*, Hanser Verlag

15. Lehrveranstaltungen und -formen: 140101 Vorlesung Grundlagen der Kunststofftechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 Stunden
 Nachbearbeitungszeit: 124 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 14011 Grundlagen der Kunststofftechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
 • 37690 Kunststoff-Konstruktionstechnik
 • 37700 Kunststoffverarbeitungstechnik
 • 18380 Kunststoffverarbeitung 1
 • 39420 Kunststoffverarbeitung 1
 • 18390 Kunststoffverarbeitung 2
 • 39430 Kunststoffverarbeitung 2
 • 41150 Kunststoff-Werkstofftechnik
 • 18400 Auslegung von Extrusions- und Spritzgießwerkzeugen
 • 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen
 • 18410 Kunststoffaufbereitung und Kunststoffrecycling
 • 39450 Kunststoffaufbereitung und Kunststoffrecycling
 • 18420 Rheologie und Rheometrie der Kunststoffe
 • 32700 Rheologie und Rheometrie der Kunststoffe

19. Medienform:
 • Beamer-Präsentation
 • Tafelschreibung

20. Angeboten von: Institut für Kunststofftechnik
Modul: 30400 Methoden der Werkstoffsimulation

2. Modulkürzel: 041810011 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Siegfried Schmauder
9. Dozenten: Siegfried Schmauder
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Festigkeitsberechnung und Werkstoffmechanik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Festigkeitsberechnung und Werkstoffmechanik
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit
11. Empfohlene Voraussetzungen: Einführung in die Festigkeitslehre, Werkstoffkunde I + II, Höhere Mathematik
12. Lernziele:
 Die Studierenden sind mit den Grundlagen der Elastizitätstheorie vertraut. Sie sind in der Lage, mit analytischen Verfahren den Spannungszustand in einfachen Bauteilen zu berechnen. Sie haben sich Grundkenntnisse über die Funktion und den Anwendungsbereich der wichtigsten numerischen Simulationsmethoden auf der Mikro- und Makrobezogene Master-Module
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Festigkeitsberechnung und Werkstoffmechanik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit
13. Inhalt:
 • Elastizitätstheorie
 • Spannungsfunktionen
 • Energiemethoden
 • Differenzenverfahren
 • Finite-Elemente-Methode
 • Grundlagen des elastisch-plastischen Werkstoffverhaltens
 • Traglastverfahren
 • Gleitlinientheorie
 • Multiskalensimulation
14. Literatur:
 Manuskript zur Vorlesung und ergänzende Folien im Internet
 Schmauder, S., L. Mishnaevsky: Micromechanics and Nanosimulation of Metals and Composites, Springer Verlag
15. Lehrveranstaltungen und -formen:
 • 304001 Vorlesung Methoden der Werkstoffsimulation
 • 304002 Übung Methoden der Werkstoffsimulation
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium: 138 h
 Summe: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30401 Methoden der Werkstoffsimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
120 Wahlmöglichkeit Gruppe 2: Konstruktion

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13530</td>
<td>Arbeitswissenschaft</td>
<td></td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td></td>
</tr>
<tr>
<td>13900</td>
<td>Ackerschlepper und Ölhydraulik</td>
<td></td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
<td></td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
<td></td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td></td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
<td></td>
</tr>
<tr>
<td>14200</td>
<td>Schienenfahrzeugtechnik und -betrieb</td>
<td></td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
<td></td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitstechnik</td>
<td></td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
<td></td>
</tr>
<tr>
<td>32220</td>
<td>Grundlagen der Biomedizinischen Technik</td>
<td></td>
</tr>
<tr>
<td>32230</td>
<td>Grundlagen der Mikrosystemtechnik</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13900 Ackerschlepper und Ölhydraulik

2. Modulkürzel: 070000001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Stefan Böttinger
9. Dozenten: Stefan Böttinger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 2: Konstruktion
11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung durch 4 Fachsemester
12. Lernziele:
 Die Studierenden können
 • die wesentlichen Anforderungen der Landwirtschaft an landwirtschaftliche Maschinen, insbesondere Ackerschlepper, benennen und erklären
 • ölhydraulischen Komponenten bezüglich ihrer Verwendung in Anlagen benennen und erklären
 • unterschiedliche technischen Ausprägungen an Maschinen und Geräten und ölhydraulischen Anlagen bewerten
13. Inhalt:
 • Entwicklung, Bauarten und Einsatzbereiche von AS
 • Stufen-, Lastschalt-, stufenlose und leistungsverzweigte Getriebe
 • Motoren und Zusatzaggregate
 • Fahrwerke und Fahrkomfort
 • Fahrmechanik, Kraftübertragung Rad/Boden
 • Fahrzeug und Gerät
 • Strömungstechnische Grundlagen
 • Energiewandler: Hydropumpen und -motoren, Hydrozylinder
 • Anlagenelemente: Ventile, Speicher, Wärmetauscher
• Grundschaltungen (Konstantstrom, Konstantdruck, Load Sensing)
• Steuerung und Regelung von ölhydraulischen Anlagen
• Anwendungsbeispiele

14. Literatur:
• Skript
• Eichhorn et al: Landtechnik. Ulmer

15. Lehrveranstaltungen und -formen:
• 139001 Vorlesung und Übung Ackerschlepper und Ölhydraulik
• 139002 Praktikumsversuch 1, wählbar aus dem APMB-Angebot des Instituts
• 139003 Praktikumsversuch 2, wählbar aus dem APMB-Angebot des Instituts

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13901 Ackerschlepper und Ölhydraulik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Tafel, Skript

20. Angeboten von:
Modul: 13530 Arbeitswissenschaft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Dieter Spath</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oliver Rüssel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Ergänzungsmodul
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Ergänzungsmodul
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Technologiemanagement
 - Technologiemanagement
 - Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

13. Inhalt:

Die Anwendungsbeispiele werden durch eine freiwillige Exkursion (1 x im Semester) zu einem Unternehmen verdeutlicht.

Beide Vorlesungen werden durch einen jeweils 2-stündigen Praktikumsversuch abgerundet.

14. Literatur:
- Spath, D.: Skript zur Vorlesung Arbeitswissenschaft

15. Lehrveranstaltungen und -formen:
- 135301 Vorlesung Arbeitswissenschaft I
- 135302 Vorlesung Arbeitswissenschaft II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 h
Selbststudiumszeit / Nacharbeitszeit: 134 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13531 Arbeitswissenschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Hinweis: Die Note der Modulfachprüfung wird dem Prüfungsamt erst nach Teilnahme an den beiden Praktika übermittelt!

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Videos, Animationen, Demonstrationsobjekte

20. Angeboten von:
Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 13920 Dichtungstechnik

2. Modulkürzel: 072600002
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr. Werner Haas
9. Dozenten: Werner Haas
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

12. Lernziele:
 • Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.
 • Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.
 • Komplexe tribologische Systeme ingenieurmäßig beherrschen.
 • Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.
 • Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:
 • Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.
 • Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
• Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
• Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremer Zuverlässigkeit - was ist machbar, was nicht.
• Beurteilen und untersuchen von Dichtsystemen; wie gehe ich bei der Schadensanalyse vor.
• Teil 1 der Vorlesung startet im WiSe; Teil 2 wir im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.

14. Literatur:
• Aktuelles Manuskript
• Heinz K. Müller; Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
• 139201 Vorlesung und Übung Dichtungstechnik
• 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
• 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 h
Selbststudiumszeit / Nacharbeitszeit: 134 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13921 Dichtungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Overhead-Folien, Tafelanschrieb, Modelle, Interaktion, (selbst durchgeführte angeleitete Versuche)

20. Angeboten von:
Institut für Maschinenlelmente
Modul: 17170 Elektrische Antriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010013</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Studierende...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben. ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen. ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen. ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundlagen der Antriebstechnik • Elektronische Stellglieder • Gleichstrommaschine • Drehfeldmaschinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 171701 Vorlesung Elektrische Antriebe • 171702 Übung Elektrische Antriebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17171 Elektrische Antriebe (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von: Institut für Leistungselektronik und Elektrische Antriebe
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

2. Modulkürzel: 072510002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldaurer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe
9. Dozenten: • Wolfgang Schinköthe
• Eberhard Burkard
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 2: Konstruktion
11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

14. Literatur:

- Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:

- 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
- 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Messtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit:</td>
<td>138 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für ... :

19. Medienform:

- Tafel
- OHP
- Beamer

20. Angeboten von:

Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 32220 Grundlagen der Biomedizinischen Technik

2. Modulkürzel: 040900001
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Joachim Nagel

9. Dozenten: • Johannes Port
• Joachim Nagel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Biomedizinische Technik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Biomedizinische Technik
 ➔ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodule
 ➔ Wahlmöglichkeiten Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden
 • besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
 • kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren
 • haben wesentliche Kenntnisse gängiger bildgebender Verfahren
 • besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen
 • können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen
 • verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe
 • besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse

13. Inhalt:

In dem Modul werden folgende Inhalte vermittelt:
• die besonderen Probleme bei der Messung physiologischer Kenngrößen
• die grundlegenden Eigenschaften biologischer Gewebe
• die Besonderheiten der Elektroden und damit die entsprechenden einzuhaltenen Maßnahmen bei der Ableitung der Signale
• die physikalischen Grundlagen wichtiger mechanoelektrischer, photoelektrischer, elektrochemischer und thermoelektrischer Wandler
• die wesentlichen Prinzipien und die biomedizinisch spezifischen Besonderheiten der Signalerfassung, Signalverarbeitung, Signalverstärkung und Signalübertragung
• allgemeine Eigenschaften des kardiovaskulären und respiratorischen Systems
• Messverfahren kardiovaskulärer Kenngrößen, wie Elektrokardiogramm, Impedanzkardiogramm, Impedanzplethysmogramm, Blutdruckmessung, Blutflussmessung, etc.
• Messverfahren respiratorischer Kenngrößen, wie Impedanzpneumographie, Pneumotachographie, Spirometrie, Ganzkörperlplethysmographie, etc.
• Messverfahren biochemischer Kenngrößen, wie pH-Wert-Messung, Ionenkonzentrationsmessung, Sauerstoffmessung, etc.
• Messverfahren neurologischer Kenngrößen, wie das Elektroenzephalogramm, Elektroneurogramm, Evozierte Potentiale, etc.
• Messverfahren visueller Kenngröße, wie das Elektrookulogramm, das Elektroretinogramm, etc., - wichtige physikalische, akustische Kenngrößen
• Messverfahren akustischer Kenngrößen, wie das Audiogramm, otoakustisch evozierte Potential, Elektrocochleogramm, etc.
• Messverfahren weiterer wichtiger Kenngrößen, wie das Elektromyogramm, Elektronystagmogramm, etc.
• Bildgebende Verfahren, wie die Röntgentechnik, Ultraschall, Magnetresonanztchnik, Endoskopietechnik, thermographie, etc.
• Beispiele für Implantate und Funktionsersatz, wie das Cochlea-Implantat, Mittelohrprothese, Hörgeräte, Herzschrittmacher, Herzklangmessung, etc.
• Beispiele aktueller Forschung, wie das Brain-Computer Interface, biohybride Armprothese, etc.

14. Literatur:

• Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien
• Czichos, H., Hennecke, M., Hütte: Das Ingenieurwissen, 33. Auflage, Springer-Verlag Berlin
• Heidelberg, 2008 - Dössel, O.: Bildgebende Verfahren in der Medizin, Springer-Verlag Berlin
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>322201 Vorlesung Biomedizinische Technik I und II und 2-tägige Exkursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 58 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 122 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32221 Grundlagen der Biomedizinischen Technik (PL), schriftliche</td>
</tr>
<tr>
<td></td>
<td>Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32230 Grundlagen der Mikrosystemtechnik

2. Modulkürzel: 072420002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier

 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodule
 ➔ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Im Modul Mikrosystemtechnik

- haben die Studierenden einen Überblick über die bedeutendsten Märkte und Bauelemente bzw. Systeme der Mikrosystemtechnik (MST) kennen gelernt
- wissen die Studierenden, wie sich einzelne physikalische Größen bei einer Miniaturisierung verhalten bzw. ändern und wie diese Skalierung genutzt werden kann, um Mikrosensoren und mikroaktorische Antriebe zu realisieren
- können die Studierenden die bedeutendsten Sensoren und Systeme der Mikrosystemtechnik nach vorgegebene Spezifikationen entwerfen und auslegen.

Erworbene Kompetenzen:

Die Studierenden

- haben ein Gefühl für die Märkte der MST und können die wichtigsten Produkte der Mikrosystemtechnik benennen und beschreiben
- besitzen die Grundlagen, um Auswirkungen einer Miniaturisierung auf physikalische Größen, wie mechanische Spannungen, elektrische, piezoelektrische und magnetische Kräfte, Zeitkonstanten und Frequenzen, thermische Phänomene, Reibungseffekte und das Verhalten von Flüssigkeiten und Gasen beurteilen zu können
- kennen die physikalischen Grundlagen zu den bedeutendsten Wandlungsprinzipien bzw. Messeffekten der MST
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Realisierung von mikrosystemtechnischen Sensoren einschließlich der teilweise in den Sensoren erforderlichen mikroaktorischen Antriebe
• können anhand vorgegebener Spezifikationen einen Mikrosensor einschließlich der elektrischen Auswerteschaltung auslegen und entwerfen.

14. Literatur:
- Schwesinger N., Dehne C., Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- HSU Tai-Ran, MEMS and Microsystems, Wiley, 2008
- Völklein, F., Zetterer T., Praxiswissen Mikrosystemtechnik,
- Mescheder U.; Mikrosystemtechnik, Teubner Stuttgart Leipzig , 2000
- Pagel L., Mikrosysteme, J. Schlembach Fachverlag, 2001
- Handouts, Skript und CD zur Vorlesung
- Übungen zur Mikrosystemtechnik

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memasedu

15. Lehrveranstaltungen und -formen: 322301 Vorlesung Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32231 Grundlagen der Mikrosystemtechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001
 5. Modulsdauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Jochen Wiedemann

9. Dozenten: Jochen Wiedemann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:

14. Literatur:
 • Wiedemann, J.: Kraftfahrzeuge I-II, Vorlesungsumdruck,
 • Reimpell, J.: Fahrwerkechnik: Grundlagen, Vogel-Fachbuchverlag, 2005
| 15. Lehrveranstaltungen und -formen: | • 135901 Vorlesung Kraftfahrzeuge I + II
| | • 135902 Übung Kraftfahrzeuge I + II |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 138 h
| | Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | 13590 Kraftfahrzeuge I + II |
| 19. Medienform: | Beamer, Tafel |
| 20. Angeboten von: | Institut für Verbrennungsmotoren und Kraftfahrwesen |
Modul: 14130 Kraftfahrzeugmechatronik I + II

2. Modulkürzel: 070800002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 2 Semester
6. Turnus: unregelmäßig
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Hans-Christian Reuss

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahrscheinlichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahrscheinlichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Fahrzeug- und Motorentechnik
 ➔ Kraftfahrzeugmechatronik
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodule
 ➔ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
 Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
 Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

 VL Kfz-Mech I:
 - kraftfahrzeugspezifische Anforderungen an die Elektronik
 - Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
 - Motorelektronik (Zündung, Einspritzung)
 - Getriebeelektronik
 - Lenkung
 - ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
 - Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
 - Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

 VL Kfz-Mech II:
 - Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
• Systemarchitektur und Fahrzeugentwicklungsprozesse
• Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik

• Rapid Prototyping (Simulink)
• Modellbasierte Funktionsentwicklung mit TargetLink
• Elektronik

14. Literatur:
Vorlesungsumdruck: „Kraftfahrzeugmechatronik I“ (Reuss)

15. Lehrveranstaltungen und -formen:
• 141301 Vorlesung Kraftfahrzeugmechatronik I
• 141302 Vorlesung Kraftfahrzeugmechatronik II
• 141303 Laborübungen Kraftfahrzeugmechatronik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Modul: 14160 Methodische Produktentwicklung

2. Modulkürzel: 072710010
5. Modulauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hansgeorg Binz
9. Dozenten: Hansgeorg Binz

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Bachelor of Science Technologiemanagement, PO 2008, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodul</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bachelor of Science Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule 4 und 5 mit Wahmlichkeit</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bachelor of Science Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bachelor of Science Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahmlichkeit</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bachelor of Science Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Master of Science Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td>→ Agrartechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Master of Science Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Master of Science Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td>→ Konstruktionstechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Master of Science Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td>→ Konstruktionstechnik</td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Master of Science Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodul</td>
</tr>
<tr>
<td>→ Wahlmöglichkeit Gruppe 2: Konstruktion</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module

- Konstruktionslehre I - IV oder
- Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
- Konstruktion in der Medizingerätetechnik I + II

12. Lernziele:
Im Modul Methodische Produktentwicklung
• haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
• können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden

• können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumsatz,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

13. Inhalt:

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur:

• Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:

• 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudium / Nacharbeitszeit: 130 h
Gesamt: 180 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14161</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamer-Präsentation, Tafel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Institut für Konstruktionstechnik und Technisches Design</th>
</tr>
</thead>
</table>
Modul: 14200 Schienenfahrzeugtechnik und -betrieb

2. Modulkürzel: 072600501
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Hon. Prof. Dietrich Bögle
9. Dozenten: Dietrich Bögle

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
 - Die Studierenden der Lehrveranstaltung kennen die Grundsätze der Schienenfahrzeugtechnik und des -betriebs und können:
 - die Einsatzbereiche der verschiedenen Bahnsysteme unter Berücksichtigung des Systemzusammenhangs von Fahrzeugen, Infrastruktur und Betrieb verstehen und erläutern,
 - einfache Berechnungen zur Fahrdynamik durchführen,
 - den Aufbau von Schienenfahrzeugen erläutern und die Grundsätze der Konzeptionsmethoden verstehen,
 - den Aufbau, die Funktionsweise und die Eigenschaften von Fahrzeugkomponenten erläutern,
 - den wirtschaftlichen Einsatz von Schienenfahrzeugen erläutern,
 - Schienenfahrzeugkonzepte beschreiben und grundlegend im Zusammenhang des Einsatzzweckes einschätzen,
 - umweltrelevante Aspekte einschätzen und Maßnahmen zur Verringerung von Emissionen darlegen,
 - rechtliche Grundlagen des Bahnbetriebs und der Zulassung der Schienenfahrzeuge nachvollziehen,
 - fahrgerelevante Anforderungen aufgrund der Eisenbahninfrastruktur im Zusammenhang des Bahnbetriebs definieren,
 - Bahnanlagen definieren (inkl. Bahnstromversorgung) und Betriebsformen erklären sowie
 - sicherungstechnische Einrichtungen der Fahrzeuge und der Infrastruktur entsprechend dem jeweiligen Zweck erklären und auswählen.
13. Inhalt: In der Lehrveranstaltung werden die technischen und betrieblichen Aspekte der Schienenfahrzeugtechnik vermittelt:

- Überblick über die verschiedenen Verkehrsträger, die Mobilität, die Eisenbahntechnik und Betriebsformen der Bahnen,
- Systemzusammenhang bei Bahnen: Fahrzeuge - Infrastruktur - Betrieb,
- Vorschriften zum Betrieb von Schienenfahrzeugen und Eisenbahnen sowie deren Infrastruktur,
- Einführung in die Spurführungsmechanik,
- Grundlagen der Fahrdynamik und der Energieverbrauchsberechnung im Zusammenhang des Bahnbetriebs und der Fahrzeuganforderungen,
- Einführung in die Fahrzeitenberechnung,
- Aufbau der Fahrzeuge - wesentliche Komponenten und Baugruppen,
- Einführung in die Antriebstechnik elektrischer Triebfahrzeuge,
- Einführung in die Antriebstechnik von Dieseltriebfahrzeugen,
- Lärm- und Abgasemissionen von Schienenfahrzeugen sowie Maßnahmen zur Reduzierung von Emissionen,
- Einführung in Methoden zur Konzeption von Schienenfahrzeugen,
- Analyse von Fahrzeugen bezüglich des Einsatzzweckes,
- Wirtschaftlichkeit von Schienenfahrzeugen,
- Einführung in die Instandhaltung von Schienenfahrzeugen sowie Zulassung und Abnahme von Schienenfahrzeugen,
- Sicherheit im Bahnbetrieb - Sicherungstechniken der Infrastruktur und der Schienenfahrzeuge,
- Betriebsformen, Bahnanlagen und Planungsgrundsätze der Eisenbahlninfrastruktur im Systemverbund Bahn,
- 2 Versuche: Fahrdynamische Simulation und Stadtbahnfahrschule

14. Literatur:

- Übungsauflagen
- Gralla, D.: Eisenbahnbremsstechnik. Düsseldorf: Werner Verlag
- Matthews, V.: Bahnbau. Stuttgart: Teubner-Verlag

15. Lehrveranstaltungen und -formen:

- 142001 Vorlesung Grundlagen Schienenfahrzeugtechnik und -betrieb
- 142002 Übung Grundlagen Schienenfahrzeugtechnik und -betrieb
- 142003 Versuche Grundlagen Schienenfahrzeugtechnik und -betrieb
- 142004 Exkursionen Grundlagen Schienenfahrzeugtechnik und -betrieb

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14201 Grundlagen Schienenfahrzeugtechnik und -betrieb (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Präsentation sowie Tafelanschrieb und Folien zur Vorlesung und Übung

20. Angeboten von: Maschinenelemente
Modul: 14240 Technisches Design

2. Modulkürzel: 072710110
5. Modulsdauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Maier

9. Dozenten:
 • Thomas Maier
 • Markus Schmid

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 → Gruppe Technologiemanagement
 → Technologiemanagement
 → Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinen-konstruktion I / II

12. Lernziele:
Im Modul Technisches Design
 • besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,

- können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen:

Die Studierenden

- erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,
- beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,
- beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
- können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
- beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
- haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

13. Inhalt:

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:
• Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
• Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
• Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:
• 142401 Vorlesung Technisches Design
• 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 14310 Zuverlässigkeitstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Bernd Bertsche</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Bertsche</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement</td>
<td>Ergänzungsmodule</td>
<td>Kernmodule</td>
<td>Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement</td>
<td>Kernmodule</td>
<td>Pflichtmodule mit Wahlmöglichkeit</td>
<td>Konstruktionstechnik</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement</td>
<td>Ergänzungsmodule</td>
<td>Kernmodule mit Wahlmöglichkeit</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement</td>
<td>Kernmodule</td>
<td>Pflichtmodule mit Wahlmöglichkeit</td>
<td>Konstruktionstechnik</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement</td>
<td>Kernmodule</td>
<td>Pflichtmodule mit Wahlmöglichkeit</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement</td>
<td>Gruppe: Produktentwicklung und Konstruktionstechnik</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement</td>
<td>Konstruktionstechnik</td>
<td>Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Gruppe: Konstruktionstechnik</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Konstruktionstechnik</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement</td>
<td>Vertiefungsmodul</td>
<td>Wahlmöglichkeiten Gruppe 2: Konstruktion</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Höhere Mathematik und abgeschlossene Grundlagenausbildung in Konstruktionslehre I-IV oder Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung.

12. Lernziele:

Die Studierenden kennen die statistischen Grundlagen sowie die verschiedenen Methoden der Zuverlässigkeitstechnik.

Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review, ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo u.a.) und können diese zur Ermittlung der Zuverlässigkeit technischer Systeme anwenden. Sie beherrschen die Testplanung, können Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme aufstellen.

13. Inhalt:

- Bedeutung und Einordnung der Zuverlässigkeitstechnik
- Übersicht zu Methoden und Hilfsmittel
- Behandlung qualitativer Methoden zur systematischen Ermittlung von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv)
• Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolesche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation
• Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)
• Zuverlässigkeitsnachweisverfahren
• Zuverlässigkeitssicherungsprogramme

14. Literatur:
• VDA-Band 3.2: Zuverlässigkeitsicherung bei Automobilherstellern und Lieferanten.

15. Lehrveranstaltungen und -formen:
• 143101 Vorlesung und Übung Zuverlässigkeitslehre
• 143102 Praktikumsversuch FMEA

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h Vorlesung und 2 h Praktikum
Selbststudiumszeit / Nacharbeitszeit: 136 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14311 Zuverlässigkeitslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesung: Laptop, Beamer, Overhead

20. Angeboten von:
130 Wahlmöglichkeit Gruppe 3: Produktion

Zugeordnete Module:

12330 Elektrische Signalverarbeitung
13550 Grundlagen der Umformtechnik
13570 Werkzeugmaschinen und Produktionssysteme
13580 Wissens- und Informationsmanagement in der Produktion
14060 Grundlagen der Technischen Optik
14140 Materialbearbeitung mit Lasern
14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
17160 Prozessplanung und Leittechnik
18610 Konzepte der Regelungstechnik
30010 Modellierung und Simulation in der Mechatronik
32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau
32250 Design und Fertigung mikro- und nanoelektronischer Systeme
32260 Logistik
36980 Simulationstechnik
Modul: 32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau

2. Modulkürzel: 073400003
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Heinz Kück
9. Dozenten: • Heinz Kück
• Tobias Grözinger
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 3: Produktion
11. Empfohlene Voraussetzungen: keine
12. Lernziele:

Die Studierenden sollen:
• die Vielfalt und Verschiedenheit der Aufbauten von Mikrosystemen und der Technologien der Aufbau- und Verbindungstechnik kennenlernen;
• erkennen, wie das Einsatzgebiet von Sensoren und Systemen die Anforderungen an die Aufbau- und Verbindungstechnik bestimmt und welche Anforderungen zu erfüllen sind;
• die Einflüsse insbesondere die parasitären Einflüsse der Aufbau- und Verbindungstechnik auf die Eigenschaften der Sensoren und Systeme erkennen;
• die Auswirkungen der Aufbau- und Verbindungstechniken auf Qualität, Zuverlässigkeit und Kosten kennenlernen;
13. Inhalt: Einführung; Übersicht zu Aufbauten von Mikrosystemen; Einteilung der Sensoren und Mikrosysteme nach Anforderungen und Spezifikationen für

14. Literatur:
Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
322401 Vorlesung (inkl. Übungen, praktischer Teil am Institut, und Exkursion) : Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau, Vorlesung (inkl. Übungen, praktischer Teil am Institut, und Exkursion),

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32241 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Beamerpräsentation, Overheadprojektor, Tafel, Demonstrationsobjekte

20. Angeboten von:
Modul: 32250 Design und Fertigung mikro- und nanoelektronischer Systeme

2. Modulkürzel: 052110003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Joachim Burghartz
9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, GeräteTechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, GeräteTechnik und Technische Optik
 → Elektronikfertigung
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, GeräteTechnik und Technische Optik
 → FeinwerkeTechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, GeräteTechnik und Technische Optik
 → MikroSystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, GeräteTechnik und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
 V/Ü Grundlagen der Mikroelektronikfertigung (Empfehlung)

12. Lernziele:
 Vermittlung weiterführender Kenntnisse der wichtigsten Technologien und Techniken in der Elektronikfertigung

13. Inhalt:
 Die Vorlesung bietet eine fundierte und praxisbezogene Einführung in die Herstellung von Mikrochips und die besonderen Aspekte beim Test mikroelektronischer Schaltungen sowie dem Verpacken der Chips in IC-Gehäuse.
 • Grundlagen der Mikroelektronik
 • Lithografieverfahren
 • Wafer-Prozesse
 • CMOS-Gesamtprozesse
 • Packaging und Test
 • Qualität und Zuverlässigkeit

14. Literatur:
 - D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
- L.E. Glasser and D.W. Dobberpuhl: The Design and Analysis of VLSI Circuits, Addison Wesley.

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>322501 Vorlesung und Übung Design und Fertigung mikro- und nanoelektronischer Systeme (Blockveranstaltung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32251 Design und Fertigung mikro- und nanoelektronischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, oder bei geringer Anzahl Studierender: mündlich, 40 min.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12330 Elektrische Signalverarbeitung

2. Modulkürzel: 074711010
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer
9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 ➞ Vorzogezone Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Fahrzeug- und Motorentechnik
 ➞ Kraftfahrzeugmechatronik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mechatronik und Technische Kybernetik
 ➞ Systemdynamik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➞ Vertiefungsmodulle
 ➞ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
Modul Einführung in die Elektrotechnik

12. Lernziele:

13. Inhalt:
• Grundlagen
 - Gleichstrom und Wechselstrom
 - Bauelemente: Diode, Transistor, Operationsverstärker
 - Gesamtkonzept zur Datenübertragung
• Signale und Systeme
 - Transformation der unabhängigen Variable
 - Grundsignale
 - LTI-Systeme
• Transformationen
 - Fourier-Analyse zeitkontinuierlicher und zeitdiskreter Signale und Systeme
 - Z-Transformation
 - Abtastung
• Filter
 - Ideale und nichtideale frequenzselektive Filter
 - Zeitkontinuierliche frequenzselektive Filter
 - Filterentwurf
• Analogle Modulationen
 - Amplitudenmodulation
 - Winkelmodulation

14. Literatur:
• Vorlesungsumdruck (Vorlesungsfolien)
• Übungsblätter
• Aus der Bibliothek:
 - Tietze und Schenk: Halbleiter-Schaltungstechnik
 - Oppenheim and Willsky: Signals and Systems
 - Oppenheim and Schafer: Digital Signal Processing
• Weitere Literatur wird in der Vorlesung bekannt gegeben.

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>123301 Vorlesung Elektrische Signalverarbeitung: Vorlesung mit integrierten Vortragsübungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42h</td>
</tr>
<tr>
<td></td>
<td>Nachbereitungszeit: 138h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180h</td>
</tr>
<tr>
<td></td>
<td>4 SWS gegliedert in 2 VL und 2 Ü</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>12331 Elektrische Signalverarbeitung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>• 12350 Echtzeitdatenverarbeitung</td>
</tr>
<tr>
<td></td>
<td>• 33840 Dynamische Filterverfahren</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Tafelnschrieb, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 14060 Grundlagen der Technischen Optik

2. Modulkürzel: 073100001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Wolfgang Osten

9. Dozenten:
• Wolfgang Osten
• Erich Steinbeißer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
HM 1 - HM 3, Experimentalphysik

12. Lernziele:
Die Studierenden
• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollineation
• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen
• verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
• können die Grenzen der optischen Auflösung definieren
• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernrohr und Interferometer) einsetzen und bewerten

13. Inhalt:
• optische Grundgesetze der Reflexion, Refraktion und Dispersion;
• Kollineare (Gaußsche) Optik;
• optische Bauelemente und Instrumente;
• Wellenoptik: Grundlagen der Beugung und Auflösung;
• Abbildungsfehler;
• Strahlung und Lichttechnik

Lust auf Praktikum?

14. Literatur:
Manuskript aus Powerpointfolien der Vorlesung; Übungsblätter; Formelsammlung; Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:
• Haferkorn: Optik, Wiley, 2002
• Hecht: Optik, Oldenbourg, 2009
• Kühlke: Optik, Harri Deutsch, 2011
• Pedrotti: Optik für Ingenieure, Springer, 2007
• Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:
• 140601 Vorlesung Grundlagen der Technischen Optik
• 140602 Übung Grundlagen der Technischen Optik
• 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180

17. Prüfungsnummer/n und -name:
14061 Grundlagen der Technischen Optik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ...

19. Medienform:
Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:
Institut für Technische Optik
Modul: 13550 Grundlagen der Umformtechnik

2. Modulkürzel: 073210001
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Mathias Liewald
9. Dozenten: Mathias Liewald

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Umformtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Umformtechnik
 ➔ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
 Ingenieurwissenschaftliche Grundlagen: vor allem Werkstoffkunde, aber auch Technische Mechanik und Konstruktionslehre

12. Lernziele:
 Erworbene Kompetenzen: Die Studierenden
 - kennen die Grundlagen und Verfahren der spanlosen Formgebung von Metallen in der Blech- und Massivumformung
 - können telespezifisch die zur Herstellung optimalen Verfahren auswählen
 - kennen die Möglichkeiten und Grenzen einzelner Verfahren, sowie ihre stückzahlabhängige Wirtschaftlichkeit
 - können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen
 - sind mit dem Aufbau und der Herstellung von Werkzeugen vertraut

13. Inhalt:
 Grundlagen:
 Vorgänge im Werkstoff (Verformungsmechanismen, Verfestigung, Energiehypothese, Fließkurven), Oberfläche und Oberflächen behandlung, Reibung und Schmierung, Erwärmung

Freiwillige Exkursionen: 1 Tag im WS, 1 Woche im SS, jeweils zu Firmen und Forschungseinrichtungen.

14. Literatur:
 - Download: Folien „Einführung in die Umformtechnik 1/2"
 - K. Lange: Umformtechnik, Band 1 - 3
 - K. Siegert: Strangpressen
 - H. Kugler: Umformtechnik
 - K. Lange, H. Meyer-Nolkemper: Gesenkschmieden
 - Schuler: Handbuch der Umformtechnik
 - G. Oehler/F. Kaiser: Schneid-, Stanz- und Ziehwerkzeuge
 - R. Neugebauer: Umform- und Zerteiltechnik

15. Lehrveranstaltungen und -formen:
 • 135501 Vorlesung Grundlagen der Umformtechnik I
 • 135502 Vorlesung Grundlagen der Umformtechnik II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und-name:
 13551 Grundlagen der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 Download-Skript, Beamerpräsentation, Tafelaufschrift

20. Angeboten von:
 Institut für Umformtechnik
Modul: 18610 Konzepte der Regelungstechnik

2. Modulkürzel: 074810110
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer

9. Dozenten: Frank Allgöwer

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Regelungstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Regelungstechnik
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodule
 ➔ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Grundkenntnisse der mathematischen Beschreibung dynamischer Systeme, der Analyse dynamischer Systeme und der Regelungstechnik, wie sie z.B. in den folgenden B.Sc. Modulen an der Universität Stuttgart vermittelt werden:

 • 074710001 Systemdynamik
 • 074810040 Einführung in die Regelungstechnik

12. Lernziele: Der Studierende

 • kennt die relevanten Methoden zur Analyse linearer und nichtlinearer dynamischer Systeme und ist in der Lage diese an realen Systemen anzuwenden
 • kann Regler für lineare und nichtlineare Dynamische Systeme entwerfen und validieren
 • kennt und versteht die Grundbegriffe wichtiger Konzepte der Regelungstechnik, insbesondere der nichtlinearen, optimalen und robusten Regelungstechnik

13. Inhalt:

 • Erweiterte Regelkreisstrukturen
 • Struktureigenschaften linearer und nichtlinearer Systeme
 • Lyapunov-Stabilitätstheorie
 • Reglerentwurf für lineare und nichtlineare Systeme

14. Literatur:

15. Lehrveranstaltungen und -formen:

 • 186101 Vorlesung und Übung Konzepte der Regelungstechnik
 • 186102 Gruppenübung Konzepte der Regelungstechnik

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 63h
 Selbststudiumszeit / Nacharbeitszeit: 117h

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>18611 Konzepte der Regelungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32260 Logistik

4. SWS: 4.0 7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fördertechnik und Logistik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fördertechnik und Logistik
→ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden entwickeln ein Verständnis für die Bedeutung der Logistik im Allgemeinen und als betriebliche Querschnittsfunktion. Sie bekommen einen Überblick über das breite Spektrum der logistischen Anwendungen und können einzelne Fachbereiche in den Unternehmensablauf und Produktionsprozess einordnen.

Anhand der Betrachtung von Praxisbeispielen sind die Studierenden in der Lage das gewonnene theoretische Wissen auf konkrete praktische Aufgabenstellungen anzuwenden.

13. Inhalt:

Das Modul „Logistik“ besteht aus den Vorlesungen „Methoden und Strategien in der Logistik“ und „Distributionszentrum“.

Der zweite Teil des Moduls befasst sich mit der Analyse, Bewertung und Auslegung von **Distributionszentren**. Hierbei werden den Studierenden Aufgaben und Charakteristika der einzelnen Funktionsbereiche eines Distributionszentrums vermitteln:

- Wareneingang
- Lager & Kommissionierung
- Konsolidierung & Verpackung
- Warenausgang

14. Literatur:

- Pulverich, M.; Schietinger, J. (Hrsg.): Handbuch Kommissionierung - Effizient Picken und Packen; Verlag Heinrich Vogel, München 2009

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>322601 Vorlesung + Übung Logistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>45 Std. Präsenz</td>
</tr>
<tr>
<td></td>
<td>45 Std. Vor-/Nachbearbeitung</td>
</tr>
<tr>
<td></td>
<td>90 Std. Prüfungsvorbereitung und Prüfung</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32261 Logistik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14140 Materialbearbeitung mit Lasern

2. Modulkürzel: 073010001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Thomas Graf

9. Dozenten: Thomas Graf

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Laser in der Materialbearbeitung
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Laser in der Materialbearbeitung
→ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 3: Produktion

12. Lernziele:

13. Inhalt:

- Laser und die Auswirkung ihrer Strahlegenschaften (Wellenlänge, Intensität, Polarisation, etc.) auf die Fertigung,
- Komponenten und Systeme zur Strahlformung und Stahlführung, Werkstückhandhabung,
- Wechselwirkung Laserstrahl-Werkstück
• physikalische und technologische Grundlagen zum Schneiden, Bohren und Abtragen, Schweißen und Oberflächenbehandeln, Prozeßkontrolle, Sicherheitsaspekte, Wirtschaftlichkeitsbetrachtungen

14. Literatur:
ISBN 978-3-8351-0005-3

15. Lehrveranstaltungen und -formen:
141401 Vorlesung mit integrierter Übung Materialbearbeitung mit Lasern

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:
14141 Materialbearbeitung mit Lasern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Institut für Strahlwerkzeuge
Modul: 30010 Modellierung und Simulation in der Mechatronik

| 2. Modulkürzel: | 072810006 | 5. Moduldauer: | 1 Semester |
| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard

9. Dozenten: • Albrecht Eiber • Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011	Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011	Gruppe Mechatronik und Technische Kybernetik
	Technische Dynamik
	Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011	Vertiefungsmodule
	Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik

12. Lernziele: Kenntnis und Verständnis mechatronischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung und Kombination verschiedenster mechatronischer Methoden und Prinzipien

13. Inhalt:

• Einführung und Übersicht

• Grundgleichungen mechanischer Systeme

• Sensorik, Signalverarbeitung, Aktorik

• Regelungskonzepte

• Numerische Integration

• Signalanalyse

• Ausgewählte Schwingungssysteme, Freie Schwingungen, Erzwungene Schwingungen

• Experimentelle Modalanalyse

• Anwendungen

14. Literatur:

- Vorlesungsmitschrieb

- Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:

- 300101 Vorlesung Modellierung und Simulation in der Mechatronik

- 300102 Übung Modellierung und Simulation in der Mechatronik

Stand: 23. Oktober 2012
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
|------------------------------|-----------------------|
| 17. Prüfungsnummer/n und -name: | 30011 Modellierung und Simulation in der Mechatronik (PL),
schriftlich oder mündlich, Gewichtung: 1,0, Modellierung und Simulation in der Mechatronik, 1,0, schriftlich 90 min oder 30 min mündlich, Bekanntgabe in der Vorlesung |
18. Grundlage für ... :	
19. Medienform:	
20. Angeboten von:	
Modul: 17160 Prozessplanung und Leittechnik

2. Modulkürzel: 072911002
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.8
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Peter Klemm
9. Dozenten: Peter Klemm
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 3: Produktion
12. Lernziele:
 Die Studierenden
 • verstehen den Aufbau und die Eigenschaften von Flexiblen Fertigungseinrichtungen;
 • können die Struktur, der Aufgabenbereiche und Informationsflüsse in Produktionsunternehmen erkennen und die Aufgaben und Arbeitsschritte der Arbeits- und Prozessplanung erfassen;
 • verstehen die Aufgaben und Funktionen der CAD/NC-Verfahrenskette;
 • verstehen die Struktur und den Inhalt von NC-Programmen für Werkzeugmaschinen sowie Industrieroboter und können NC-Programme erstellen;
 • können den Nutzen der rechnerunterstützten NC-Programmierung erkennen und besitzen die Voraussetzungen für die schnelle Einarbeitung in Softwarewerkzeuge für die NC-Programmierung;
 • können die Grundlagen der objektorientierten Bearbeitungsmodellierung verstehen und bewerten und erwerben einen Überblick über die CAD/NC-Verfahrenskette;
 • verstehen die Aufgaben und Funktionen von Leitsystemen (Manufacturing Execution Systems);
 • verstehen die Aufgaben von Informationssystemen in der Produktion.
13. Inhalt:
 Aufgaben und Funktionen von:
 • Flexiblen Fertigungseinrichtungen,
 • Informationsfluss in Produktionsunternehmen,
 • CAD/NC-Verfahrenskette,
 • Arbeits- und Prozessplanung,
 • NC-Programmierung,
 • Leittechnik (Manufacturing Execution Systems),
 • Informationssystemen in der Produktion.
14. Literatur:
- Manuskript, Übungsaufgaben

15. Lehrveranstaltungen und -formen:
- 171601 Softwaretechnik für Prozessplanung und Leitsysteme I, Vorlesung und Übung
- 171602 Softwaretechnik für Prozessplanung und Leitsysteme II, Vorlesung und Übung
- 171603 Praktikum Prozessplanung und Leittechnik

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: 50 h | Nacharbeitszeit: 130 h |
| Gesamt: | |
| 180 h | |

17. Prüfungsnummer/n und -name:
- 17161 Prozessplanung und Leittechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Beamer, Overheadprojektor, Tafel

20. Angeboten von:
- Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 36980 Simulationstechnik

2. Modulkürzel: 074710002
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Oliver Sawodny
9. Dozenten: Oliver Sawodny
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B. Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M. Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeugmechatronik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M. Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahrscheinlichkeit Gruppe 3: Produktion
11. Empfohlene Voraussetzungen:
 • Pflichtmodule Mathematik
 • Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs-
 und Steuerungstechnik
12. Lernziele:
 Die Studierenden kennen die grundlegenden Methoden und Werkzeuge
 zur Simulation von dynamischen Systemen und beherrschen deren
 Anwendung. Sie setzen geeignete numerische Interpretationsverfahren
 ein und können das Simulationsprogramm in Abstimmung mit der ihnen
 gegebenen Simulationsaufgabe parametrisieren.
13. Inhalt:
 Stationäre und dynamische Analyse von Simulationsmodellen;
 numerische Lösungen von gewöhnlichen Differentialgleichungen mit
 Anfangs- oder Randbedingungen; Stückprozesse als Warte-Bedien-
 Systeme; Simulationswerkzeug Matlab/Simulink und Arena.
14. Literatur:
 • Vorlesungsumdrucke
 • Stoer, J.; Burlirsch, R.: Einführung in die numerische Mathematik
 • II. Springer 1987, 1991
 • Hoffmann, J.: Matlab und Simulink - Beispielenlenkte Einführung in die
 Simulation dynamischer Systeme. Addison-Wesley 1998
15. Lehrveranstaltungen und -formen:
 • 369801 Vorlesung mit integrierter Übung Simulationstechnik
 • 369802 Praktikum Simulationstechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 53 h
 Selbststudium/ Nacharbeit: 127 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name: 36981 Simulationstechnik (PL), schriftliche Prüfung, 120 Min.,
 Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt,
 nicht programmierbar, nicht grafikfähig) sowie alle nicht
 elektronischen Hilfsmittel
18. Grundlage für ... : 12290 Systemanalyse I
19. Medienform:
20. Angeboten von: Institut für Systemdynamik
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

2. Modulkürzel: 072910003
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl

9. Dozenten: Alexander Verl

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 6. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 6. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Vorgezogene Master-Modul

M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Steuerungstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Steuerungstechnik
 ➔ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahrscheinlichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs- und Steuerungstechnik)

12. Lernziele:
Industrieroboter können die Studierenden die Komponenten innerhalb der Steuerung, wie z.B. Lagesollwertbildung oder Adaptive Control-Verfahren interpretieren. Sie können die Auslegung der Antriebstechnik und die zugehörigen Problemstellungen der Regelungs- und Messtechnik verstehen, bewerten und Lösungen erarbeiten.

Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

13. Inhalt:
- Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
- Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
- Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
- Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung.

14. Literatur:
Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
- 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142303 Praktikum 1 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142304 Praktikum 2 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 50h
- Nacharbeitszeit: 130h
- Gesamt: 180h

17. Prüfungsnummer/n und -name:
- 14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Beamer, Overhead, Tafel

20. Angeboten von:
- Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel

9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

 | B.Sc. Technologiemanagement, PO 2008, 5. Semester |
Kernmodule	Ergänzungsmodul
Ergänzungsmodul	Kernmodul
Kernmodule	Pflichtmodule 4 und 5 mit Wahlmöglichkeit
Ergänzungsmodul	Kernmodul
Kernmodul	Pflichtmodule mit Wahlmöglichkeit
Ergänzungsmodul	Kernmodul
Kernmodul	Vorgezogene Master-Module
Kernmodul	Ergänzungsfächer mit 6 LP
Kernmodul	Werkstoff- und Produktionstechnik
Kernmodul	Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
Kernmodul	Werkzeugmaschinen mit 6 LP
Kernmodul	Werkzeugmaschinen
Kernmodul	Kernfärcher mit 6 LP
Kernmodul	Vertiefungsmodule

12. Lernziele:
Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand: Präsenzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von: Institut für Werkzeugmaschinen
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

2. Modulkürzel: 072410003
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fabrikbetrieb
 ➔ Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fabrikbetrieb
 ➔ Kernfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodule
 ➔ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen

13. Inhalt: Schwerpunkte der methodisch orientierten Vorlesung sind Grundlagen, Methoden und Werkzeuge des Wissensmanagements, Auftragsmanagements, Customer Relationship Managements, Supply Chain Managements, Produktdatenmanagements, Engineering Data
Managements, Facility Managements sowie der Digitalen und Virtuellen Fabrik.

14. Literatur:
- Skript zur Vorlesung,
- Wandlungsfähige Unternehmensstrukturen
- Das Stuttgarter Unternehmensmodell, Westkämper Engibert, Berlin Springer 2007

15. Lehrveranstaltungen und -formen:
- 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
- 135802 Übung Wissens- und Informationsmanagement in der Produktion I
- 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
- 135804 Übung Wissens- und Informationsmanagement in der Produktion II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 63 Stunden
- Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
- 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Power-Point Präsentationen, Simulationen, Animationen und Filme

20. Angeboten von:
- Institut für Industrielle Fertigung und Fabrikbetrieb
140 Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

Zugeordnete Module:

- 11390 Grundlagen der Verbrennungsmotoren
- 13060 Grundlagen der Heiz- und Raumlufttechnik
- 13910 Chemische Reaktionstechnik I
- 13940 Energie- und Umwelttechnik
- 14020 Grundlagen der Mechanischen Verfahrenstechnik
- 14070 Grundlagen der Thermischen Strömungsmaschinen
- 14090 Grundlagen Technischer Verbrennungsvorgänge I + II
- 14100 Hydraulische Strömungsmaschinen in der Wasserkraft
- 14110 Kerntechnische Anlagen zur Energieerzeugung
- 14180 Numerische Strömungssimulation
- 18160 Berechnung von Wärmeübertragern
- 24590 Thermische Verfahrenstechnik I
- 29200 Energiesysteme und effiziente Energieanwendung
- 30440 Thermal Waste Treatment and Flue Gas Cleaning
- 32270 Bioverfahrenstechnik
Modul: 18160 Berechnung von Wärmeübertragern

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410030</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Wolfgang Heidemann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Heidemann</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Feuerungs- und Kraftwerkstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse in Wärme- und Stoffübertragung |
| 12. Lernziele: | Erworbene Kompetenzen: |
| | Die Studierenden |
| | • kennen die Grundgesetze der Wärmeübertragung und der Strömungen |
| | • sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsauussagen und Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden |
| | • kennen unterschiedliche Methoden zur Berechnung von Wärmeübertragern |
| | • kennen die Vor- und Nachteile verschiedener Wärmeübertragerbauformen |
| | Die Lehrveranstaltung |
| | • zeigt unterschiedliche Wärmeübertragerarten und Strömungsformen der Praxis, |
| | • vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert, Kennzahlen, NTU-Diagramm, Zellenmethode |
| | • behandelt Sonderbauformen und Spezialprobleme(Wärmeverluste), |
| | • vermittelt Grundlagen zur Wärmeübertragung in Kanälen und im Mantelraum (einphasige Rohrströmung, Plattenströmung, Kondensation, Verdampfung), |
• führt in Fouling ein (Verschmutzungsarten, Foulingwiderstände, Maßnahmen zur Verhinderung/ Minderung, Reinigungsverfahren),
• behandelt die Bestimmung von Druckabfall und die Wärmeübertragung durch berippte Flächen
• vermittelt die Berechnung von Regeneratoren

14. Literatur:
• Vorlesungsmanuskript,

15. Lehrveranstaltungen und -formen:
• 181601 Vorlesung Berechnung von Wärmeübertragern
• 181602 Übung Berechnung von Wärmeübertragern

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesung: Beamerpräsentation
Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware

20. Angeboten von:
Modul: 32270 Bioverfahrenstechnik

2. Modulkürzel: 041000001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Ralf Takors
9. Dozenten: Ralf Takors
M.Sc. Technologiemanagement, PO 2011 ➔ Vertiefungsmodule ➔ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik
11. Empfohlene Voraussetzungen:
12. Lernziele:
Die Studierenden lernen die Grundlagen zur kinetischen Modellierung biologischer Systeme, der Bilanzierung, Prozessführung, Maßstabsübertragung und Wirtschaftlichkeitsbetrachtung von Bioprozessen kennen, um diese anschließend auch grundsätzlich auslegen zu können.

Die Studierenden kennen nach der Vorlesung die für diese Aufgabe notwendigen Ansätze, haben diese verstanden und sind in der Lage diese auch an einfachen Beispielen anzuwenden. Übungsaufgaben vertiefen das Wissen.

13. Inhalt:
- Grundlagen der chemischen / enzymatischen Reaktionstechnik
- Kinetik enzymkatalysierter Reaktionen
- Wiederholung substanzieller Eigenschaften des mikrobiellen Stoffwechsels
- Einführung in die Bioreactionstechnik
- unstrukturierte Modelle des Wachstums und der Produktbildung
- Maintenance
- Prinzipien der Prozessführung und Bilanzierung von Bioprozessen
- Grundlagen des Stofftransports in Biosuspensionen
- Grundtypen von Bioreaktoren
- Leistungseintrag, Mischzeit, Wärmetransport
- scale-up
- Wirtschaftlichkeitsbetrachtung

Hinweis: Vorlesungsfolien sind in Englisch, um der Internationalität der Forschung Rechnung zu tragen.

14. Literatur:
15. Lehrveranstaltungen und -formen:
322701 Vorlesung Bioverfahrenstechnik
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h
17. Prüfungsnummer/n und -name:
32271 Bioverfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Bioverfahrenstechnik</td>
</tr>
</tbody>
</table>
Modul: 13910 Chemische Reaktionstechnik I

2. Modulkürzel: 041110001 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr.-Ing. Ulrich Nieken
9. Dozenten: Ulrich Nieken

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Chemische Verfahrenstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Chemische Verfahrenstechnik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

Vorlesung:
- Grundlagen Thermodynamik
- Höhere Mathematik

Übungen: keine

12. Lernziele:

13. Inhalt:

Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer Rührkessel und Rührreaktoren, Reaktorauslegung, dynamisches
14. Literatur: Skript

empfohlene Literatur:

- Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
- Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, 1999

15. Lehrveranstaltungen und -formen:

- 139101 Vorlesung Chemische Reaktionstechnik I
- 139102 Übung Chemische Reaktionstechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

13911 Chemische Reaktionstechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

15570 Chemische Reaktionstechnik II

19. Medienform:

Vorlesung: Tafelanschrieb, Beamer
Übungen: Tafelanschrieb, Rechnerübungen

20. Angeboten von:

Institut für Chemische Verfahrenstechnik
Modul: 13940 Energie- und Umwelttechnik

2. Modulkürzel: 042510001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Günter Scheffknecht
9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2008, 6. Semester |
| ➔ Ergänzungsmodule |
| ➔ Kompetenzfeld II |

| B.Sc. Technologiemanagement, PO 2008, 6. Semester |
| ➔ Kernmodule |
| ➔ Pflichtmodule 4 und 5 mit Wahlsmöglichkeit |

| B.Sc. Technologiemanagement, PO 2011, 6. Semester |
| ➔ Ergänzungsmodule |
| ➔ Kompetenzfeld II |

| B.Sc. Technologiemanagement, PO 2011, 6. Semester |
| ➔ Kernmodule |
| ➔ Pflichtmodule mit Wahlsmöglichkeit |

| B.Sc. Technologiemanagement, PO 2011, 6. Semester |
| ➔ Vorgezogene Master-Module |

| M.Sc. Technologiemanagement, PO 2011 |
| ➔ Vertiefungsmodul |
| ➔ Wahlsmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik |

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden des Moduls haben die Prinzipien der Energieumwandlung und Vorräte sowie Eigenschaften verschiedener Primärenergieträger als Grundlagenwissen verstanden und können beurteilen, mit welcher Anlagentechnik eine möglichst hohe Energieausnutzung mit möglichst wenig Schadstoffemissionen erreicht wird. Die Studierenden haben damit für das weitere Studium und für die praktische Anwendung im Berufsfeld Energie und Umwelt die erforderliche Kompetenz zur Anwendung und Beurteilung der relevanten Techniken erworben.

13. Inhalt:

Vorlesung und Übung, 4 SWS

1) Grundlagen zur Energieumwandlung, Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
2) Energiebedarf Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
4) Techniken zur Energieumwandlung in verschiedenen Sektoren: Stromerzeugung, Industrie, Hausheizungen
5) Techniken zur Begrenzung der Umweltbeeinflussungen
6) Treibhausgasemissionen
7) Erneuerbare Energieträger: Geothermie, Wasserkraft, Sonnenenergie, Photovoltaik, Wind, Wärmepumpe, Biomasse,
8) Wasserstoff und Brennstoffzelle
14. Literatur:
- Vorlesungsmanuskript
- Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Veranstaltungsteilnahme</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>139401 Vorlesung und Übung Energie- und Umwelttechnik</td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Arbeiten</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>56</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit</td>
<td>124</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Prüfungsbetreiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>13941</td>
<td>Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

- Tafelanschrieb
- Skripte zu den Vorlesungen und zu den Übungen

20. Angebote von:

Institut für Feuerungs- und Kraftwerktechnik
Modul: 29200 Energiesysteme und effiziente Energieanwendung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Modul dauert:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Alfred Voß</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alfred Voß</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik |
| 11. Empfohlene Voraussetzungen: | Thermodynamik, Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung") |
| 13. Inhalt: | • Analysemethoden des energetischen Zustandes von Anlagen
 • Exergie-, Pinch-Point-, Prozesskettenanalyse
 • Systemvergleiche von Energieanlagen
 • Systeme mit Kraft-Wärme-Kopplung
 • Abwärmeneutzungssysteme
 • Wärmrückgewinnung
 • neue Energiewandlungstechniken und Sekundärenergieträger |
| 14. Literatur: | Online-Manuskript, Daten- und Arbeitsblätter |
| 15. Lehrveranstaltungen und -formen: | • 292001 Vorlesung Techniken der rationellen Energieanwendung
 • 292002 Übung Techniken der rationellen Energieanwendung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium und Prüfungsvorbereitung: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 29201 Energiesysteme und effiziente Energieanwendung (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | • Beamergestützte Vorlesung
 • teilweise Tafelanschrieb
 • Lehrfilme |
• begleitendes Manuskript

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel: 040800010 5. Moduldauer: 1 Semester
4. SWS: 5.0 7. Sprache: Nach Ankündigung
8. Modulverantwortlicher: Prof. Ph. D. Andreas Kronenburg
9. Dozenten: Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen,
Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik,
Reaktionskinetik

12. Lernziele:
Die Studenten kennen die physikalisch-chemischen Grundlagen von
Verbrennungsvorgängen: Reaktionskinetik von fossilen und biogenen
Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen,
vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie
Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt: Grdlig. Technischer Verbrennungsvorgänge I & II (WiSe,
Unterrichtssprache Deutsch):
 • Erhaltungsgleichungen; Thermodynamik; molekularer Transport;
 chemische Reaktion; Reaktionsmechanismen; laminare vorgemischte
 und nicht-vorgemischte Flammen.
 • Gestreckte Flammenstrukturen; Zündprozesse; Flammenstabilität;
 turbulente vorgemischte und nicht-vorgemischte Verbrennung;
 Schadstoffbildung; Spray-Verbrennung

An equivalent course is taught in English:

Combustion Fundamentals I & II (summer term only, taught in
English):
 • Transport equations; thermodynamics; fluid properties; chemical
 reactions; reaction mechanisms; laminar premixed and non-premixed
 combustion.
• Effects of stretch, strain and curvature on flame characteristics; ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion

14. Literatur:
• Vorlesungsmanuskript
• Warnatz, Maas, Dibble, "Verbrennung", Springer-Verlag
• Warnatz, Maas, Dibble, "Combustion", Springer
• Turns, "An Introduction to Combustion", Mc Graw Hill

15. Lehrveranstaltungen und -formen:
• 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I
• 140902 Vorlesung Grundlagen Technischer Verbrennungsvorgänge II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)
Selbststudiumszeit / Nacharbeitszeit: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für … :

19. Medienform:
• Tafelanschrieb
• PPT-Präsentationen
• Skripte zu den Vorlesungen

20. Angeboten von:
Institut für Technische Verbrennung
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Michael Schmidt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Höhere Mathematik I + II • Technische Mechanik I + II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Systematik der heiz- und rumluftechnischen Anlagen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Strömung in Kanälen und Räumen
• Wärmeübergang durch Konvektion und Temperaturstrahlung
• Wärmeleitung
• Thermodynamik feuchter Luft
• Verbrennung
• meteorologische Grundlagen
• Anlagenauslegung
• thermische und lufthygienische Behaglichkeit

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004

15. Lehrveranstaltungen und -formen: 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Vorlesungsskript

20. Angeboten von:
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

2. Modulkürzel: 041900002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Piesche

9. Dozenten: Manfred Piesche

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Ergänzungsmodule
 - Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Ergänzungsmodule
 - Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Vorgezogene Master-Module

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Fahrzeug- und Motorentechnik
 - Agrartechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Verfahrenstechnik
 - Mechanische Verfahrenstechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Verfahrenstechnik
 - Mechanische Verfahrenstechnik
 - Kernfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Inhaltlich: Strömungsmechanik

Formal: keine

13. Inhalt: • Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
• Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
• Einphasenströmungen in Leitungssystemen
• Transportverhalten von Partikeln in Strömungen
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h

Summe: 180 h

17. Prüfungsnummer/n und -name: 14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel: 042310004
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenten: Jürgen Mayer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
➞ Ergänzungsmodule
➞ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
➞ Kernmodule
➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
➞ Ergänzungsmodule
➞ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
➞ Kernmodule
➞ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
➞ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Energietechnik
➞ Thermische Turbomaschinen
➞ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Energietechnik
➞ Thermische Turbomaschinen
➞ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
➞ Vertiefungsmodule
➞ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
• Ingenieurwissenschaftliche Grundlagen
• Technische Thermodynamik I + II
• Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Der Studierende
• verfügt über vertiefte Kenntnisse in Thermodynamik und
 Strömungsmechanik mit dem Fokus auf der Anwendung bei
 Strömungsmaschinen
• kennt und versteht die physikalischen und technischen Vorgänge und
 Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen,
 Verdichter, Ventilatoren)
• beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung,
 Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
• ist in der Lage, aus dieser analytischen Durchdringung die
 Konsequenzen für Auslegung und Konstruktion von axialen und
 radialen Turbomaschinen zu ziehen

13. Inhalt:
• Anwendungsgebiete und wirtschaftliche Bedeutung
• Bauarten
• Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Bauteile: Beanspruchungen, Auslegung, Festigkeits- und Schwingungsprobleme
• Labyrinthdichtungen
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Beanspruchungen

14. Literatur:
• Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

15. Lehrveranstaltungen und -formen: 140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PPT-Präsentationen, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Michael Bargende</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Ergänzungsmodule
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Ergänzungsmodule
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Fahrzeug- und Motorentechnik
 - Agrartechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Fahrzeug- und Motorentechnik
 - Verbrennungsmotoren
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Fahrzeug- und Motorentechnik
 - Verbrennungsmotoren
 - Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodule
 - Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Grundkenntnisse aus 1. bis 4. Fachsemester

12. Lernziele:

13. Inhalt:

14. Literatur:

- Vorlesungsmanuskript

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>113901 Grundlagen der Verbrennungsmotoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Verbrennungsmotoren und Kraftfahrwesen</td>
</tr>
</tbody>
</table>
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000100</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Riedelbauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Energietechnik
 - Strömungsmechanik und Wasserkraft
 - Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Energietechnik
 - Strömungsmechanik und Wasserkraft
 - Kernfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodulle
 - Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

- Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)
- Technische Strömungslehre (Fluidmechanik 1) oder Strömungsmechanik

12. Lernziele:

Die Studierenden kennen die prinzipielle Funktionsweise von Wasserkraftanlagen und die Grundlagen der hydraulischen Strömungsmaschinen. Sie sind in der Lage, grundlegende Vorauslegungen von hydraulischen Strömungsmaschinen in Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu beurteilen.

13. Inhalt:

Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise „Hydodynamische Getriebe und Absperr- und Regelorgane behandelt.

14. Literatur:
- Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
- C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
- W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlag
- J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
- J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:
- 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h

17. Prüfungsnummer/n und -name:
14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform:
Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von:
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Starflinger</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Starflinger</td>
</tr>
</tbody>
</table>
→ Ergänzungsmodul
→ Kernmodul

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodul
→ Kernmodule

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Kernenergie
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Kernenergie
→ Kernfach mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

Mit den grundlegenden thermohydraulischen und kernphysikalischen Zusammenhängen im Reaktorkern-/kreislauf werden die Studierenden vertraut gemacht und die relevanten Reaktorsicherheitsfragestellungen und damit zusammenhängende Reaktorstörfallabläufe und Reaktorsicherheitskonzepte werden vermittelt. Über den nuklearen Brennstoffkreislauf wird ein Überblick gegeben und die Grundzüge atomrechtlicher Gesetzesregelungen dargestellt.

Die erworbenen Erkenntnisse können ggf. in einer Studien- oder Masterarbeit Verwendung finden.
13. Inhalt:
 - Bedeutung/Aspekte der Kernenergie in Deutschland
 - Bauarten von Kernkraftwerken (z.B. SWR, DWR, HTR, Candu, RBMK, WWER, schnelle Reaktoren)
 - Einführung in Thermohydraulik anhand ausgewählter Fallbeispiele
 - Einführung in die Reaktorphysik inkl. Strahlenschutz und Strahlentechnik
 - Einführung in die Reaktorsicherheit inkl. Darstellung Reaktorstörfall-Szenarien/Reaktorsich.-Konzepte
 - Reaktorregelung mit Fallbeispielen mit Hilfe von Simulationsprogrammen der IAEA
 - Darlegung nuklearer Brennstoffkreislauf (u.a. Brennstoffherstellung, Wiederaufbereitung, Endlagerung)
 - Neue fortschrittliche Reaktorkonzepte (z.B. EPR, AP1000, ABWR, ESBWR, Reaktoren der Generation IV)
 - Einführung in gesetzliche Grundlagen (z.B. Atomgesetz, meldepflichtige Störfälle, "Atomausstieg", etc.)

14. Literatur:
 - W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:
 - 141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:
 - 45 h Präsenzzeit
 - 45 h Vor-/Nacharbeitungszeit
 - 90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:
 - 14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
 - 26000 Kernenergietechnik

19. Medienform:
 - ppt-Präsentation
 - Manuskripte online
 - Tafel + Kreide

20. Angeboten von:
 - Institut für Kernenergetik und Energiesysteme
Modul: 14180 Numerische Strömungssimulation

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Eckart Laurien
9. Dozenten:
 • Eckart Laurien
 • Albert Ruprecht

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 6. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 6. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Studenten besitzen fundiertes Wissen über die Vorgehensweise, die mathematisch/physikalischen Grundlagen und die Anwendung der numerischen Strömungssimulation (CFD, Computational Fluid Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind in der Lage die fachgerechte Erweiterung, Verifikation und Validierung problemangepasster Simulationsrechnungen vorzunehmen

13. Inhalt:
1. Einführung
 1.1 Beispiele und Definitionen
 1.2 Analytische Methoden
 1.3 Experimentelle Methoden
 1.4 Numerische Methoden
2. CFD-Vorgehensweise
 2.1 Physikalische Vorgänge
 2.2 Grundgleichungen
 2.3 Diskretisierung
 2.4 Methoden
2.5 Simulationsprogramme

3. Grundgleichungen und Modelle

3.1 Modellierung Molekülebene

3.2 Laminare Strömungen

3.3 Turbulente Strömungen

4. Qualität und Genauigkeit

4.1 Anforderungen

4.2 Numerische Fehler

4.3 Modellfehler

14. Literatur:
 • alle Vorlesungsfolien online verfügbar: http://http://www.ike.uni-stuttgart.de/lehre/NSS-index_SS12.html

15. Lehrveranstaltungen und -formen:
 • 141801 Vorlesung und Übung Numerische Strömungssimulation
 • 141802 Praktikum Numerische Strömungssimulation

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 45 h + Nacharbeitszeit: 131 h + Praktikumszeit: 4 h = 180 h

17. Prüfungsnummer/n und -name:
 14181 Numerische Strömungssimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 ppt-Folien (30 %), Tafel und Kreide (65 %), Computerdemonstration (5 %)
 Manuskripte online

20. Angeboten von:
 Institut für Kernenergetik und Energiesysteme
Modul: 30440 Thermal Waste Treatment and Flue Gas Cleaning

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Günter Baumbach

9. Dozenten: • Helmut Seifert
• Günter Baumbach

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td></td>
<td>Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Knowledge of chemical and mechanical engineering, combustion and waste economics, Basics of Air Quality Control

12. Lernziele:

The students know about the different technologies for thermal waste treatment which are used in plants worldwide: The functions of the facilities of thermal treatment plan and the combination for an efficient planning are present. They are able to select the appropriate treatment system according to the given frame conditions. They have the competence for the first calculation and design of a thermal treatment plant including the decision regarding firing system and flue gas cleaning.

13. Inhalt:

In addition to an overview about the waste treatment possibilities the students get a detailed insight to the different kinds of thermal waste treatment. The legal aspects for thermal treatment plants regarding operation of the plants and emission limits are part of the lecture as well as the basic combustion processes and calculations.

I: Thermal Waste Treatment (Seifert) (SoSe):

• Legal and statistical aspects of thermal waste treatment
• Development and state of the art of the different technologies for thermal waste treatment
• Firing system for thermal waste treatment
• Technologies for flue gas treatment and observation of emission limits
• Flue gas cleaning systems
• Calculations of waste combustion
• Calculations for thermal waste treatment
• Calculations for design of a plant

II: Flue Gas Cleaning (Baumbach, Seifert) (WiSe):

• Methods for dust removal, nitrogen oxide reduction (catalytic / non-catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants. Energy use and flue gas cleaning; residues from thermal waste treatment.

III: Excursion: - Thermal Waste Treatment Plant and Firing Plant with Flue Gas Cleaning
14. Literatur:
- Lecture Script
- Text book „Air Quality Control“ (Günter Baumbach, Springer publishers);
- News on topics from internet (for example UBA, LUBW);

15. Lehrveranstaltungen und -formen:
- 304401 Vorlesung Thermische Abfallbehandlung
- 304402 Vorlesung Abgasreinigung
- 304403 Exkursion zu einer Thermischen Abfallbehandlungs- und/oder Feuerungsanlage

16. Abschätzung Arbeitsaufwand:
- Time of attendance: 64 h (= 56 h V + 8 h E)
- Self study: 124 h
- Sum: 180 h

17. Prüfungsnummer/n und -name:
- 30441 Thermal Waste Treatment and Flue Gas Cleaning (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für …:

19. Medienform:
- Black board, PowerPoint Presentations, Excursion

20. Angeboten von:
- Institut für Feuerungs- und Kraftwerktechnik
Modul: 24590 Thermische Verfahrenstechnik I

2. Modulkürzel: 042100015
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Angewandte Thermodynamik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Angewandte Thermodynamik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
Thermodynamik I + II
Thermodynamik der Gemische (empfohlen, nicht zwingend)

12. Lernziele:
Die Studierenden
• verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik.
• können dieses Wissen selbstständig anwenden, um konkrete Fragestellung der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren.
• sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen.
• können das erworrene Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen.
• können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung identifizieren.

13. Inhalt:
Aufgabe der Thermischen Verfahrenstechnik ist die Trennung fluider Mischungen. Thermische Trennverfahren wie die Destillation, Absorption oder Extraktion spielen in vielen verfahrens- und umwelttechnischen Prozessen eine zentrale Rolle.
In der Vorlesung werden aufbauend auf den Grundlagen aus der Thermodynamik der Gemische und der Wärme- und Stoffübertragung die genannten Prozesse behandelt (Modellierung, Auslegung, Realisierung).
Daneben werden allgemeine Grundlagen wie das Gegenstromprinzip und Unterschiede zwischen Gleichgewichts- und kinetisch kontrollierten Prozessen erläutert. Im Rahmen der Veranstaltung wird das theoretische Wissen anhand einer ausgewählten Technikumsanlage (Destillation und/oder Absorption) praktisch vertieft.

14. Literatur:
- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedcke, Fluidverfahrenstechnik, Band 1 & 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:
- 245901 Vorlesung Thermische Verfahrenstechnik I
- 245902 Übung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
24591 Thermische Verfahrenstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
200 Spezialisierungsfächer A (ING)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Gruppe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td>220</td>
<td>Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>230</td>
<td>Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>240</td>
<td>Energietechnik</td>
</tr>
<tr>
<td>250</td>
<td>Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td>260</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>270</td>
<td>Mechatronik und Technische Kybernetik</td>
</tr>
<tr>
<td>280</td>
<td>Verfahrenstechnik</td>
</tr>
</tbody>
</table>
210 Gruppe: Produktentwicklung und Konstruktionstechnik

Zugeordnete Module: 211 Konstruktionstechnik
211 Konstruktionstechnik

Zugeordnete Module:
2111 Kernfächer mit 6 LP
2112 Kern-/Ergänzungsfächer mit 6 LP
2113 Ergänzungsfächer mit 3 LP
32390 Praktikum Konstruktionstechnik
2113 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 30940 Industriegetriebe
- 32140 Simulation im technischen Entwicklungsprozess
- 32340 Dynamiksimulation in der Produktentwicklung
- 32350 Anwendung der Methode der Finiten Elemente im Maschinenbau
- 32360 Grundlagen der Wälzlagertechnik
- 32370 Planetengetriebe
- 32380 Value Management
Modul: 32350 Anwendung der Methode der Finiten Elemente im Maschinenbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710071</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Matthias Bachmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Bachmann</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Abgeschlossene Grundlagenausbildung in Konstruktionslehre, Festigkeitslehre und Technischer Mechanik, z. B. durch die Module Konstruktionslehre I - IV und Technische Mechanik I - IV</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | Im Modul Anwendung der Methode der Finiten Elemente im Maschinenbau

 - haben die Studierenden verschiedene Finite-Element- Programme kennen gelernt,
 - haben die Studierenden verschiedene Problemstellungen aus dem Bereich Strukturmechanik kennen gelernt,
 - können die Studierenden die Finite-Elemente-Methode zur Lösung strukturmechanischer Problemstellungen einsetzen.

 Erworbbene Kompetenzen: Die Studierenden

 - können Finite-Element-Programme hinsichtlich Leistungsumfang und Anwendungsgrenzen einordnen,
 - können für strukturmechanische Problemstellungen ein geeignetes Finite-Element-Programm auswählen,
 - sind mit den wesentlichen Modellierungstechniken in der Strukturmechanik, d. h. 2D-, 3D-, symmetrische bzw. asymmetrische Modelle, vertraut und können diese zielführend anwenden,
 - verstehen den Unterschied zwischen linearer und nichtlinearer Berechnung,
 - können geometrische Nicht-Linearitäten, d. h. Kontakte, modellieren,
 - können lineare und einfache geometrisch nicht-lineare Berechnungen durchführen,
 - können Berechnungsergebnisse gezielt auswerten und auf Plausibilität prüfen. |
und die Plausibilitätsprüfung einen wesentlichen Inhaltspunkt darstellen. Darauf aufbauend werden nicht-lineare Modelle vorgestellt, wobei hier ausschließlich geometrische Nicht-Linearitäten behandelt werden. Der Fokus liegt auf der Modellierung von Kontakten und der Definition der Berechnungssteuerung. Darüber hinausgehende Problemstellungen wie Eigenwertprobleme (Stabilitätsanalysen, Modalanalysen) und Optimierungsprobleme (Parameter-, Topologieoptimierung) werden ebenfalls vorgestellt.

In der Vorlesung wird der theoretische Hintergrund an Anwendungsbeispielen vermittelt, während in den Übungen eine Vertiefung des Stoffs durch eigene Anwendung am Rechner erfolgt.

14. Literatur:
- Wissmann, J.; Sarnes, K.-D.: Finite Elemente in der Strukturmechanik, Springer Verlag, Berlin, 2005
- Vogel, M.; Ebel, T.: Pro/Engineer und Pro/Mechanica. 5. Auflage, Hanser Verlag München, 2009

15. Lehrveranstaltungen und -formen:
- 323501 Vorlesung Anwendung der Methode der Finiten Elemente im Maschinenbau
- 323502 Übung Anwendung der Methode der Finiten Elemente im Maschinenbau

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 32 Stunden
Selbststudium: 58 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
32351 Anwendung der Methode der Finiten Elemente im Maschinenbau (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für...:

19. Medienform:
Beamer-Präsentation, Tafel, Arbeit am Rechner

20. Angeboten von:
Modul: 32340 Dynamiksimulation in der Produktentwicklung

2. Modulkürzel: 072710075 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Heiko Alxneit
9. Dozenten: Heiko Alxneit

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z.
B. durch die Module Konstruktionslehre I - IV oder Grundzüge
der Maschinenkonstruktion I - II bzw. Konstruktion in der
Medizingeräteotechnik I + II Nachweis über 4-tägigen StuCAD-Kurs „ProE
Wildfire Grundlagen“ oder vergleichbares Praktikum oder Studienarbeit

12. Lernziele:
Im Modul Dynamiksimulation in der Produktentwicklung
• haben die Studierenden die Phasen, Methoden und die
 Vorgehensweisen bei der Simulation dynamischer Systeme kennen
 gelernt,
• können die Studierenden wichtige Simulationstechniken anwenden und
 die Simulationsergebnisse beurteilen.

Erworbene Kompetenzen: Die Studierenden
• können den Stellenwert der Simulationstechnik in der
 Produktentwicklung einordnen,
• kennen die wesentlichen Grundlagen der Simulationstechnik und der
 Modellbildung,
• sind mit den wichtigsten Methoden der Simulationstechnik,
 insbesondere der Modellbildung, vertraut und können diese zielführend
 anwenden,
• beherrschen die Modellierung von dynamischen Systemen unter
 Berücksichtigung der Bewegungsfreiheitsgrade,
• können Simulationen dynamischer Systeme mit Antrieben, Federn,
 Dämpfern vorbereiten und durchführen,
• können virtuelle Messungen durchführen sowie Spurkurven und
 Bewegungshüllen erzeugen,
• können Simulationsergebnisse interpretieren, auf ihre Aussagefähigkeit
 überprüfen und Optimierungen vornehmen,
• können Simulationsergebnisse bewerten und Grenzen der
 Simulationstechniken erkennen.

13. Inhalt:
Produkte von heute sollen in immer kürzerer Entwicklungszeit mehr
Funktionen auf immer kleinerem Raum beinhalten. Gleichzeitig
steigen die Erwartungen der Kunden an die Produkte. Dazu muss
die Produktivität gesteigert werden, während das unternehmerische
Risiko reduziert werden soll. Dies wird erst mittels Einsatz moderner
Simulationswerkzeuge ermöglicht. Komplexe Bewegungen mit den
Gesetzen der Mechanik zu beschreiben ist wenig anschaulich und

14. Literatur: Vorlesungsbegleitende Unterlagen, PTC Pro/Engineer Wildfire mit Modul Mechanism

15. Lehrveranstaltungen und -formen: 323401 Vorlesung (inkl. Übungen) Dynamiksimulation in der Produktentwicklung

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32341 Dynamiksimulation in der Produktentwicklung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Powerpoint-Präsentation mit Animationen, online Beamer- Vorführung, Tafelanschrieb

20. Angeboten von:
Modul: 32360 Grundlagen der Wälzlagertechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600006</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>Prof.Dr.-Ing. Bernd Bertsche</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Arbogast Grunau</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Gruppe: Produktentwicklung und Konstruktionstechnik</td>
<td></td>
</tr>
<tr>
<td>→ Konstruktionstechnik</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsfächer mit 3 LP</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
- Bedeutung der Wälzlager in der Technik
- Grundlagen und Bauformen von Wälzlagnern
- Tragfähigkeit und Lebensdauer
- Schmierung und Dichtung
- Konstruieren mit Wälzlagnern
- Online-Wellenberechnung

14. Literatur:
Grunau, A.: Grundlagen der Wälzlagertechnik, Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
323601 Vorlesung Wälzlagertechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
32361 Grundlagen der Wälzlagertechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 30940 Industriegetriebe

2. Modulkürzel: 072710070 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Matthias Bachmann
9. Dozenten: Matthias Bachmann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Elektrische Maschinen und Antriebe
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV

12. Lernziele:
 Im Modul Industriegetriebe
 - haben die Studierenden Anwendungen und Besonderheiten von Industriegetrieben kennen gelernt,
 - können die Studierenden in Konstruktionslehre erworbenen Grundlagen vertiefen und gezielt einsetzen.

 Erworbene Kompetenzen: Die Studierenden
 - können Industriegetriebe einordnen,
 - können im Industriegetriebebau übliche Werkstoffe und Maschinenelemente benennen und auswählen,
 - können Verzahnungen für industrielle Anwendungen geometrisch und hinsichtlich Tragfähigkeit auslegen,
 - können die Ansätze zur Systematik der Übersetzungs- und Drehmomentgerüste zur Baukastengetriebekonzeption nutzen,
 - können Übersetzungen, Drehzahlen und Drehmomente von Umlaufgetrieben bestimmen.

13. Inhalt:

14. Literatur:
 - Bachmann, M.: Industriegetriebe. Skript zur Vorlesung
 - Schlecht, B.: Maschinenelemente 2. 1. Auflage, Pearson Studium München, 2010
15. Lehrveranstaltungen und -formen: 309401 Vorlesung mit integrierten Übungen : Industriegetriebe

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 30941 Industriegetriebe (BSL), schriftlich, eventuell mündlich,
60 Min., Gewichtung: 1.0, bei weniger als 10
Kandidaten: mündlich, 20 min

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Tafel

20. Angeboten von:
Modul: 32370 Planetengetriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>07260007</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Bernd Bertsche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Gumpoltsberger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik ➔ Konstruktionstechnik ➔ Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VDI-Richtlinie 2157: Planetengetriebe; Begriffe, Symbole, Berechnungsgrundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Looman, Johannes Zahnradgetriebe: Grundlagen, Konstruktionen, Anwendungen in Fahrzeugen, 3., neubearb. u. erw. Aufl.. Berlin: Springer, 1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>323701 Vorlesung Planetengetriebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32371 Planetengetriebe (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von:
Modul: 32140 Simulation im technischen Entwicklungsprozess

2. Modulkürzel: 041500007 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Lina Longhitano
9. Dozenten: Lina Longhitano

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Erworbene Kompetenzen: Die Studierenden:
 - kennen die methodische Einbindung von Simulationen im Entwicklungsprozess am Beispiel der Fahrzeugentwicklung
 - haben Kenntnisse der wesentlichen Herausforderungen der Simulationen im technischen Entwicklungsprozess
 - sind mit den geläufigen Begriffen der Simulationen vertraut
 - kennen die typischen Methoden und Systeme zur: Produktgestaltung, Produktsimulation, Datenverwaltung
 - haben Einblick in die zeitlichen Rahmenbedingungen und Engpässe im Entwicklungsprozess für die Planung der Simulation
 - verstehen das Zusammenspiel zwischen Simulation und Versuch
 - sind vertraut mit der Basis des Wissensmanagement und dessen Wirkung im Entwicklungsprozess
 - kennen die Grundlage des Toleranzmanagements, Voraussetzung für die Toleranzsimulation

13. Inhalt: Im Rahmen der Vorlesung sollen folgende Wissensinhalte vermittelt werden:
 - Beschreibung der methodischen Einbindung von Simulationen im Entwicklungsprozess am Beispiel der Fahrzeugentwicklung
 - Darstellung der wesentlichen Herausforderungen der Simulationen im technischen Entwicklungsprozess
 - Erläuterung der geläufigen Begriffe der Simulationen
 - Einführung in die typischen Methoden und Systeme zur: Produktgestaltung, Produktsimulation, Datenverwaltung
 - Einblick in die zeitlichen Rahmenbedingungen und Engpässe im Entwicklungsprozess für die Planung der Simulation
 - das Zusammenspiel zwischen Simulation und Versuch
 - die Basis des Wissensmanagement und dessen Wirkung im Entwicklungsprozess
 - die Grundlage des Toleranzmanagements, Voraussetzung für die Toleranzsimulation
<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Lina Longhitano: Simulation im technischen Entwicklungsprozess, Vorlesungsunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>321401 Vorlesung Simulation im technischen Entwicklungsprozess</td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | 21 Std. Präsenz
69 Std. Prüfungsvorbereitung und Prüfung
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32141 Simulation im technischen Entwicklungsprozess (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PPT-Präsentation |
| 20. Angeboten von: | |
Modul: 32380 Value Management

2. Modulkürzel: 072710170 5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP 6. Turnus: jedes Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Dietmar Traub
9. Dozenten: Dietmar Traub

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinenkonstruktion I / II

12. Lernziele:
 Im Modul Value Management
 • besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen der Methode Value Management,
 • überblicken die Studierenden Grundlagen für Teamarbeit, Kreativität und Motivation,
 • kennen den Wert- und Kostenbegriff,
 • kennen den Funktionenbegriff
 • kennen die Funktionenanalyse und systemtechnische Ansätze
 • kennen die Kostenanalyse,
 • kennen Grundschritte und Teilschritte des VM-Arbeitsplanes mit den VM-Modulen im Zusammenhang,
 • überblicken Einsatz von Team- und Einzelarbeit,
 • kennen Arbeitsmethoden für die Grundschritte,
 • bearbeiten den gruppendynamischen Prozess,
 • überblicken Aufgaben des VM-Teams und des VM-Koordinators in der Unternehmensorganisation.

13. Inhalt:
 • VM-Module nach EN 12973
 • Arbeitsplan
 • Definition Wert
 • Ganzheitlichkeit und Systemgrenzen
 • Funktionales Denken
 • Funktionenanalyse, -kostenanalyse
 • Grundlagen Kosten- und Wirtschaftlichkeitsrechnung
 • Kostenanalyse/Kostenstruktur
 • Kreativitätsmethoden
 • Teamarbeit und Gruppenarbeit
 • Bewertungs- und Auswahlmethoden
 • Projektorganisation, -management

14. Literatur:
 Seminarunterlage Value Management Modul 1

15. Lehrveranstaltungen und -formen:
 323801 Vorlesung (inkl. Übungen in Gruppen) Value Management

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 32381 Value Management (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

20. Angeboten von:
2112 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitslehre</td>
</tr>
<tr>
<td>32290</td>
<td>Konstruktion der Fahrzeuggetriebe</td>
</tr>
<tr>
<td>32300</td>
<td>Informationstechnik und Wissensverarbeitung in der Produktentwicklung</td>
</tr>
<tr>
<td>32310</td>
<td>Fahrzeug-Design</td>
</tr>
<tr>
<td>32320</td>
<td>Interface-Design</td>
</tr>
<tr>
<td>32330</td>
<td>Getriebelehre: Grundlagen der Kinematik</td>
</tr>
</tbody>
</table>
Modul: 13920 Dichtungstechnik

2. Modulkürzel: 072600002
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr. Werner Haas

9. Dozenten: Werner Haas

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➞ Konstruktionstechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➞ Konstruktionstechnik
 ➞ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Vertiefungsmodul
 ➞ Wahlmöglichkeit Gruppe 2: Konstruktion

12. Lernziele:
 • Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.
 • Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.
 • Komplexe tribologische Systeme ingenieurmäßig beherrschen.
 • Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.
 • Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:
 • Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.
 • Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
• Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
• Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremer Zuverlässigkeit - was ist machbar, was nicht.
• Beurteilen und untersuchen von Dichtsystemen; wie gehe ich bei der Schadensanalyse vor.

 • *Teil 1 der Vorlesung startet im WiSe; Teil 2 wir im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.*

14. Literatur:
 • Aktuelles Manuskript
 • Heinz K. Müller; Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
 • 139201 Vorlesung und Übung Dichtungstechnik
 • 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
 • 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 46 h
 Selbststudiumszeit / Nacharbeitszeit: 134 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13921 Dichtungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 Beamer-Präsentation, Overhead-Folien, Tafelanschrieb, Modelle, Interaktion, (selbst durchgeführte angeleitete Versuche)

20. Angeboten von:
 Institut für Maschinenelemente
Modul: 32310 Fahrzeug-Design

2. Modulkürzel: 072710160 5. Moduldauer: 1 Semester

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Maier

9. Dozenten:
 - Thomas Maier
 - Alexander Müller
 - Daniel Holder

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➔ Konstruktionstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
 Abgeschlossene Grundlagenausbildung in Konstruktionslehre
 z. B. durch die Module Konstruktionslehre I - IV oder
 Grundzüge der Maschinenkonstruktion I / II,
 Grundzüge der Produkttentwicklung I / II. und empfohlene
 Wahl des Ergänzungs- bzw. Vertiefungsbzw. Spezialisierungsmodul Technisches Design

12. Lernziele:
 Das Modul vermittelt Grundlagen des Fahrzeugdesign. Studierende besitzen nach dem Besuch des Moduls
 • das Wissen über die wesentlichen Grundlagen des Fahrzeugdesign als Bestandteil der Fahrzeugentwicklung (incl. ergonomische Grundlagen),
 • die Kenntnis über wesentliche Gestaltungsmethoden im Fahrzeugdesign,
 • die Fähigkeit Einflussfaktoren auf das FahrzeugModulhandbuch design (z. B. Art + Anzahl der Passagiere, Gepäckvolumen, Fahrzeugklasse, Fahrzeugverwendungszweck, Gesetzesrichtlinien, technische Funktionsbaugruppen etc.) zu definieren und darauf aufbauend ein Pkw-Maßkonzept zu erstellen,
 • Grundlegende Kenntnisse auf dem Gebiet der Pkw-Tragwerkskonstruktion,
 • ein detailliertes Verständnis von Interior- und Exteriorformgebung, Fahrzeugpackaging, Oberflächen-, Material- und Farbauswahl (Color and Trim) sowie Grafikgestaltung bei der Fahrzeuggestaltung,
 • Kenntnisse über die wesentlichen Einflussfaktoren eines guten, herstellerkennzeichnenden Corporate Design.

13. Inhalt:
14. Literatur:

- Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-
 Online-Übungen; Macey, Wardle: H-Point, The Fundamentals of Car
- Schefer: Philosophie des Automobils, Ästhetik der Bewegung und Kritik
- Braess, Seiffert (Hrsg.): Vieweg Handbauch Kraftfahrzeugtechnik, 5.
- Braess, Seiffert (Hrsg.): Automobildesign und Technik, Formgebung,
- Seeger: Vom Königsschiff zum Basic Car, Entwicklungslinien und

15. Lehrveranstaltungen und -formen:

- 323101 Vorlesung Fahrzeug-Design
- 323102 Übung (inkl. Praktikum) Fahrzeug-Design

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

32311 Fahrzeug-Design (PL), schriftliche Prüfung, 120 Min.,
Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und
Videos, mit Designmodellen und Produkten, Präsentation von Übungen
mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 32330 Getriebelehre: Grundlagen der Kinematik

2. Modulkürzel: 072600005
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Bettina Rzepka
9. Dozenten: Bettina Rzepka
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen:
12. Lernziele:
 In diesem Modul lernen die Studierenden
 • die Systematik und die unterschiedlichen Bauformen von Getrieben zu strukturieren,
 • die Lagensynthese von Gelenkgetrieben durchzuführen,
 • die Mechanismen und Getrieben unter Anwendung von grafischen Lösungsverfahren zu analysieren und zu modifizieren,
 • Übersetzungen und Drehzahlen von Umlaufgetrieben zu ermitteln,
 • Kurvengetriebe und viergliedrige Kurbelgetriebe zu unterteilen.
13. Inhalt:
 • Überblick über gleichförmig und ungleichförmig übersetzende Getriebe
 • Bauformen räumlicher und ebener Vielgelenk-Ketten Systematik der Viergelenkkette, Bauformen von Viergelenkgetrieben
 • Grafische und analytische Ermittlung von Geschwindigkeiten und Beschleunigungen an eben bewegten Getriebegliedern
 • Relativbewegungen mehrgliedriger Systeme Krümmungsverhältnisse von Bahnräumen, Krümmungsverwandtschaft
 • Geschwindigkeits- und Beschleunigungspol, Polbahnen, Wendezentren, Tangentialkreis bewegter Ebenen Bewegungsgesetze für Kurbelgetriebe
 • Ebene und räumliche Kurvengetriebe
14. Literatur:
 - Rzepka, B.: Getriebelehre. Skript zur Vorlesung
 - Steinhilper, W; u.a.: Kinematische Grundlagen ebener Mechanismen und Getriebe. Würzburg: Vogel, 1993
15. Lehrveranstaltungen und -formen:
 - 323301 Vorlesung + Übung : Getriebelehre: Grundlagen der Kinematik
16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 42 Stunden
 - Selbststudium: 138 Stunden

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>32331 Getriebelehre: Grundlagen der Kinematik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Maschinenelemente</td>
</tr>
</tbody>
</table>
Modul: 32300 Informationstechnik und Wissensverarbeitung in der Produktentwicklung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Hon. Prof. Alfred Katzenbach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alfred Katzenbach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinenkonstruktion I - II |
| 12. Lernziele: | Im Modul „Informationstechnik und Wissensverarbeitung in der Produktentwicklung“ werden die Studierenden mit den Prozessen, Methoden und Werkzeugen vertraut gemacht, mit denen eine moderne Entwicklung komplexer, mechatronischer Produkte durchgeführt wird. Erworbene Kompetenzen: |
| | Die Studierenden |
| | • kennen die Herausforderungen der modernen Produktentwicklung und deren Anforderungen an die Informationstechnologie, |
| | • kennen die unterschiedlichen Informationstechnologien zur Unterstützung der Produktempfindung, |
| | • kennen die Methoden und Begriffe der Prozessgestaltung und des Requirements-Engineerings, |
| | • können die Bausteine eines IT unterstützten Entwicklungs-processes beschreiben und im Zusammenwirken zuordnen, |
| | • kennen die Methoden und Systeme zur |
| | • Produktstrukturierung, |
| | • Produktmodellierung, |
| | • Produktdatenverwaltung, |
| | • Produktbewertung, |
| | • kennen ein methodisches Konzept einer wissensbasierten Produktempfindung, |
| | • kennen die Technologien und Methoden zur Produktbewertung, |
| | • kennen Standards und Methoden für eine internationale Zusammenarbeit im Entwicklungsprozess, |
| | • kennen die Grundlagen und Bausteine des Wissensmanagements, |
| | • können unterschiedliche Verfahren und Methoden der Wissensverarbeitung unterscheiden. |

- Das Produkt ist vollständig und konsistent in einem globalen Netzwerk verschiedener Systeme beschrieben.
- Die vollständigen Informationen sind über den gesamten Produktlebenszyklus vorhanden.
- Ergebnisse realer Tests und Gebrauchserfahrungen sind Teil der digitalen Beschreibung.
- Jedes einzeln konfigurierbare Produkt ist darstellbar und simulierbar.
- Der Produktentstehungsprozess wird international in einem Netzwerk mit Lieferanten und Partnern bearbeitet.

Gliederung der Vorlesung:

- Einleitung
- Herausforderungen in der Produktentwicklung und deren Anforderungen an die IT
- Prozesse und Methoden in der Produktentwicklung
- IT- Systeme im Produktentstehungsprozess
- Produktmodellierung
- Wissensbasierte Modellierung
- Produktdatenverwaltung
- Produktbewertung
- IT- unterstützte Zusammenarbeit
- Wissensmanagement
- Wissensverarbeitende Systeme
- Exkursion

15. Lehrveranstaltungen und -formen: 323001 Vorlesung Informationstechnik und Wissensverarbeitung in der Produktentwicklung II

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 42 Stunden
 - Selbststudium: 138 Stunden
 - Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32301 Informationstechnik und Wissensverarbeitung in der Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, bei weniger als 7 Kandidaten: mündlich, 40 min

18. Grundlage für ... :

19. Medienform: Powerpoint Präsentationen mit erläuternden Videos und Systemdemonstrationen, Exkursion

20. Angeboten von:
Modul: 32320 Interface-Design

2. Modulkürzel: 072710150 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Thomas Maier
9. Dozenten: • Thomas Maier
• Markus Schmid

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik
➔ Konstruktionstechnik
➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
Das Modul vermittelt Grundlagen und Vertiefungen zum Interfacedesign. Studierende besitzen nach dem Besuch des Moduls
• das Wissen über die wesentlichen Grundlagen des Interfacedesigns als Bestandteil der methodischen Entwicklung und zur Vertiefung des Technischen Designs,
• die Kenntnis über wesentliche Interaktionsprinzipien des Modulhandbuch und der Methoden zur Wahrnehmung, Kognition und Betätigung und Benutzung,
• die Fähigkeit wichtige Methoden zur Gestaltung der Mensch-Maschine-Schnittstelle anzuwenden, Lösungen zu realisieren und zu präsentieren,
• die Fertigkeiten zur Planung und Durchführung von Usability-Tests mit Probanden,
• grundlegende Kenntnisse zu Kriterien und Bewertung von Anzeigen und Stellteilen über die XKompatibilitäten,
• ein detailliertes Verständnis von Makro-, Mikround Informationsergonomie und deren Integration in die Planungs-, Konzept-, Entwurfs- und Ausarbeitungsphase,
• die Fähigkeit zur Durchführung und Auswertung einer Workflow-Analyse als Querschnittsfunktion,
• die Fähigkeit effiziente Bedienstrategien zu beurteilen,
• das Wissen über Auswirkungen und zukünftige Trends der Interfacegestaltung.

13. Inhalt:
werden zahlreiche realisierte Beispiele aus der Praxis als Fallbeispiele vorgestellt und behandelt.

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 323201 Vorlesung Interface-Design
- 323202 Übung (inkl. Praktikum) Interface-Design

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

- 32321 Interface-Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:

Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 32290 Konstruktion der Fahrzeuggetriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600004</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Bernd Bertsche

9. Dozenten: • Bernd Bertsche

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td></td>
<td>Agrartechnik</td>
</tr>
<tr>
<td></td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Konstruktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Konstruktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Kernfächer mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

322901 Vorlesung + Übung Konstruktion der Fahrzeuggetriebe
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32291 Konstruktion der Fahrzeuggetriebe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14160 Methodische Produktentwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hansgeorg Binz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hansgeorg Binz</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlfreiraum

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kernmodule
 - Pflichtmodule mit Wahlfreiraum

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Fahrzeug- und Motorentechnik
 - Agrartechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik
 - Kernfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:

Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module

- Konstruktionslehre I - IV oder
- Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
- Konstruktion in der Medizingerätetechnik I + II

12. Lernziele:

Im Modul Methodische Produktentwicklung
• haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
• können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden

• können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumsatz,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur:
• Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudium / Nacharbeitszeit: 130 h

Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min |

18. Grundlage für ... : |

19. Medienform: Beamer-Präsentation, Tafel |

20. Angeboten von: Institut für Konstruktionstechnik und Technisches Design |
Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof.Dr.-Ing. Thomas Maier</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Thomas Maier
| | • Markus Schmid |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2008, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodulle</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodulle</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Technologiemanagement</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe: Produktentwicklung und Konstruktionstechnik</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodulle</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinen-konstruktion I / II

12. Lernziele:

Im Modul Technisches Design

- besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,
können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen:

Die Studierenden

- erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,
- beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,
- beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
- können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
- beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
- haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

13. Inhalt:

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:
- Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
- Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
- Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:
- 142401 Vorlesung Technisches Design
- 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 14310 Zuverlässigkeitstechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Bernd Bertsche
9. Dozenten: Bernd Bertsche

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 ➞ Kernmodule
 ➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 ➞ Kernmodule
 ➞ Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➞ Konstruktionstechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➞ Konstruktionstechnik
 ➞ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Vertiefungsmodul
 ➞ Wahrscheinlichkeit Gruppe 2: Konstruktion

12. Lernziele:
 Die Studierenden kennen die statistischen Grundlagen sowie die verschiedenen Methoden der Zuverlässigkeitstechnik.
 Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review, ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo u.a.) und können diese zur Ermittlung der Zuverlässigkeit technischer Systeme anwenden. Sie beherrschen die Testplanung, können Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme aufstellen.

13. Inhalt:
 • Bedeutung und Einordnung der Zuverlässigkeitstechnik
 • Übersicht zu Methoden und Hilfsmitteln
 • Behandlung qualitativer Methoden zur systematischen Ermittlung von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv)
• Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolsche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation
• Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)
• Zuverlässigkeitsnachweisverfahren
• Zuverlässigkeitssicherungsprogramme

14. Literatur:
• VDA-Band 3.2: Zuverlässigkeitsicherung bei Automobilherstellern und Lieferanten.

15. Lehrveranstaltungen und -formen:
• 143101 Vorlesung und Übung Zuverlässigkeitslehre
• 143102 Praktikumsversuch FMEA

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h Vorlesung und 2 h Praktikum
Selbststudiumszeit / Nacharbeitszeit: 136 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 14311 Zuverlässigkeitslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesung: Laptop, Beamer, Overhead

20. Angeboten von:
2111 Kernfächer mit 6 LP

Zugeordnete Module:

- 13920 Dichtungstechnik
- 14160 Methodische Produktentwicklung
- 14240 Technisches Design
- 14310 Zuverlässigkeitsenhechin
- 32290 Konstruktion der Fahrzeuggetriebe
Modul: 13920 Dichtungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr. Werner Haas</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Werner Haas</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Ergänzungsmodul
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahrscheinlichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Ergänzungsmodul
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Kernmodule
 - Pflichtmodule mit Wahrscheinlichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik
 - Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahrscheinlichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:
Grundkenntnisse in Konstruktionslehre / Maschinenelemente z.B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinenkonstruktion I + II oder Ähnliches.

12. Lernziele:
- Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.
- Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.
- Komplexe tribologische Systeme ingenieurmäßig beherrschen.
- Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.
- Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:
- Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.
- Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
• Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
• Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremem Zuverlässigkeit - was ist machbar, was nicht.
• Beurteilen und untersuchen von Dichsystemen; wie gehe ich bei der Schadensanalyse vor.
 - Teil 1 der Vorlesung startet im WiSe; Teil 2 wir im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.

14. Literatur:
 • Aktuelles Manuskript
 • Heinz K. Müller; Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
 • 139201 Vorlesung und Übung Dichtungstechnik
 • 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
 • 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 46 h
 Selbststudiumszeit / Nacharbeitszeit: 134 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13921 Dichtungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Beamer-Präsentation, Overhead-Folien, Tafelanschrieb, Modelle, Interaktion, (selbst durchgeführte angeleitete Versuche)

20. Angeboten von:
 Institut für Maschinenelemente
Modul: 32290 Konstruktion der Fahrzeuggetriebe

2. Modulkürzel: 07260004 5. Modulldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Bernd Bertsche
9. Dozenten: •
 • Bernd Bertsche

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Fahrzeug- und Motorentechnik
 ➔ Agrartechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➔ Konstruktionstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➔ Konstruktionstechnik
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: 322901 Vorlesung + Übung Konstruktion der Fahrzeuggetriebe

Stand: 23. Oktober 2012
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32291 Konstruktion der Fahrzeuggetriebe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14160 Methodische Produktentwicklung

2. Modulkürzel: 072710010
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hansgeorg Binz
9. Dozenten: Hansgeorg Binz

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Fahrzeug- und Motorentechnik
 ➔ Agrartechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➔ Konstruktionstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe: Produktentwicklung und Konstruktionstechnik
 ➔ Konstruktionstechnik
 ➔ Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module
- Konstruktionslehre I - IV oder
- Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
- Konstruktion in der Medizingerätetechnik I + II

12. Lernziele:
Im Modul Methodische Produktentwicklung
• haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
• können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden

• können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumsatz,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur:
• Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudium / Nacharbeitszeit: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min

18. Grundlage für ...

19. Medienform: Beamer-Präsentation, Tafel

20. Angeboten von: Institut für Konstruktionstechnik und Technisches Design
Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Maier</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Thomas Maier
• Markus Schmid |
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 2: Konstruktion |
| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder
Grundzüge der Maschinen-konstruktion I / II |
| 12. Lernziele: | Im Modul Technisches Design
• besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung, |
können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen:

Die Studierenden

- erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,
- beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,
- beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
- können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
- beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
- haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

13. Inhalt:

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:

- Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
- Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
- Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:

- 142401 Vorlesung Technisches Design
- 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:

- Präsenzzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 14310 Zuverlässigkeits technik

2. Modulkürzel: 072600003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul dauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Bernd Bertsche
9. Dozenten: Bernd Bertsche
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungs module
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungs module
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:
Höhere Mathematik und abgeschlossene Grundlagenausbildung in Konstruktionslehre I-IV oder Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung

12. Lernziele:
Die Studierenden kennen die statistischen Grundlagen sowie die verschiedenen Methoden der Zuverlässigkeits technik.

Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review, ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo u. a.) und können diese zur Ermittlung der Zuverlässigkeit technischer Systeme anwenden. Sie beherrschen die Testplanung, können Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme aufstellen.

13. Inhalt:
- Bedeutung und Einordnung der Zuverlässigkeits technik
- Übersicht zu Methoden und Hilfsmittel
- Behandlung qualitativer Methoden zur systematischen Ermittlung von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv)
- Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolsche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation
- Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)
- Zuverlässigkeitsnachweisverfahren
- Zuverlässigkeits sicherungsprogramme

14. Literatur:
- VDA-Band 3.2: Zuverlässigkeits sicherung bei Automobilherstellern und Lieferanten.

15. Lehrveranstaltungen und -formen:
- 143101 Vorlesung und Übung Zuverlässigkeitstechnik
- 143102 Praktikumsversuch FMEA

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h Vorlesung und 2 h Praktikum
- Selbststudiumszeit / Nacharbeitszeit: 136 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 14311 Zuverlässigkeitstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
- Vorlesung: Laptop, Beamer, Overhead

20. Angeboten von:
Modul: 32390 Praktikum Konstruktionstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600008</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Bernd Bertsche

9. Dozenten:
 - Bernd Bertsche
 - Werner Haas
 - Hansgeorg Binz
 - Thomas Maier

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011 → Spezialisierungsfächer A (ING)
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden sind in der Lage theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter />
 /http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

 Beispiele:
 - Vermessung von Maschinenelementen mittels 3D Koordinatenmessmaschine: Im ersten Teil dieses Versuchs werden die Anforderungen für hochpräzise Messungen von Bauteilen diskutiert und die technischen Daten der 3D-Koordinatenmessmaschine vorgestellt sowie deren Messprinzip erläutert. Im zweiten Teil vermessen die Studenten selbständig einige Probegeometrien und setzen sich abschließend mit den gewonnenen Messdaten kritisch auseinander.

etc.

Angebotene Versuche:

• Petri-Netze in der Zuverlässigkeits technik
• FMEA-Software
• Statische Dichtungen / Flächendichtungen im Vergleich
• Berührungsfreie Wellendichtungen
• Hydraulik-Stangendichtungen
• Raumeismessung und Oberflächenbeurteilung
• Wirkungsgradmessung
• Kennwertermittlung für die Finite Elemente Analyse
• Förderverhalten von Radial-Wellendichtringen
• Wälzlager und Energieeffizienz
• Klappern von Fahrzeuggetrieben
• Getriebesynthese eines Kippmulders
• Ausrichten von Maschinensatz-Wellen
• Temperatur-Viskositätsverhalten von Schmierölen
• Zahnradprüfung
• Konstruieren mit Blech (2 SFV)
• Vermessung von Maschinenelementen mittels 3D Koordinatenmessmaschine
• Zeichentechniken (2 SFV)
• Modellbau und Modelltechniken (2 SFV)
• Interfacegestaltung (4 SFV)

14. Literatur: Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:

• 323901 Spezialisierungsfachversuch 1
• 323902 Spezialisierungsfachversuch 2
• 323903 Spezialisierungsfachversuch 3
• 323904 Spezialisierungsfachversuch 4
• 323905 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 323906 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 323907 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 323908 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 30 Stunden
Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:

32391 Praktikum Konstruktionstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
220 Gruppe Werkstoff- und Produktionstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>Fabrikbetrieb</td>
</tr>
<tr>
<td>222</td>
<td>Fertigungstechnik kreramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
</tr>
<tr>
<td>223</td>
<td>Festigkeitsberechnung und Werkstoffmechanik</td>
</tr>
<tr>
<td>224</td>
<td>Fördertechnik und Logistik</td>
</tr>
<tr>
<td>225</td>
<td>Kunststofftechnik</td>
</tr>
<tr>
<td>226</td>
<td>Laser in der Materialbearbeitung</td>
</tr>
<tr>
<td>227</td>
<td>Umformtechnik</td>
</tr>
<tr>
<td>228</td>
<td>Werkzeugmaschinen</td>
</tr>
</tbody>
</table>
221 Fabrikbetrieb

Zugeordnete Module:
- 2211 Kernfächer mit 6 LP
- 2212 Kern-/Ergänzungsfächer mit 6 LP
- 2213 Ergänzungsfächer mit 3 LP
- 32490 Praktikum Fabrikbetrieb
2213 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
32420 Fabrikplanung und Anlagenwirtschaft I
32430 Fabrikplanung und Anlagenwirtschaft II
32460 Oberflächen- und Beschichtungstechnik I
32470 Automatisierung in der Montage- und Handhabungstechnik
32480 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I)
Modul: 32470 Automatisierung in der Montage- und Handhabungstechnik

2. Modulkürzel: 072910091

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modul: 32470 Automatisierung in der Montage- und Handhabungstechnik

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof Dr.-Ing. Alexander Verl

9. Dozenten: Andreas Wolf

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

13. Inhalt:

 • Überblick über die Möglichkeiten und Grenzen der Automatisierung in der Handhabungs- und Montagetechnik.
 • Handhabungsfunktionen, die zugehörige Gerätetechnik, deren Verkettung.
 • Materialfluss zwischen Fertigungsmitteln und die Automatisierungs-möglichkeiten.
 • Montagegerechte Gestaltung von Werkstücken.
 • Wirtschaftliche Betrachtung von Automatisierungsvorhaben.

14. Literatur:

15. Lehrveranstaltungen und -formen: 324701 Vorlesung Automatisierung in der Montage- und Handhabungstechnik

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32471 Automatisierung in der Montage- und Handhabungstechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 32480 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I)

2. Modulkürzel: 100410110
5. Moduldaurer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr. Alexander Bulling
9. Dozenten: Alexander Bulling

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ← Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ← Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ← Feinwerktechnik
 ← Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 ← Gruppe Werkstoff- und Produktionstechnik
 ← Fabrikbetrieb
 ← Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
Grundkenntnisse im Umgang mit Erfindungen beherrschen und daraus resultierende Patente erkennen.

13. Inhalt:
• Sinn und Zweck von Schutzrechten
• Wirkungen und Schutzbereich eines Patents
• Unmittelbare und Mittelbare Patentverletzung, Vorbenutzungsrecht, Erschöpfung, Verwirkung
• Patentfähigkeit und Erfindungsbegriff
• Schutzvoraussetzungen
• Von der Erfindung zur Patentanmeldung
• Das Recht auf das Patent (Erfinder/Anmelder)
• Das Patenterteilungsverfahren
• Priorität und Nachanmeldungen: Europäisches und internationales Anmeldeverfahren.
• Rechtsbehelfe und Prozesswege
• Vorgehensweise bei Patentverletzung
• Übertragung, Lizenzen, Schutzrechtsbewertung
• Das Arbeitnehmererfindergesetz
• EXKURSION: Patentinformationszentrum im Haus der Wirtschaft/ Stuttgart

14. Literatur:
Folien zur Vorlesung werden zur Verfügung gestellt.
Lit.: Beck-Text, Patent- und Musterrecht

15. Lehrveranstaltungen und -formen: 324801 Vorlesung Deutsches und europäisches Patentrecht

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32481 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I) (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 32420 Fabrikplanung und Anlagenwirtschaft I

2. Modulkürzel: 072410007
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Michael Lickefett
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ¬ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ¬ Gruppe Werkstoff- und Produktionstechnik
 ¬ Fabrikbetrieb
 ¬ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
14. Literatur:
 • Literaturempfehlung ist lediglich zur persönlichen Ergänzung bzw. Vertiefung anzusehen!
 • Michael Schenk und Siegfried Wirth, Fabrikplanung und Fabrikbetrieb: Methoden für die wandlungsfähige und vernetzte Fabrik, 2004
 • Claus-Gerold Grundig, Fabrikplanung. Planungssystematik - Methoden - Anwendungen. 2008
15. Lehrveranstaltungen und -formen: 324201 Vorlesung Fabrikplanung und Anlagenwirtschaft I
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 32421 Fabrikplanung und Anlagenwirtschaft I (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 32430 Fabrikplanung und Anlagenwirtschaft II

2. Modulkürzel: 072410008
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Siegfried Stender

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

13. Inhalt: Diese Vorlesung bezieht sich auf den Teil der „Anlagenwirtschaft“. Unter Anlagenwirtschaft wird die Instandhaltung von bestehenden Anlagen eines Unternehmens verstanden, um die Verfügbarkeit der Anlagen zur Produktion sicherzustellen.

 Ausgehend von effizienten Strategien zur Auslösung von Instandhaltungsaktivitäten wird ein Instandhaltungsprogramm erarbeitet. Dabei spielen sowohl Kosten, als auch Risikoaspekte eine bestimmende Rolle. Dazu werden Fragen zur make-or-buy Entscheidung, die Gestaltung der Organisation einer Instandhaltungsabteilung, die Optimierung relevanter Ablaufprozesse bei der Aufgabendurchführung, Fragen zur Budgetierung und Einsatzmöglichkeiten von DV-Systemen behandelt.

14. Literatur: Es ist keine zusätzliche Literatur notwendig, ein Skript kann über die Web-Seite des IFF heruntergeladen werden.

15. Lehrveranstaltungen und -formen: 324301 Vorlesung Fabrikplanung und Anlagenwirtschaft II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32431 Fabrikplanung und Anlagenwirtschaft II (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb

Stand: 23. Oktober 2012
Modul: 32460 Oberflächen- und Beschichtungstechnik I

2. Modulkürzel: 072410011
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Wolfgang Klein

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fabrikbetrieb
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
Studierende können:
• Grundlagen und Verfahren der Oberflächen- und Beschichtungstechnik benennen, unterscheiden, einordnen und beurteilen.
• Die physikalischen u. chemischen Grundlagen für spez. Oberflächeneigenschaften benennen und darstellen.
• Verfahren der Oberflächentechnik vergleichen und hinterfragen.
• In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme identifizieren.
• Unter Berücksichtigung ökonomischer und ökologischer Gesichtspunkte Verfahren und Anlagen auswählen, um gezielt funktionelle Oberflächeneigenschaften zu erzeugen.

13. Inhalt:

Stichpunkte:
• Einführung Oberflächentechnik
• Grundlagen Lackauftragsverfahren
• Funktionelle Oberflächeneigenschaften
• Vorbehandlungsverfahren und -anlagen
• Galvanische Abscheideverfahren
• Industrielle Nass- und Pulver-Lackierverfahren und -anlagen
• Grundlagen der numerischen Simulationsverfahren

14. Literatur:
Bücher:
1) Jahrbuch Besser Lackieren, Herausgeber: D. Ondratschek, Vincentz-Verlag, Hannover
2) Obst, M.: Lackierereien planen und optimieren, Vincentz Verlag, Hannover 2002
3) P. Svejda: Prozesse und Applikationsverfahren in der industriellen Lackiertechnik, Vincentz-Verlag, Hannover

Zeitschriften:
1) JOT-Journal für Oberflächentechnik, Vieweg-Verlag Wiesbaden
2) MO-Metalloberfläche, IGT-Informationsgesellschaft Technik, München
3) Farbe und Lack, Vincentz-Verlag, Hannover
4) besser lackieren! Vincentz Network, Hannover

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>324601 Vorlesung Oberflächen- und Beschichtungstechnik I</th>
</tr>
</thead>
</table>
| | Selbststudium: 69 Stunden
| | Summe: 90 Stunden

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>32461 Oberflächen- und Beschichtungstechnik I (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
2212 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 13560 Technologien der Nano- und Mikrosystemtechnik I
- 13580 Wissens- und Informationsmanagement in der Produktion
- 32400 Strategien in Entwicklung und Produktion
- 32410 Oberflächentechnik
- 36340 Fabrikplanung und Anlagenwirtschaft
- 36360 Qualitätsmanagement
Modul: 36340 Fabrikplanung und Anlagenwirtschaft

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
9. Dozenten: • Michael Lickefett • Siegfried Stender
M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik → Fabrikbetrieb → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: --

12. Lernziele:

Fabrikplanung und Anlagenwirtschaft I: Die Studierenden beherrschen einen sicheren Umgang mit den gängigsten Methoden, Vorgehensweisen und interdisziplinären Planungsaufgaben im Bereich Fabrikplanung.

Fabrikplanung und Anlagenwirtschaft II: Entwicklung eines Verständnisses des Instandhaltungsmanagements und der wesentlichen Verfügbarkeits- und Kostenaspekten von Anlagen

13. Inhalt:

Fabrikplanung und Anlagenwirtschaft I:

Fabrikplanung und Anlagenwirtschaft II:

- Michael Schenk und Siegfried Wirth, Fabrikplanung und Fabrikbetrieb: Methoden für die wandlungsfähige und vernetzte Fabrik, 2004

15. Lehrveranstaltungen und -formen:
- 363401 Vorlesung Fabrikplanung und Anlagenwirtschaft I
- 363402 Vorlesung Fabrikplanung und Anlagenwirtschaft II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
- 36341 Fabrikplanung und Anlagenwirtschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
- Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 32410 Oberflächentechnik

2. Modulkürzel: 072410005 5. Moduldaurer: 1 Semester
4. SWS: 5.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Thomas Bauernhansl
9. Dozenten: • Dieter Ondratschek
 • Martin Metzner
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

13. Inhalt: Schwerpunkte: Industrielle Lackiertechnik, Galvanotechnik, PVD- und CVD-Beschichtungen, Schichtmesstechnik

 Einführung in die Galvanotechnik, Grundlagen der chemischen, elektrochemischen, physikalischen und elektrotechnischen Begriffe, Bernhard Gaida
 Praktische Galvanotechnik, Lehr- und Handbuch, T.W. Jelinek

15. Lehrveranstaltungen und -formen: • 324101 Vorlesung Oberflächentechnik
 • 324102 Übung Oberflächentechnik

 Selbststudium: 127 Stunden

17. Prüfungsnummer/n und -name: 32411 Oberflächentechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 36360 Qualitätss management

2. Modulkürzel: 072410009

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modul dauer: 1 Semester

6. Turnus: jedes Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Alexander Schloske

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Werkstoff- und Produktionstechnik
 - Fabrikbetrieb
 - Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden kennen die modernen Qualitätsmanagement-Systeme und Qualitätsmanagement-Methoden und können diese beurteilen sowie deren Anwendungsbereiche entlang des Produktlebenslaufes aufzeigen.

13. Inhalt:

 Übung: 7 Qualitätss management-Tools, 7 Management-Tools, Quality Function Deployment (QFD), Fehlermöglichkeiten- und Einflussanalyse (FMEA), Stichprobenprüfung, Statistische Prozessregelung (SPC)

14. Literatur:

 - Folien und Skriptum der Vorlesung
 - Standardliteratur zum Thema Qualitätsmanagement:

15. Lehrveranstaltungen und -formen: 363601 Vorlesung Qualitätss management
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
|---------------------------------|-------------------------|
| 17. Prüfungsnummer/n und -name: | 36361 Qualitätsmanagement (PL), schriftliche Prüfung, 120 Min.,
Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Industrielle Fertigung und Fabrikbetrieb |
Modul: 32400 Strategien in Entwicklung und Produktion

2. Modulkürzel: 072410004
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten:
• Thomas Bauernhansl
• Thomas Weber

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fabrikbetrieb
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

Vorlesung I: Strategien der Produktion:

Vorlesung II: Technologien in den Prozessketten des Automobilbaus:
Der Studierende kennt die Anforderungen und Herausforderungen im Produktlebenslauf sowie die Systematik des Produktenstehungsprozesses. Er kennt die Methoden und Werkzeuge zur Sicherstellung von Effizienz und Effektivität im Produktenstehungsprozess sowie die lebensphasenbezogenen Aufgabenstellungen und Lösungsansätze.

13. Inhalt:

Vorlesung I: Strategien der Produktion:
In dieser Vorlesung werden ausgewählte technisch und organisatorisch orientierte Strategische Ansätze vorgestellt, denen heute eine entscheidende Bedeutung bei der Reaktion auf und Gestaltung der Veränderungen zukommt. Mit Hilfe dieser Ansätze wird ein neuer Weg zu einer ganzheitlichen Unternehmensstrategie aufgezeigt, der die strukturelle Entwicklung der Produktion in die Unternehmensstrategie einbindet.

Im Allgemeinen Teil (Vorlesung 1-3) werden die Rahmenbedingungen produzierender Unternehmen dargestellt sowie die Grundlagen der Strategischen Planung im Industriellen Unternehmen erörtert. In den Vorlesungen 4-11 werden die verschiedenen Strategischen Ansätze einer modernen Produktion und die Auswirkungen dieser Ansätze vertieft behandelt.

Ergänzt werden die Vorlesungen durch den Gastvortrag eines hochrangigen Vertreters aus der Industrie. Der Vortrag vertieft Aspekte der Vorlesung anhand aktueller Praxisbeispiele.
Vorlesung II: Technologien in den Prozessketten des Automobilbaus:
Am Beispiel des Automobils werden die bisherigen, theoretisch vermittelten Lehrinhalte des Spezialisierungsfaches Fabrikbetrieb erörtert. Den Studenten wird von der Wettbewerbssituation im Automobilbau über die Produktentstehung, die Produktplanung und das Wertschöpfungsnetzwerk bis hin zu den eingesetzten Technologien das Wissen an interessanten Fallbeispielen vermittelt.

14. Literatur:
Gausemeier, Jürgen ; Plass, Christoph ; Wenzelmann, Christoph: Zukunftsoorientierte Unternehmensgestaltung: Strategien, Geschäftsprozesse und IT-Systeme für die Produktion von morgen, München : Hanser, 2009. - ISBN 978-3-446-41055-8

15. Lehrveranstaltungen und -formen:
• 324001 Vorlesung Strategien der Produktion
• 324002 Vorlesung Technologien in den Prozessketten des Automobilbaus
• 324003 Übung Technologien in den Prozessketten des Automobilbaus

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 Stunden
Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
32401 Strategien in Entwicklung und Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Technologien in den Prozessketten des Automobilbaus,0.5, schriftlich, 60 min

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072420001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Sandmaier</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hermann Sandmaier</td>
</tr>
</tbody>
</table>
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kern-/Ergänzungsfächer mit 6 LP |

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Im Modul Technologien der Nano- und Mikrosystemtechnik I
 • haben die Studierenden die wichtigsten Technologien und Verfahren
 zur Herstellung von Bauelementen der Mikroelektronik als auch der
 Nano- und Mikrosystemtechnik kennen gelernt,
 • können die Studierenden einzelne technologische Prozesse bewerten
 und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:
Die Studierenden

- können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
- können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
- haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
- sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
- sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

13. Inhalt:

14. Literatur:
- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen:
135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Bauernhansl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Bauernhansl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Mikrotechnik, Geräte-technik und Technische Optik</td>
</tr>
<tr>
<td>→ Mikrosystemtechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fabrikbetrieb</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fabrikbetrieb</td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungs module</td>
</tr>
<tr>
<td>→ Wahlmöglichkeit Gruppe 3: Produktion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkte der methodisch orientierten Vorlesung sind Grundlagen, Methoden und Werkzeuge des Wissensmanagements, Auftragsmanagements, Customer Relationship Managements, Supply Chain Managements, Produktdatenmanagements, Engineering Data</td>
</tr>
</tbody>
</table>
Managements, Facility Managements sowie der Digitalen und Virtuellen Fabrik.

14. Literatur:
- Skript zur Vorlesung,
- Wandlungsfähige Unternehmensstrukturen
- Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007

15. Lehrveranstaltungen und -formen:
- 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
- 135802 Übung Wissens- und Informationsmanagement in der Produktion I
- 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
- 135804 Übung Wissens- und Informationsmanagement in der Produktion II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 63 Stunden
- Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
- 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Power-Point Präsentationen, Simulationen, Animationen und Filme

20. Angeboten von:
- Institut für Industrielle Fertigung und Fabrikbetrieb
2211 Kernfächer mit 6 LP

Zugeordnete Module: 13580 Wissens- und Informationsmanagement in der Produktion
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

2. Modulkürzel: 072410003
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:

 → Ergänzungsmodule
 → Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kernfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen

12. Lernziele:

13. Inhalt:

 Schwerpunkte der methodisch orientierten Vorlesung sind Grundlagen, Methoden und Werkzeuge des Wissensmanagements, Auftragsmanagements, Customer Relationship Managements, Supply Chain Managements, Produktdatenmanagements, Engineering Data
Managements, Facility Managements sowie der Digitalen und Virtuellen Fabrik.

14. Literatur:
 - Skript zur Vorlesung,
 - Wandlungsfähige Unternehmensstrukturen
 - Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007

15. Lehrveranstaltungen und -formen:
 - 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
 - 135802 Übung Wissens- und Informationsmanagement in der Produktion I
 - 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
 - 135804 Übung Wissens- und Informationsmanagement in der Produktion II

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 63 Stunden
 - Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
 - 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 - Power-Point Präsentationen, Simulationen, Animationen und Filme

20. Angeboten von:
 - Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 32490 Praktikum Fabrikbetrieb

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072410014</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Bauernhansl</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Bauernhansl</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Spezialisierungsfächer A (ING) → Gruppe Werkstoff- und Produktionstechnik → Fabrikbetrieb</td>
</tr>
</tbody>
</table>

Beispiele:

Fabrikbetrieb Planspiel: Im Rahmen des Praktikums wird ein haptisches Planspiel durchgeführt, anhand dessen aktuelle Tendenzen des Produktionsmanagements (z.B. Lean Production) simuliert werden können. Während des Praktikums werden mehrere Simulations- und Optimierungs rundes gespielt, in denen die Teilnehmer die Prinzipien der Push-/Pull-Steuerung gemeinsam erarbeiten, umsetzen, spielen und reflektieren.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Praktikumsunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 324901 Spezialisierungsfachversuch 1</td>
</tr>
<tr>
<td></td>
<td>• 324902 Spezialisierungsfachversuch 2</td>
</tr>
<tr>
<td></td>
<td>• 324903 Allgemeines Praktikum Maschinenbau 1</td>
</tr>
<tr>
<td></td>
<td>• 324904 Allgemeines Praktikum Maschinenbau 2</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 30 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 60 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32491 Praktikum Fabrikbetrieb (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
222 Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik

Zugeordnete Module:
- 2221 Kernfächer mit 6 LP
- 2222 Kern-/Ergänzungsfächer mit 6 LP
- 2223 Ergänzungsfächer mit 3 LP
- 32550 Praktikum Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe u. Oberflächentechnik
2223 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>32110</td>
<td>Thermokineties Beschichtungsverfahren</td>
</tr>
<tr>
<td>32520</td>
<td>Werkstoffe und Fertigungstechnik technischer Kohlenstoffe</td>
</tr>
<tr>
<td>32530</td>
<td>Total Quality Management (TQM) und unternehmerisches Handeln</td>
</tr>
<tr>
<td>32540</td>
<td>Grundlagen der Zerspanungstechnologie</td>
</tr>
</tbody>
</table>
Modul: 32540 Grundlagen der Zerspanungstechnologie

2. Modulkürzel: 073310004
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel

9. Dozenten: Johannes Rothmund

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Werkstoff- und Produktionstechnik
 - Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Fertigungslehre

12. Lernziele:

 Die Studierenden kennen die begrifflichen Definitionen und Rechenformeln der Metallzerspanung, sie kennen die Vorgänge bei der Spanbildung und beim Werkzeugverschleiß, sie kennen die wichtigsten Werkzeuge und Schnittstellen, sie kennen die wichtigsten Schneidstoffe und Beschichtungen, sie kennen die Grundlagen der Kühlschmierstoffe, sie wissen, welche Einflüsse auf die Vorgänge bei der Zerspanung wirken, sie können einfache Zerspanungsprozesse auslegen und Kräfte und Leistungen berechnen.

13. Inhalt:

14. Literatur:

 Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

 32541 Grundlagen der Zerspanungstechnologie (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

 Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:
Modul: 32110 Thermokinetische Beschichtungsverfahren

2. Modulkürzel: 072200005
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0

5. Modulverantwortlicher: PD Dr. Andreas Killinger
7. Sprache: Deutsch

8. Empfohlene Voraussetzungen: keine
9. Dozenten: Andreas Killinger

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Ergänzungsfächer mit 3 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Laser in der Materialbearbeitung
 → Ergänzungsfächer mit 3 LP

11. Lernziele:

 Die Studenten können:
 • Funktionsprinzipien thermokinetischer Beschichtungsverfahren beschreiben und erklären.
 • Verfahrensspezifische Eigenschaften von Schichten auflisten und benennen.
 • Unterschiede der einzelnen Verfahrensvarianten untereinander wiedergeben und gegenüberstellen.
 • Eignung einer bestimmten Verfahrensvariante hinsichtlich vorgegebener Schichtieigenschaften beurteilen und begründen.
 • Herstellverfahren für Pulver und Drähte wiedergeben, vergleichen und Beispiele geben.
 • Einfluss der Pulvereigenschaften auf den Prozess vorhersagen und bewerten.
 • Einfluss der Pulvereigenschaften auf die Schichtieigenschaften verstehen und ableiten.
 • industrielle Anwendungsfelder im Maschinenbau benennen und wiedergeben.

12. Inhalt:

 Stichpunkte:
 • Flammspritzen, Elektrolichtbogendrahtspritzen, Überschallpulverflammspritzen, Suspensionsflammspritzen, Plasmaspritzen.
 • Herstellung und Eigenschaften von Spritzzusatzwerkstoffen.
 • Fertigungs- und Anlagentechnik.
 • Industrielle Anwendungen (Überblick).
• Grundlagen der Schichtcharakterisierung.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Skript, Literaturliste</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>321101 Vorlesung Thermokinetische Beschichtungsverfahren</td>
</tr>
</tbody>
</table>
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32111 Thermokinetische Beschichtungsverfahren (BSL), schriftlich,
eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 32530 Total Quality Management (TQM) und unternehmerisches Handeln

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072210008</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Rainer Gadow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik
→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
→ Ergänzungsfächer mit 3 LP |

11. Empfohlene Voraussetzungen:
- Die Studierenden sollten Grundkenntnisse in der Betriebswirtschaft haben.
- Kenntnisse in Statistik sind hilfreich, aber nicht erforderlich.

12. Lernziele:

13. Inhalt:
In diesem Seminar werden grundlegende Methoden und Werkzeuge des Total Quality Managements, die Systematik des kontinuierlichen Verbesserungsprozesses sowie prozessorientierte Führung in Industrieunternehmen und Institutionen behandelt und anhand von Fallstudien vertieft. Als grundlegende Methode zur Umsetzung und zum Verständnis von TQM-Systemen ist KAIZEN zu nennen, das daher den Schwerpunkt der Veranstaltung bildet. Weitere Themengebiete sind die statistische Prozesskontrolle, Kommunikations- und Visualisierungstechniken (Q7, M7), Qualitätstechniken (FMEA, QFD) sowie Qualitätsmanagementsysteme (ISO 9000ff.).

14. Literatur:
- Vorlesungsfolien
- Fallstudien (Case Studies) Lektüreempfehlungen:

15. Lehrveranstaltungen und -formen:
- 325301 Vorlesung + Übungen Total Quality Management (TQM) und unternehmerisches Handeln
- 325302 Exkursion Total Quality Management (TQM) und unternehmerisches Handeln

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

| 17. Prüfungsnummer/n und -name: | 32531 Total Quality Management (TQM) und unternehmerisches Handeln (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 32520 Werkstoffe und Fertigungstechnik technischer Kohlenstoffe

2. Modulkürzel: 072210006
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Frank Kern
9. Dozenten: Frank Kern

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studenten können:
 • Chemie des Kohlenstoffs beschreiben und erklären.
 • Pulverrohstoffe und Bindemittel auflisten und benennen.
 • Rohstoffquellen, Rohstoffgewinnung und Aufbereitung wiedergeben und veranschaulichen.
 • Elektrodenmaterialien und deren Fertigung auflisten, unterscheiden und beschreiben.
 • Strukturwerkstoffe für Ingenieurtechnik benennen und beurteilen.
 • Kohlenstoffwerkstoffe für den Leichtbau aufzeigen und Beispiele geben.
 • Eigenschaften, Herstellung und Anwendung von Carbon Nanotubes beschreiben und erklären.

13. Inhalt:

Stichpunkte:
• Chemie des Kohlenstoffs.
• Pulverrohstoffe und Bindemittel.
• Feinkorngraphite (FG) und Sinterkohlenstoffe.
• Endkonturnahe Fertigung von FG-Komponenten.
• Kohlenstofffasern.
• Beschichtung von Kohlenstofffasern.
• Feuerfestmaterialien aus Kohlenstoff.
• Kohlenstofffaserverstärkte Verbundwerkstoffe.
• Kohlenstoff-Kohlenstoff-Faserverbunde.
• Carbon Nanotubes.
14. Literatur: Skript

15. Lehrveranstaltungen und -formen: 325201 Vorlesung Werkstoffe und Fertigungstechnik technischer Kohlenstoffe

17. Prüfungsnummer/n und -name: 32521 Werkstoffe und Fertigungstechnik technischer Kohlenstoffe (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, bei weniger als 5 Kandidaten: mündlich, 20 min

18. Grundlage für ... :

19. Medienform: Vorlesung, PPT presentation, Anschauungsmaterial

20. Angeboten von:
2222 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe
- 13570 Werkzeugmaschinen und Produktionssysteme
- 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik
- 14140 Materialbearbeitung mit Lasern
- 14150 Leichtbau
- 14160 Methodische Produktentwicklung
- 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 14280 Werkstofftechnik und -simulation
- 30390 Festigkeitslehre I
- 32210 Grundlagen der Keramik und Verbundwerkstoffe
- 32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik
- 32510 Oberflächen- und Beschichtungstechnik
Modul: 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe

2. Modulkürzel: 072210001
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow

9. Dozenten: Rainer Gadow

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: abgeschlossene Prüfung in Werkstoffkunde I+II und Konstruktionslehre I +II mit Einführung in die Festigkeitslehre

12. Lernziele:

 Studierende können nach Besuch dieses Moduls:
 • Die Systematik der Faser- und Schichtverbundwerkstoffe und charakteristische Eigenschaften der Werkstoffgruppen unterscheiden, beschreiben und beurteilen.
 • Belastungsfälle und Versagensmechanismen (mech., therm., chem.) verstehen und analysieren.
 • Verstärkungsmechanismen benennen, erklären und berechnen.
 • Hochfeste Fasern und deren textiltechnische Verarbeitung beurteilen.
 • Technologien zur Verstärkung von Werkstoffen benennen, vergleichen und auswählen.
 • Verfahren und Prozesse zur Herstellung von Verbundwerkstoffen und Schichtverbunden benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
 • Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten.
 • In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme bzw. Verbundbauweisen identifizieren, planen und auswählen.
13. Inhalt:

Stichpunkte:

- Grundlagen Festkörper
- Metalle, Polymere und Keramik; Verbundwerkstoffe in Natur und Technik; Trennung von Funktions- und Struktureigenschaften.
- Auswahl von Verstärkungsfasern und Faserarchitekturen; Metallische und keramische Matrixwerkstoffe.
- Klassische und polymerabgeleitete Herstellungsverfahren.
- Mechanische, textiltechnische und thermische Verfahrenstechnik.
- Grenzflächensysteme und Haftung.
- Füge- und Verbindungstechnik.
- Grundlagen der Verfahren zur Oberflächen-veredelung, funktionelle Oberflächeneigenschaften.
- Verbundwerkstoffe gegen monolithische Werkstoffe abgegrenzt.
- Anhand von Beispielen aus der industriellen Praxis werden die Einsatzgebiete und -grenzen von Verbundwerkstoffen beleuchtet.
- Den Schwerpunkt bilden die Herstellungsverfahren von Faser- und Schichtverbundwerkstoffen.
- Die theoretischen Inhalte werden durch Praktika vertieft und verdeutlicht.

14. Literatur:

- Skript
- Filme
- Normblätter

Literaturempfehlungen:

15. Lehrveranstaltungen und -formen:

• 130401 Vorlesung Verbundwerkstoffe I: Anorganische Faserverbundwerkstoffe
• 130402 Vorlesung Verbundwerkstoffe II: Oberflächentechnik und Schichtverbundwerkstoffe
• 130403 Exkursion Fertigungstechnik Keramik und Verbundwerkstoffe
• 130404 Praktikum Verbundwerkstoffe mit keramischer und metallischer Matrix
• 130405 Praktikum Schichtverbunde durch thermokinetic Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudienzeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13041 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Fertigungstechnologie keramischer Bauteile
Modul: 30390 Festigkeitslehre I

2. Modulkürzel: 041810010

5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten: Thomas Fesich

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Modulverantwortlicher</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.-Ing. Michael Seidenfuß</td>
<td>Thomas Fesich</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

- Einführung in die Festigkeitslehre
- Werkstoffkunde I + II

12. Lernziele:

13. Inhalt:

- Spannungs- und Formänderungszustand
- Festigkeitshypothesen bei statischer und schwingender Beanspruchung
- Werkstoffverhalten bei unterschiedlichen Beanspruchungsarten
- Sicherheitsnachweise
- Festigkeitsberechnung bei statischer Beanspruchung
- Festigkeitsberechnung bei schwingender Beanspruchung
- Berechnung von Druckbehältern
- Festigkeitsberechnung bei thermischer Beanspruchung
- Bruchmechanik
- Festigkeitsberechnung bei von Faserverbundwerkstoffen

14. Literatur:

- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
| 15. Lehrveranstaltungen und -formen: | • 303901 Vorlesung Festigkeitslehre I
• 303902 Übung Festigkeitslehre I |
|--------------------------------------|--|
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 30391 Festigkeitslehre I (PL), schriftliche Prüfung, 120 Min.,
Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien |
| 20. Angeboten von: | |
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe

9. Dozenten: Wolfgang Schinköthe, Eberhard Burkard

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzzfeld II
 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlpflichtmöglichkeit
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzzfeld II
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlpflichtmöglichkeit
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kernfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktions-technik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

14. Literatur:
 • Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
 • 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
 • 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Messtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für ... :

19. Medienform:
 • Tafel
 • OHP
 • Beamer

20. Angeboten von:
 Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 32210 Grundlagen der Keramik und Verbundwerkstoffe

1. Modulkürzel: 072200002
2. Modulüberblick: 072200002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulüberblick: 072200002
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
9. Dozenten: Rainer Gadow
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kernfärcher mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit
11. Empfohlene Voraussetzungen: Die Studenten können:
 • Merkmale und Eigenheiten keramischer Werkstoffe unterscheiden, beschreiben und beurteilen.
 • Belastungsfälle und Versagensmechanismen verstehen und analysieren.
 • Werkstoffspezifische Unterschiede zwischen metallischen und keramischen Werkstoffen wiedergeben und erklären.
 • Technologien zur Verstärkung von Werkstoffen sowie die wirkenden Mechanismen benennen, vergleichen und erklären.
7. Turnus: jedes 2. Semester, WiSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kernfärcher mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit
11. Empfohlene Voraussetzungen: Die Studenten können:
 • Merkmale und Eigenheiten keramischer Werkstoffe unterscheiden, beschreiben und beurteilen.
 • Belastungsfälle und Versagensmechanismen verstehen und analysieren.
 • Werkstoffspezifische Unterschiede zwischen metallischen und keramischen Werkstoffen wiedergeben und erklären.
 • Technologien zur Verstärkung von Werkstoffen sowie die wirkenden Mechanismen benennen, vergleichen und erklären.
 • Verfahren und Prozesse zur Herstellung von massivkeramischen Werkstoffen benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
 • Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten und anwendungsbezogen auswählen.
 • in Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme identifizieren, planen und auswählen.
 • Werkstoff- und Bauteicharakterisierung erklären, bewerten, planen und anwenden.

Stichpunkte:
• Grundlagen von Festkörpern im Allgemeinen und der Keramik.
• Einteilung der Keramik nach anwendungstechnischen und stofflichen Kriterien, Trennung in Oxid-/ Nichtoxidkeramiken und Struktur-/ Funktionskeramiken.
• Abgrenzung Keramik zu Metallen.
• Grundregeln der Strukturmechanik, Bauteilgestaltung und Bauteilprüfung.
• Klassische Herstellungsverfahren vom Rohstoff bis zum keramischen Endprodukt.
• Formgebungsverfahren, wie das Axialpressen, Heißpressen, Kalt-, Heißisostatpressen, Schlicker-, Spritz-, Foliengießen und Extrudieren keramischer Massen.
• Füge- und Verbindungstechnik.
• Sintertheorie und Ofentechnik.
• Industrielle Anwendungen (Überblick und Fallbeispiele).

14. Literatur: Skript

15. Lehrveranstaltungen und -formen:
• 322101 Vorlesung mit Übung Fertigungstechnik keramischer Bauteile I
• 322102 Vorlesung mit Übung Fertigungstechnik keramischer Bauteile II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32211 Grundlagen der Keramik und Verbundwerkstoffe (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei weniger als 5 Kandidaten: mündlich, 40 min

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14150 Leichtbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Michael Seidenfuß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
<td>→ Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kompetenzfeld II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
<td>→ Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
<td>→ Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kompetenzfeld II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
<td>→ Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
<td>→ Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Festigkeitsberechnung und Werkstoffmechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Festigkeitsberechnung und Werkstoffmechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | • Einführung in die Festigkeitslehre |
| | • Werkstoffkunde I und II |

13. Inhalt:	• Werkstoffe im Leichtbau
	• Festigkeitsberechnung
	• Konstruktionsprinzipien
	• Stabilitätsprobleme: Knicken und Beulen
	• Verbindungstechnik
	• Zuverlässigkeit
	• Recycling
14. Literatur:
- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft

15. Lehrveranstaltungen und -formen:
- 141501 Vorlesung Leichtbau
- 141502 Leichtbau Übung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
PPT auf Tablet PC, Animationen u. Simulationen

20. Angeboten von:
Modul: 14140 Materialbearbeitung mit Lasern

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073010001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Laser in der Materialbearbeitung
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Laser in der Materialbearbeitung
 - Kernfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:

Schulkenntnisse in Mathematik und Physik.

12. Lernziele:

13. Inhalt:

- Laser und die Auswirkung ihrer Strahleigenschaften (Wellenlänge, Intensität, Polarisation, etc.) auf die Fertigung,
- Komponenten und Systeme zur Strahlf ormung und Stahlführung, Werkstückhandhabung,
- Wechselwirkung Laserstrahl-Werkstück
• physikalische und technologische Grundlagen zum Schneiden, Bohren und Abtragen, Schweißen und Oberflächenbehandeln, Prozeßkontrolle, Sicherheitsaspekte, Wirtschaftlichkeitsbetrachtungen

14. Literatur:

ISBN 978-3-8351-0005-3

15. Lehrveranstaltungen und -formen:

141401 Vorlesung mit integrierter Übung Materialbearbeitung mit Lasern

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:

14141 Materialbearbeitung mit Lasern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Strahlwerkzeuge
Modul: 14160 Methodische Produktentwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710010</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Hansgeorg Binz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hansgeorg Binz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module
- Konstruktionslehre I - IV oder
- Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
- Konstruktion in der Medizingerätetechnik I + II

12. Lernziele: Im Modul Methodische Produktentwicklung
• haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
• können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden

• können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumsatz,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur: • Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen: • 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudiumspar / Nacharbeitszeit: 130 h

Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min |

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Tafel

20. Angeboten von: Institut für Konstruktionstechnik und Technisches Design
Modul: 32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072200004</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.Dr.h.c. Rainer Gadow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Killinger
• Frank Kern |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
<td>Gruppe Werkstoff- und Produktions-technik</td>
</tr>
<tr>
<td>Gruppe Werkstoff- und Produktions-technik</td>
<td>Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
</tr>
<tr>
<td>Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kernfärcher mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studenten können:

• Funktionsprinzipien thermokinetischer Beschichtungsverfahren beschreiben und erklären.
• verfahrensspezifische Eigenschaften von Schichten auflisten und benennen.
• Unterschiede der einzelnen Verfahrensvarianten untereinander wiedergeben und gegenüberstellen.
• Eignung einer bestimmten Verfahrensvariante hinsichtlich vorgegebener Schichteigenschaften beurteilen und begründen.
• Herstellverfahren für Pulver und Drähte wiedergeben, vergleichen und Beispiele geben.
• Einfluss der Pulvereigenschaften auf den Prozess vorhersagen und bewerten.
• Einfluss der Pulvereigenschaften auf die Schichteigenschaften verstehen und ableiten.
• industrielle Anwendungsfelder im Maschinenbau benennen und wiedergeben.
• Chemie des Kohlenstoffs beschreiben und erklären.
• Pulverrohstoffe und Bindemittel auflisten und benennen.
• Rohstoffquellen, Rohstoffgewinnung und Aufbereitung wiedergeben und veranschaulichen.
• Elektrodenmaterialien und deren Fertigung auflisten, unterscheiden und beschreiben.
• Strukturwerkstoffe für Ingenieuranwendungen benennen und beurteilen.
• Kohlenstoffwerkstoffe für den Leichtbau aufzeigen und Beispiele geben.
• Eigenschaften, Herstellung und Anwendung von Carbon Nanotubes beschreiben und erklären.

13. Inhalt:

Dieser Modul hat die Grundlagen und Verfahrensvarianten der thermokinetischen Beschichtungsverfahren, sowie die verschiedenen Fertigungstechniken technischer Kohlenstoffe und deren Anwendung zum Inhalt. Dabei wird auf Fertigungs- und Anlagentechnik,

Stichpunkte:
• Flammspritzen, Elektrolichtbogendrahtspritzen, Überschallpulverflammspritzen, Suspensionsflammspritzen, Plasmaspritzen.
• Herstellung und Eigenschaften von Spritzzusatzwerkstoffen.
• Fertigungs- und Anlagentechnik.
• Industrielle Anwendungen (Überblick).
• Grundlagen der Schichtcharakterisierung.
• Chemie des Kohlenstoffs.
• Pulverrohstoffe und Bindemittel.
• Feinkorngraphite (FG) und Sinterkohlenstoffe.
• Endkonturnahe Fertigung von FG-Komponenten.
• Kohlenstofffasern.
• Beschichtung von Kohlenstofffasern.
• Feuerfestmaterialien aus Kohlenstoff.
• Kohlenstofffaserverstärkte Verbundwerkstoffe.
• Kohlenstoff-Kohlenstoff-Faserverbunde.
• Carbon Nanotubes.

14. Literatur: Skript, Literaturliste

15. Lehrveranstaltungen und -formen:
• 325001 Vorlesung Thermokinetische Beschichtungsverfahren
• 325002 Vorlesung Werkstoffe und Fertigungstechnik technischer Kohlenstoffe

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32501 Neue Werkstoffe und Verfahren in der Fertigungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei weniger als 5 Kandidaten: mündlich, 40 min

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 32510 Oberflächen- und Beschichtungstechnik

2. Modulkürzel: 072200003
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
9. Dozenten: • Rainer Gadow
 • Andreas Killinger
 • Wolfgang Klein
 • Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studenten können:
 • Grundlagen und Verfahren der Oberflächen- und Beschichtungstechnik benennen, unterscheiden, einordnen und beurteilen.
 • Die physikalischen u. chemischen Grundlagen für spez. Oberflächeneigenschaften benennen und darstellen.
 • Oberflächeneigenschaften erklären, einstufen und vorhersagen.
 • Die Eigenschaften verschiedener Materialien und Schichtsysteme identifizieren, vergleichen, voraussagen und analysieren.
 • Verfahren der Oberflächentechnik vergleichen und hinterfragen.
 • In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteeme identifizieren.
 • Unter Berücksichtigung ökonomischer und ökologischer Gesichtspunkte Verfahren auswählen, um gezielt funktionelle Oberflächeneigenschaften zu erzeugen.

13. Inhalt:

 Stichpunkte:
 • Einführung Oberflächentechnik
 • Grundlagen Lackauftragsverfahren
 • Funktionelle Oberflächeneigenschaften
 • Vorbehandlungsverfahren und -anlagen
 • Galvanische Abscheideverfahren
 • Industrielle Nass- und Pulver-Lackierverfahren und -anlagen
 • Grundlagen der numerischen Simulationsverfahren
 • Thermisches Spritzen
• Kombinationsschichten
• Vakuumverfahren; Dünnichttechnologien PVD, CVD, DLC
• Konversions- und Diffusionsschichten
• Elektropolieren
• Schweiß- und Schmelztauchverfahren
• Oberflächenanalytik

14. Literatur:
 Skript
 Literaturempfehlungen

15. Lehrveranstaltungen und -formen:
 • 325101 Vorlesung Oberflächen- und Beschichtungstechnik I
 • 325102 Vorlesung Oberflächen- und Beschichtungstechnik II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 32511 Oberflächen- und Beschichtungstechnik (PL), schriftliche
 Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910003</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Alexander Verl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alexander Verl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 6. Semester
 - Ergänzungsmodule
 - Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2008, 6. Semester
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 6. Semester
 - Ergänzungsmodule
 - Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2011, 6. Semester
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 6. Semester
 - Vorgezogene Master-Module

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Steuerungstechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Steuerungstechnik
 - Kernfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 - Elektronikfertigung
 - Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Werkstoff- und Produktionstechnik
 - Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs- und Steuerungstechnik)

12. Lernziele:
Industrieroboter können die Studierenden die Komponenten innerhalb der Steuerung, wie z.B. Lagesollwertbildung oder Adaptive Control-Verfahren interpretieren. Sie können die Auslegung der Antriebstechnik und die zugehörigen Problemstellungen der Regelungs- und Messtechnik verstehen, bewerten und Lösungen erarbeiten.

Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

13. Inhalt:

- Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
- Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
- Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
- Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung.

14. Literatur:

Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:

- 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142303 Praktikum 1 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142304 Praktikum 2 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsentzeit:</th>
<th>50h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nacharbeitszeit:</td>
<td>130h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Beamer, Overhead, Tafel

20. Angeboten von:

Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 14280 Werkstofftechnik und -simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810003</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Siegfried Schmauder
9. Dozenten: Siegfried Schmauder

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2008, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Ergänzungsmodul</td>
</tr>
<tr>
<td>➔ Kernmodule</td>
</tr>
<tr>
<td>➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Ergänzungsmodul</td>
</tr>
<tr>
<td>➔ Kernmodule</td>
</tr>
<tr>
<td>➔ Pflichtmodule mit Wahlmöglichkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>➔ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
</tr>
<tr>
<td>➔ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Werkstoffkunde I und II; Einführung in die Festigkeitslehre; Grundlagen der Numerik

13. Inhalt:

Grundlagen
- Versetzungstheorie
- Plastizität
- Festigkeitssteigerung

Mechanisches Verhalten
- statische Beanspruchung
- schwingende Beanspruchung
- Zeitstandverhalten

Stoffgesetze
- Mathematische Grundlagen
- Elastisch-plastisches Werkstoffverhalten
- Viskoelastisches Werkstoffverhalten

Neue Werkstoffe
• Keramiken
• Polymere
• Verbundwerkstoffe

Laborversuch : Mikroskopisches und makroskopisches Bruchaussehen

14. Literatur:
- Manuskript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 142801 Vorlesung Werkstofftechnik und -simulation
• 142802 Werkstofftechnik und -simulation Übung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14281 Werkstofftechnik und -simulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT auf Tablet-PC, Folien, Animationen

20. Angeboten von:
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel
9. Dozenten: Uwe Heisel
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 ➞ Kernmodule
 ➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 ➞ Kernmodule
 ➞ Pflichtmodule mit Wahlmöglichkeit
 ➞ Ergänzungsparameter
 ➞ Vorgezogene Master-Module
 ➞ Gruppe Werkstoff- und Produktionstechnik
 ➞ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 ➞ Gruppe Werkstoff- und Produktionstechnik
 ➞ Werkzeugmaschinen
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 ➞ Gruppe Werkstoff- und Produktionstechnik
 ➞ Werkzeugmaschinen
 ➞ Kernfächer mit 6 LP
 ➞ Vertiefungsmodule
 ➞ Wahlmöglichkeit Gruppe 3: Produktion

12. Lernziele:

 Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden

13. Inhalt:

 Überblick, wirtschaftliche Bedeutung von Werkzeugmaschinen - Anforderungen, Trends und systematischen Einteilung - Beurteilung der Werkzeugmaschinen - Einführung in die Zerspanungslehre, Übungen - Berechnen und Auslegen von Werkzeugmaschinen (mit FEM) - Baugruppen der Werkzeugmaschinen - Drehmaschinen und Drehzellen - Bohr- und Fräsmaschinen, Bearbeitungszentren - Maschinen für die komplettbearbeitung - Ausgewählte Konstruktionen

14. Literatur:

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von: Institut für Werkzeugmaschinen
2221 Kernfächer mit 6 LP

Zugeordnete Module:

13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe
32210 Grundlagen der Keramik und Verbundwerkstoffe
32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik
Modul: 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe

2. Modulkürzel: 072210001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 2 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
9. Dozenten: Rainer Gadow

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 → Ergänzungsmodule
 → Kompetenzfeld II

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 → Ergänzungsmodule
 → Kompetenzfeld II

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 → Vorgezogene Master-Module

- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

- abgeschlossene Prüfung in Werkstoffkunde I+II und Konstruktionslehre I +II mit Einführung in die Festigkeitslehre

12. Lernziele:

- Die Systematik der Faser- und Schichtverbundwerkstoffe und charakteristische Eigenschaften der Werkstoffgruppen unterscheiden, beschreiben und beurteilen.
- Belastungsfälle und Versagensmechanismen (mech., therm., chem.) verstehen und analysieren.
- Verstärkungsmechanismen benennen, erklären und berechnen.
- Hochfeste Fasern und deren textiltechnische Verarbeitung beurteilen.
- Technologien zur Verstärkung von Werkstoffen benennen, vergleichen und auswählen.
- Verfahren und Prozesse zur Herstellung von Verbundwerkstoffen und Schichtverbunden benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
- Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten.
- In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme bzw. Verbundbauweisen identifizieren, planen und auswählen.
13. Inhalt:

Stichpunkte:

- Grundlagen Festkörper
- Metalle, Polymere und Keramik; Verbundwerkstoffe in Natur und Technik; Trennung von Funktions- und Struktureigenschaften.
- Auswahl von Verstärkungsfasern und Faserarchitekturen; Metallische und keramische Matrixwerkstoffe.
- Klassische und polymerabgeleitete Herstellungsverfahren.
- Mechanische, textiltechnische und thermische Verfahrenstechnik.
- Grenzflächensysteme und Haftung.
- Füge- und Verbindungstechnik.
- Grundlagen der Verfahren zur Oberflächen-veredelung, funktionelle Oberflächeneigenschaften.
- Vorbehandlungsverfahren.
- Thermisches Spritzen.
- Vakuumverfahren: Dünnschichttechnologien PVD, CVD, DLC
- Konversions und Diffusionsschichten.
- Schweiß- und Schmelztauchverfahren
- Industrielle Anwendungen (Überblick).
- Aktuelle Forschungsgebiete.
- Strukturmechanik, Bauteildimensionierung und Bauteilprüfung.
- Grundlagen der Schichtcharakterisierung.

14. Literatur:

- Skript
- Filme
- Normblätter

Literaturempfehlungen:

15. Lehrveranstaltungen und -formen:
 • 130401 Vorlesung Verbundwerkstoffe I: Anorganische Faserverbundwerkstoffe
 • 130402 Vorlesung Verbundwerkstoffe II: Oberflächentechnik und Schichtverbundwerkstoffe
 • 130403 Exkursion Fertigungstechnik Keramik und Verbundwerkstoffe
 • 130404 Praktikum Verbundwerkstoffe mit keramischer und metallischer Matrix
 • 130405 Praktikum Schichtverbunde durch thermokinetic Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13041 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Institut für Fertigungstechnologie keramischer Bauteile
Modul: 32210 Grundlagen der Keramik und Verbundwerkstoffe

2. Modulkürzel: 072200002
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow

9. Dozenten: Rainer Gadow

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:

12. Lernziele:
- Die Studenten können:
 - Merkmale und Eigenheiten keramischer Werkstoffe unterscheiden, beschreiben und beurteilen.
 - Belastungsfälle und Versagensmechanismen verstehen und analysieren.
 - werkstoffspezifische Unterschiede zwischen metallischen und keramischen Werkstoffen wiedergeben und erklären.
 - Technologien zur Verstärkung von Werkstoffen sowie die wirkenden Mechanismen benennen, vergleichen und erklären.
 - Verfahren und Prozesse zur Herstellung von massivkeramischen Werkstoffen benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
 - Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten und anwendungsbezogen auswählen.
 - in Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteine identifizieren, planen und auswählen.
 - Werkstoff- und Bauteilcharakterisierung erklären, bewerten, planen und anwenden.

13. Inhalt:

Stichpunkte:
• Grundlagen von Festkörpern im Allgemeinen und der Keramik.
• Einteilung der Keramik nach anwendungstechnischen und stofflichen Kriterien, Trennung in Oxid- / Nichtoxidkeramiken und Struktur- / Funktionskeramiken.
• Abgrenzung Keramik zu Metallen.
• Grundregeln der Strukturmechanik, Bauteilgestaltung und Bauteilprüfung.
• Klassische Herstellungsverfahren vom Rohstoff bis zum keramischen Endprodukt.
• Formgebungsverfahren, wie das Axialpressen, Heißpressen, Kalt-, Heißisostatpressen, Schlicker-, Spritz-, Foliengießen und Extrudieren keramischer Massen.
• Füge- und Verbindungstechnik.
• Sintertheorie und Ofentechnik.
• Industrielle Anwendungen (Überblick und Fallbeispiele).

14. Literatur:
Skript

15. Lehrveranstaltungen und -formen:
• 322101 Vorlesung mit Übung Fertigungstechnik keramischer Bauteile I
• 322102 Vorlesung mit Übung Fertigungstechnik keramischer Bauteile II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32211 Grundlagen der Keramik und Verbundwerkstoffe (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei weniger als 5 Kandidaten: mündlich, 40 min

18. Grundlage für … :

19. Medienform:

20. Angeboten von:
Modul: 32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik

2. Modulkürzel: 072200004
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.Dr.h.c. Rainer Gadow
9. Dozenten: • Andreas Killinger
• Frank Kern

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studenten können:
• Funktionsprinzipien thermokinetischer Beschichtungsverfahren beschreiben und erklären.
• verfahrensspezifische Eigenschaften von Schichten auflisten und benennen.
• Unterschiede der einzelnen Verfahrensvarianten untereinander wiedergeben und gegenüberstellen.
• Eignung einer bestimmten Verfahrensvariante hinsichtlich vorgegebener Schichteigenschaften beurteilen und begründen.
• Herstellungsv erfahren für Pulver und Drähte wiedergeben, vergleichen und Beispiele geben.
• Einfluss der Pulvereigenschaften auf den Prozess vorhersagen und bewerten.
• Einfluss der Pulvereigenschaften auf die Schichteigenschaften verstehen und ableiten.
• industrielle Anwendungsfelder im Maschinenbau benennen und wiedergeben.
• Chemie des Kohlenstoffs beschreiben und erklären.
• Pulverrohstoffe und Bindemittel auflisten und benennen.
• Rohstoffquellen, Rohstoffgewinnung und Aufbereitung wiedergeben und veranschaulichen.
• Elektrodenmaterialien und deren Fertigung auflisten, unterscheiden und beschreiben.
• Strukturwerkstoffe für Ingenieuranwendungen benennen und beurteilen.
• Kohlenstoffwerkstoffe für den Leichtbau aufzeigen und Beispiele geben.
• Eigenschaften, Herstellung und Anwendung von Carbon Nanotubes beschreiben und erklären.

13. Inhalt: Dieser Modul hat die Grundlagen und Verfahrensvarianten der thermokinetischen Beschichtungsverfahren, sowie die verschiedenen Fertigungstechniken technischer Kohlenstoffe und deren Anwendung zum Inhalt. Dabei wird auf Fertigungs- und Anlagentechnik,

Stichpunkte:
- Flammspritzen, Elektrolichtbogendrahtspritzen, Überschallpulverflammspritzen, Suspensionsflammspritzen, Plasmaspritzen.
- Herstellung und Eigenschaften von Spritzzusatzwerkstoffen.
- Fertigungs- und Anlagentechnik.
- Industrielle Anwendungen (Überblick).
- Grundlagen der Schichtcharakterisierung.
- Chemie des Kohlenstoffs.
- Pulverrohstoffe und Bindemittel.
- Feinkorngraphite (FG) und Sinterkohlenstoffe.
- Endkonturnahe Fertigung von FG-Komponenten.
- Kohlenstofffasern.
- Beschichtung von Kohlenstofffasern.
- Feuerfestmaterialien aus Kohlenstoff.
- Kohlenstofffaserverstärkte Verbundwerkstoffe.
- Kohlenstoff-Kohlenstoff-Faserverbunde.
- Carbon Nanotubes.

14. Literatur: Skript, Literaturliste

15. Lehrveranstaltungen und -formen:
- 325001 Vorlesung Thermokinetische Beschichtungsverfahren
- 325002 Vorlesung Werkstoffe und Fertigungstechnik technischer Kohlenstoffe

16. Abschätzung Arbeitsaufwand:
- Präsenzzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 32501 Neue Werkstoffe und Verfahren in der Fertigungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei weniger als 5 Kandidaten: mündlich, 40 min

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 32550 Praktikum Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe u. Oberflächentechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072210007</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow

9. Dozenten:
- Rainer Gadow
- Andreas Killinger
- Frank Kern

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer A (ING) ➔ Gruppe Werkstoff- und Produktionstechnik ➔ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik

11. Empfohlene Voraussetzungen:

Beispiele:

14. Literatur: Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:
- 325501 Spezialisierungsfachversuch 1
- 325502 Spezialisierungsfachversuch 2
- 325503 Spezialisierungsfachversuch 3
- 325504 Spezialisierungsfachversuch 4
- 325505 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 325506 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 325507 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 Stunden
Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden |
|---------------------------------|--|
| 17. Prüfungsnummer/n und -name: | 32551 Praktikum Fertigungstechnik keramischer Bauteile,
Verbundwerkstoffe u. Oberflächentechnik (USL), schriftlich,
eventuell mündlich, Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
223 Festigkeitsberechnung und Werkstoffmechanik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>2231</th>
<th>Kernfächer mit 6 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2232</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2233</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>30910</td>
<td>Praktikum Werkstoff- und Bauteilprüfung</td>
</tr>
</tbody>
</table>
2233 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 30900 Festigkeitslehre II
- 32070 Werkstoffmodellierung
- 32080 Schadenskunde
- 32090 Fügetechnik
- 32100 Projekt- und Qualitätsmanagement
- 32570 Neue Werkstoffe und moderne Produktionsverfahren im Automobilbau
Modul: 30900 Festigkeitslehre II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten: • Michael Seidenfuß • Ludwig Stumpfrock

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Festigkeitsberechnung und Werkstoffmechanik
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Einführung in die Festigkeitslehre, Werkstoffkunde I + II

12. Lernziele:

13. Inhalt:
1. Bruchmechanische Bauteilanalyse
 • Linearelastische Bruchmechanik
 • Elastisch-plastische Bruchmechanik
 • Zyklisches Risswachstum
 • Kennwertermittlung
 • Normung und Regelwerke
 • Anwendung auf Bauteile
2. Bauteilanalyse bei zyklischer Belastung
3. Bauteilanalyse mit Finite Elemente Simulationen

14. Literatur:
- Manuskript zur Vorlesung

15. Lehrveranstaltungen und -formen: 309001 Vorlesung Festigkeitslehre II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 69 h
Summe: 90 h

17. Prüfungsnummer/n und -name: 30901 Festigkeitslehre II (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
Modul: 32090 Fügetechnik

4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Werkstoffkunde I + II

12. Lernziele:
Die Teilnehmer des Kurses kennen die wichtigsten Fügeverfahren. Sie können die Verbindungstechniken anhand ihrer spezifischen Eigenschaften bewerten und gegeneinander abgrenzen. Der fügespezifische Fertigungsaufwand und die sich daraus ergebenden Einsatzmöglichkeiten und -gebiete sind ihnen bekannt. Die Studierenden sind in der Lage, für gegebene Problemstellungen geeignete Fügeverfahren zu identifizieren und zu bewerten.

13. Inhalt:
1. Mechanisches Fügen
 • Schrauben
 • Nieten
 • Klinschen
 • Sonderverbindungsverfahren
2. Schweißen
 • Schmelzschweißverfahren
 • Pressschweißverfahren
 • Diffusionsschweißverfahren
3. Löten
 • Hartlöten
 • Kaltlöten
4. Kleben
5. Prüfverfahren in der Verbindungstechnik

14. Literatur:

15. Lehrveranstaltungen und -formen: 320901 Vorlesung Fügetechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium: 69 h
 Summe: 90 h

17. Prüfungsnummer/n und -name: 32091 Fügetechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
Modul: 32570 Neue Werkstoffe und moderne Produktionsverfahren im Automobilbau

2. Modulkürzel: 041810020
5. Moduldaurer: 2 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten: Berthold Hopf

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Einführung in die Festigkeitslehre, Festigkeitslehre I

12. Lernziele:

13. Inhalt:
 - Werkstoffe/Umformtechnik
 - Fügeverfahren
 - Automatisierte Fertigung im Rohbau
 - Automatisierte Fertigung in der Endmontage
 - Herausforderungen im Karosseriebau aufgrund der geforderten CO₂-Emissionen

14. Literatur:
 - Manuskript zur Vorlesung

15. Lehrveranstaltungen und -formen: 325701 Vorlesung Neue Werkstoffe und moderne Produktionsverfahren im Automobilbau

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium: 69 h
 Summe: 90 h

17. Prüfungsnummer/n und -name: 32571 Neue Werkstoffe und moderne Produktionsverfahren im Automobilbau (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
Modul: 32100 Projekt- und Qualitätsmanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810017</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Dr.-Ing. Michael Seidenfuß |
| 9. Dozenten: | Karl Maile |

| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| B.Sc. Technologiemanagement, PO 2011 |
| → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Werkstoff- und Produktionstechnik |
| → Festigkeitsberechnung und Werkstoffmechanik |
| → Ergänzungsfächer mit 3 LP |

| 12. Lernziele: |

| 13. Inhalt: |
| 1. Theorie und Ziele des Qualitätsmanagement |
| 2. Rechtliche Anforderungen an das Qualitätsmanagement |
| 3. Qualitätsmanagement |
| • Normung und Regelwerke |
| • Grundlagen |
| • Techniken |
| • Systeme |
| • Werkzeuge |
| 4. Projektmanagement |
| • Grundlagen |
| • Durchführung |
| 5. Führen und Managen |

| 14. Literatur: |
| - Manuskript zur Vorlesung und ergänzende Folien im Internet |
| - Starke, L.: Der Qualitätsmanagement-Beauftragte, Hanser Verlag |
| - Pfeifer, T.; Praxishandbuch Qualitätsmanagement - Strategien, Methoden, Techniken |
| Hanseverlag, DIN EN ISO 9000:2000 |

| 15. Lehrveranstaltungen und -formen: |
| 321001 Vorlesung Projekt- und Qualitätsmanagement |

| 16. Abschätzung Arbeitsaufwand: |
| Präsenzzeit: 21 h |
| Selbststudium: 69 h |
| Summe: 90 h |

| 17. Prüfungsnummer/n und -name: |
| 32101 Projekt- und Qualitätsmanagement (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |

| 18. Grundlage für ...: |
19. Medienform: Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
Modulhandbuch: Master of Science Technologiemanagement

Modul: 32080 Schadenskunde

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Michael Seidenfuß</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Festigkeitsberechnung und Werkstoffmechanik</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die Festigkeitslehre, Werkstoffkunde I + II</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Definition und Klassifizierungen von Schäden Schäden durch mechanische Beanspruchung Schäden durch thermische Beanspruchung Schäden durch korrosive Beanspruchung Schäden durch tribologische Beanspruchung</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>- Manuskript zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>- Ergänzende Folien (online verfügbar)</td>
</tr>
<tr>
<td></td>
<td>- Broichhausen, J.: Schadenskunde, Carl Hanser Verlag</td>
</tr>
<tr>
<td></td>
<td>- Lange, G.: Systematische Beurteilung technischer Schadensfälle, Wiley-VHC Verlag</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>320801 Vorlesung Schadenskunde</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 21 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32081 Schadenskunde (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Oktober 2012
Modul: 32070 Werkstoffmodellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810014</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Michael Seidenfuß</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Eberhard Roos
• Andreas Klenk
• Michael Seidenfuß |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Festigkeitsberechnung und Werkstoffmechanik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Einführung in die Festigkeitslehre, Höhere Mathematik, Werkstoffkunde I + II |
| 13. Inhalt: | 1. Definition und Aufbau von Werkstoffgesetzen
2. Einbindung in Finite Elemente Anwendungen
3. Stoffgesetze
• statische Plastizität
• zyklische Plastizität
• Kriechen
• zyklische Viskoplastizität
4. Schädigungsmodelle
| 14. Literatur: | - Manuskript zur Vorlesung
- Ergänzende Folien im Internet (online verfügbar)
| 15. Lehrveranstaltungen und -formen: | • 320701 VL Werkstoffmodellierung
• 320702 Übung Werkstoffmodellierung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudium: 69 h
Summe: 90 h |
| 17. Prüfungsnummer/n und -name: | 32071 Werkstoffmodellierung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
18. Grundlage für...

| 19. Medienform: | Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien |

20. Angeboten von:
2232 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

14150 Leichtbau
30390 Festigkeitslehre I
30400 Methoden der Werkstoffsimulation
32050 Werkstoffeigenschaften
32060 Werkstoffe und Festigkeit
Modul: 30390 Festigkeitslehre I

2. Modulkürzel: 041810010
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten: Thomas Fesich

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:

- Einführung in die Festigkeitslehre
- Werkstoffkunde I + II

12. Lernziele:

13. Inhalt:

- Spannungs- und Formänderungszustand
- Festigkeitshypothesen bei statischer und schwingender Beanspruchung
- Werkstoffverhalten bei unterschiedlichen Beanspruchungsarten
- Sicherheitsnachweise
- Festigkeitsberechnung bei statischer Beanspruchung
- Festigkeitsberechnung bei schwingender Beanspruchung
- Berechnung von Druckbehältern
- Festigkeitsberechnung bei thermischer Beanspruchung
- Bruchmechanik
- Festigkeitsberechnung bei von Faserverbundwerkstoffen

14. Literatur:

- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Issler, Ruß, Häfele: Festigkeitslehre Grundlagen, Springer-Verlag

| 15. Lehrveranstaltungen und -formen: | • 303901 Vorlesung Festigkeitslehre I
• 303902 Übung Festigkeitslehre I |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h |

| 17. Prüfungsnummer/n und -name: | 30391 Festigkeitslehre I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : | |

| 19. Medienform: | Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien |

| 20. Angeboten von: | |
Modul: 14150 Leichtbau

2. Modulkürzel: 041810002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungsverfahren keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

 • Einführung in die Festigkeitslehre
 • Werkstoffkunde I und II

12. Lernziele:

13. Inhalt:

 • Werkstoffe im Leichtbau
 • Festigkeitsberechnung
 • Konstruktionsprinzipien
 • Stabilitätsprobleme: Knicken und Beulen
 • Verbindungstechnik
 • Zuverlässigkeit
 • Recycling

Stand: 23. Oktober 2012
14. Literatur:
- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft

15. Lehrveranstaltungen und -formen:
- 141501 Vorlesung Leichtbau
- 141502 Leichtbau Übung

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 42 h |
| Selbststudiumszeit / Nacharbeitszeit: | 138 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT auf Tablet PC, Animationen u. Simulationen

20. Angeboten von:
Modul: 30400 Methoden der Werkstoffsimulation

2. Modulkürzel: 041810011
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Siegfried Schmauder
9. Dozenten: Siegfried Schmauder

10. Zuordnung zum Curriculum in diesem Studiengang:

• B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
• M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kern-/Ergänzungsfächer mit 6 LP
• M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kernfächer mit 6 LP
• M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:

• Einführung in die Festigkeitslehre, Werkstoffkunde I + II, Höhere Mathematik

12. Lernziele:

• Die Teilnehmer des Kurses haben einen Überblick über die wichtigsten Simulationsmethoden in der Materialkunde und sind in der Lage problembezogen geeignete Verfahren auszuwählen.

13. Inhalt:

• Elastizitätstheorie
• Spannungsfunktionen
• Energiemethoden
• Differenzenverfahren
• Finite-Elemente-Methode
• Grundlagen des elastisch-plastischen Werkstoffverhaltens
• Traglastverfahren
• Gleitlinientheorie
• Multiskalensimulation

14. Literatur:

• Manuskript zur Vorlesung und ergänzende Folien im Internet
• Schmauder, S., L. Mishnaevsky: Micromechanics and Nanosimulation of Metals and Composites, Springer Verlag

15. Lehrveranstaltungen und -formen:

• 304001 Vorlesung Methoden der Werkstoffsimulation
• 304002 Übung Methoden der Werkstoffsimulation

16. Abschätzung Arbeitsaufwand:

• Präsenzzeit: 42 h
• Selbststudium: 138 h
• Summe: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30401 Methoden der Werkstoffsimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32060 Werkstoffe und Festigkeit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810019</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten:
- Andreas Klenk
- Michael Seidenfuß
- Ludwig Stumpfrock

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Werkstoff- und Produktionstechnik ➔ Festigkeitsberechnung und Werkstoffmechanik ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
- Einführung in die Festigkeitslehre, Höhere Mathematik, Werkstoffkunde I + II

12. Lernziele:

13. Inhalt:
Der Inhalt dieses Moduls teilt sich in werkstoff- und berechnungsorientierte Lehrveranstaltungen auf. Die werkstoffkundlichen und die berechnungsorientierten Lehrveranstaltungen ergänzen sich gegenseitig. Um diese gegenseitige Ergänzung zu gewährleisten, müssen die Studierenden jeweils eine Lehrveranstaltung aus dem Werkstoffblock und eine aus dem Berechnungsblock wählen.

Berechnungsblock:

Lehrblock 1 - Werkstoffmodellierung, WiSe
- Definition und Aufbau von Werkstoffgesetzen
- Einbindung in Finite Elemente Anwendungen
- Stoffgesetze
 - statische Plastizität
 - zyklische Plastizität
 - kriechen
 - zyklische Viskoplastizität
- Schädigungsmodelle

Lehrblock 2 - Festigkeitslehre II, SoSe
- Bruchmechanische Bauteilanalyse
 - linearelastische Bruchmechanik
 - elastisch-plastische Bruchmechanik
 - zyklisches Risswachstum
 - Kennwertermittlung
 - Normung und Regelwerke
 - Anwendung auf Bauteile
- Bauteilanalyse bei zyklischer Belastung
- Bauteilanalyse mit Finite Elemente Simulationen

Werkstoffblock:

Lehrblock 3 - Schadenskunde, WiSe
- Definition und Klassifizierungen von Schäden
- Schäden durch mechanische Beanspruchung
- Schäden durch thermische Beanspruchung
- Schäden durch korrosive Beanspruchung
- Schäden durch tribologische Beanspruchung

Lehrblock 4 - Fügetechnik, SoSe
- Mechanisches Fügen
 - Schrauben
 - Niete
 - Klinschen
 - Sonderverschraubungsverfahren
- Schweißen
 - Schmelzschweißverfahren
 - Pressschweißverfahren
 - Diffusionsschweißverfahren
- Löten
 - Hartlöten
 - Kaltlöten
 - Kleben
- Prüfverfahren in der Verbindungstechnik

14. Literatur:

Alle Lehrblöcke:
- Manuskript zur Vorlesung
- Ergänzende Folien im Internet (online verfügbar)

Zusätzlich:
Lehrblock 1 - Werkstoffmodellierung

15. Lehrveranstaltungen und -formen:

- 320601 VL Berechnungsblock
- 320602 VL Werkstoffblock

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudium: 138 h
- Summe: 180 h

17. Prüfungsnr/n und -name:

32061 Werkstoffe und Festigkeit (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Neben der Prüfungsanmeldung in LSF ist eine zusätzliche Anmeldung am IMWF notwendig. Das atmende Modul "Werkstoffe und Festigkeit" (32060) besteht aus einem Berechnungsblock und einem Werkstoffblock, aus denen jeweils Veranstaltungen gewählt werden müssen - daher die zusätzliche Anmeldung am IMWF. Jede der beiden ausgewählten schriftlichen Prüfungen dauert 120 Min.

18. Grundlage für ... :

19. Medienform:

Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
Modul: 32050 Werkstoffeigenschaften

2. Modulkürzel: 041810012 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Karl Maile
9. Dozenten: Karl Maile

13. Inhalt:
• Beanspruchungs- und Versagensarten
• Werkstoffprüfung (Kriechen u. Ermüdung)
• Regelwerke und Richtlinien
• Beanspruchungsabhängige Schädigungsmechanismen
• Werkstoffe des Kraftwerkbaus
• Stoffgesetze und Werkstoffmodelle
• Beanspruchungen von warmgehenden Bauteilen
• Zustands- und Schädigungsanalyse von Hochtemperaturbauteilen

14. Literatur:
- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Maile, K.: Fortgeschrittene Verfahren zur Beschreibung des Verformungs- und Schädigungsverhaltens von Hochtemperaturbauteilen im Kraftwerkbaus, Shaker Verlag

15. Lehrveranstaltungen und -formen:
• 320501 Vorlesung Werkstoffeigenschaften
• 320502 Übung Werkstoffeigenschaften

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
32051 Werkstoffeigenschaften (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
19. Medienform: Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
2231 Kernfächer mit 6 LP

Zugeordnete Module:

14150 Leichtbau
30390 Festigkeitslehre I
30400 Methoden der Werkstoffsimulation
Modul: 30390 Festigkeitslehre I

2. Modulkürzel: 041810010 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß
9. Dozenten: Thomas Fesich

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Festigkeitsberechnung und Werkstoffmechanik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:
 • Einführung in die Festigkeitslehre
 • Werkstoffkunde I + II

12. Lernziele:

13. Inhalt:
 • Spannungs- und Formänderungszustand
 • Festigkeitshypothesen bei statischer und schwingender Beanspruchung
 • Werkstoffverhalten bei unterschiedlichen Beanspruchsarten
 • Sicherheitsnachweise
 • Festigkeitsberechnung bei statischer Beanspruchung
 • Festigkeitsberechnung bei schwingender Beanspruchung
 • Berechnung von Druckbehältern
 • Festigkeitsberechnung bei thermischer Beanspruchung
 • Bruchmechanik
 • Festigkeitsberechnung bei von Faserverbundwerkstoffen

14. Literatur:
 • Manuskript zur Vorlesung
 • Ergänzende Folien (online verfügbar)
15. Lehrveranstaltungen und -formen:
• 303901 Vorlesung Festigkeitslehre I
• 303902 Übung Festigkeitslehre I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
30391 Festigkeitslehre I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien

20. Angeboten von:
Modul: 14150 Leichtbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Michael Seidenfuß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	→ Ergänzungsmodule
	→ Kompetenzfeld II
	B.Sc. Technologiemanagement, PO 2008, 5. Semester
	→ Kernmodule
	→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
	B.Sc. Technologiemanagement, PO 2011, 5. Semester
	→ Ergänzungsmodule
	→ Kernmodule
	→ Pflichtmodule mit Wahlmöglichkeit
	B.Sc. Technologiemanagement, PO 2011, 5. Semester
	→ Kernmodule
	→ Pflichtmodule mit Wahlmöglichkeit
	B.Sc. Technologiemanagement, PO 2011, 5. Semester
	→ Vorgezogene Master-Module
	M.Sc. Technologiemanagement, PO 2011
	→ Gruppe Werkstoff- und Produktionstechnik
	→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
	→ Kern-/Ergänzungsfächer mit 6 LP
	M.Sc. Technologiemanagement, PO 2011
	→ Gruppe Werkstoff- und Produktionstechnik
	→ Festigkeitsberechnung und Werkstoffmechanik
	→ Kern-/Ergänzungsfächer mit 6 LP
	M.Sc. Technologiemanagement, PO 2011
	→ Gruppe Werkstoff- und Produktionstechnik
	→ Festigkeitsberechnung und Werkstoffmechanik
	→ Kernfächer mit 6 LP

| 11. Empfohlene Voraussetzungen: | • Einführung in die Festigkeitslehre |
| | • Werkstoffkunde I und II |

13. Inhalt:	• Werkstoffe im Leichtbau
	• Festigkeitsberechnung
	• Konstruktionsprinzipien
	• Stabilitätsprobleme: Knicken und Beulen
	• Verbindungstechnik
	• Zuverlässigkeit
	• Recycling
14. Literatur:
- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft

15. Lehrveranstaltungen und -formen:
- 141501 Vorlesung Leichtbau
- 141502 Leichtbau Übung

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 42 h |
| Selbstitumszeit / Nacharbeitszeit: | 138 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
PPT auf Tablet PC, Animationen u. Simulationen

20. Angeboten von:
Modul: 30400 Methoden der Werkstoffsimulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Siegfried Schmauder</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Siegfried Schmauder</td>
</tr>
</tbody>
</table>
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Festigkeitsberechnung und Werkstoffmechanik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Festigkeitsberechnung und Werkstoffmechanik
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit |
| 11. Empfohlene Voraussetzungen: | Einführung in die Festigkeitslehre, Werkstoffkunde I + II, Höhere Mathematik |
| 13. Inhalt: | • Elastizitätstheorie
 • Spannungsfunktionen
 • Energiemethoden
 • Differenzenverfahren
 • Finite-Elemente-Methode
 • Grundlagen des elastisch-plastischen Werkstoffverhaltens
 • Traglastverfahren
 • Gleitlinientheorie
 • Multiskalensimulation |
| 14. Literatur: | Manuskript zur Vorlesung und ergänzende Folien im Internet
 Schmauder, S., L. Mishnaevsky: Micromechanics and Nanosimulation of Metals and Composites, Springer Verlag |
| 15. Lehrveranstaltungen und -formen: | • 304001 Vorlesung Methoden der Werkstoffsimulation
 • 304002 Übung Methoden der Werkstoffsimulation |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
 Selbststudium: 138 h
 Summe: 180 h |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30401 Methoden der Werkstoffsimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 30910 Praktikum Werkstoff- und Bauteilprüfung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810018</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Dr.-Ing. Michael Seidenfuß</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsfächer A (ING)</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Festigkeitsberechnung und Werkstoffmechanik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Einführung in die Festigkeitslehre, Werkstoffkunde I + II</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html</td>
</tr>
</tbody>
</table>

Beispiele:

- Einflussgrößen auf die Fließkurven metallischer Werkstoffe
- Praktische Einführung in die Methode der Finiten Elemente. Sie ist eines der wichtigsten Simulationsinstrumente in der technischen Anwendung. In diesem Spezialisierungsfachversuch erlernen die Studierenden den Umgang mit dem Finite Elemente Programm ABAQUS. Sie idealisieren eine einfache Probengeometrie, führen eine Berechnung durch und beurteilen die Ergebnisse.
- etc.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>- Manuskripte zu den Versuchen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>309101 Spezialisierungsfachversuch 1</td>
</tr>
<tr>
<td>309102 Spezialisierungsfachversuch 2</td>
</tr>
<tr>
<td>309103 Spezialisierungsfachversuch 3</td>
</tr>
<tr>
<td>309104 Spezialisierungsfachversuch 4</td>
</tr>
</tbody>
</table>
• 309105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 309106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 309107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 309108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium: 48 h
 Summe: 90 h

17. Prüfungsnummer/n und -name:
 30911 Praktikum Werkstoff- und Bauteilprüfung (USL), schriftlich und mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
224 Fördertechnik und Logistik

Zugeordnete Module:

- 2241 Kernfächer mit 6 LP
- 2242 Kern-/Ergänzungsfächer mit 6 LP
- 2243 Ergänzungsfächer mit 3 LP
- 32660 Praktikum Fördertechnik und Logistik
2243 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32620</td>
<td>Baumaschinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32630</td>
<td>Entsorgungslogistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32640</td>
<td>Materialflussautomatisierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32650</td>
<td>Schüttgutfördertechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulhandbuch: Master of Science Technologiemanagement

Modul: 32620 Baumaschinen

2. Modulkürzel: 072100014 5. Moduldauber: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Christian Häfner
9. Dozenten: Christian Häfner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Fahrzeug- und Motorentechnik
➞ Agrartechnik
➞ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Werkstoff- und Produktionstechnik
➞ Fördertechnik und Logistik
➞ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
Im Modul Baumaschinen sollen die Studierenden
• den Aufbau und den Einsatz verschiedener Erdbewegungsmaschinen verstehen lernen.
• die Schwerpunkte der Auslegung von Komponenten für Hydraulikbagger erlernen
• sollen in der Lage sein, die grundsätzliche Dimensionierung von Baumaschinen zu verstehen und statische und dynamische Festigkeitsnachweise nachzuvollziehen.
• die Arbeitsweise und Aufgaben von verschiedenen Transport- und Aufbereitungsmaschinen für Beton und Mörtel erlernen

13. Inhalt:
Im ersten Teil der Vorlesung wird zunächst die Einordnung und Systematisierung der unterschiedlichen Baumaschinen vorgestellt:

Erdbewegungsmaschinen:
• Seil- und Hydraulikbagger
• Planierraupen
• Lader
• Scraper
• Grader
• Erdtransportgeräte

Dabei wird ein Schwerpunkt in der Auslegung von Komponenten für Hydraulikbagger gelegt:
• Grabkräfte
• Hydraulik
• Standsicherheit
• Festigkeitsnachweis der Arbeitseinrichtung.

Die Dimensionierung hydraulischer Antriebssysteme von Baumaschinen wird durch mehrere Vorlesungsbegleitende Übungen erklärt.

Im zweiten Teil werden Transport- und Fördermittel für Beton und Mörtel als Baustoffe vorgestellt.

Die Schwerpunkte liegen dabei in:
• Betonaufbereitung
• Transport- und Fördermittel für Beton und Mörtel
• Transportfahrzeuge
• Betonpumpen (Verteilemast, Hydraulik, Betriebsdatenerfassung, Robotik)
• Mörtelmaschinen
• Verdichtungsmaschinen und
• Betonformgebungsanlagen.

14. Literatur:
• Peter Grimshaw, Excavators ISBN 0-7137-1335-6
• B. Huxley, Opencast Coal, Plant & Equipment ISBN 1-871565-12-X
• N. N. Firmenschrift Rhein Braun, Unternehmen Braunkohle ISBN 3-7743-0225-1
• K. Haddock, Giant Earthmovers ISBN 0-7603-0369-X
• M. Engel, Erdbewegungsmaschinen ISBN 3-86133-222-1

15. Lehrveranstaltungen und -formen:
326201 Vorlesung + Übung: Baumaschinen

16. Abschätzung Arbeitsaufwand:
21 Std. Präsenz
24 Std. Vor-/Nachbearbeitung
45 Std. Prüfungsvorbereitung und Prüfung
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
32621 Baumaschinen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32630 Entsorgungslogistik

2. Modulkürzel: 072100015
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 Grundkenntnisse im Bereich Logistik sind wünschenswert. Diese werden z. B. im B.Sc.-Modul 13340 Logistik und Fabrikbetriebslehre an der Universität Stuttgart vermittelt.

12. Lernziele:

13. Inhalt:
 • Einleitung
 • Rechtliche Rahmenbestimmungen
 • Abfallarten und -mengen
 • Sammelsysteme
 • Transport-, Förder- und Umschlagsysteme
 • Deponietechnik/ Ablagerung
 • Grundlagen der Abfallbehandlung
 • EDV-Einsatz in der Entsorgungswirtschaft
 • Anlagenbeispiele

14. Literatur:
 • Jansen (1998): Handbuch Entsorgungslogistik, Deutscher Fachverlag, Frankfurt/ M.
• Schwister (2010): Taschenbuch der Umwelttechnik, Hanser, München, 2. Auflage

15. Lehrveranstaltungen und -formen: 326301 Vorlesung Entsorgungslogistik

16. Abschätzung Arbeitsaufwand:
 30 Std. Präsenz
 30 Std. Vor-/Nachbearbeitung
 30 Std. Prüfungsvorbereitung und Prüfung
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32631 Entsorgungslogistik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32640 Materialflussautomatisierung

2. Modulkürzel: 072100016
5. Modulddauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Gudrun Willeke

9. Dozenten:
 • Martin Krebs
 • Markus Schröppel

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Im Modul Materialflussautomatisierung sollen die Studierenden
 • den Zusammenhang zwischen Kommunikations- und Materialflussystemen verstehen lernen.
 • Sie kennen die verschiedenen Ebenen und Aufgaben der Materialflussautomatisierung.
 Die Studierenden
 • sind in der Lage Schwachstellen im automatisierten Materialfluss zu erkennen und deren Ursachen zu erforschen.

13. Inhalt:
 Im ersten Teil der Vorlesung wird zunächst die Einordnung und Systematisierung der Elemente zur Datenkommunikation, Identifikation sowie aktorische und sensorische Komponenten vorgestellt:
 • SPS-Aufbau und Programmierung.
 • Sensorik: Nähungs- und Laserscanner.
 • Aktorik: Stellmotoren
 • Kommunikationssysteme: Datenkommunikation über Netzwerke, Protokolle, Bussysteme.
 Die Steuerung fördertechnischer Systeme mit Hilfe von SPS wird durch eine Vorlesungsbegleitende Übung erklärt.

14. Literatur:
 • Arnold, D.: Materialflusslehre, Vieweg, 1998
 • Arnold, D.; Furmans, K: Materialfluss in Logistiksystemen (VDI-Buch). Berlin u.a.: Springer, 2005
• Koether, R.: Technische Logistik. Hanser, 2001

15. Lehrveranstaltungen und -formen: 326401 Vorlesung + Übung : Materialflussautomatisierung

16. Abschätzung Arbeitsaufwand: 21 Std. Präsenz
24 Std. Vor-/Nachbearbeitung
45 Std. Prüfungsvorbereitung und Prüfung
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32641 Materialflussautomatisierung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32650 Schüttgutfördertechnik

2. Modulkürzel: 072100017
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Gudrun Willeke
9. Dozenten: Thomas Kuczera
M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik
→ Fördertechnik und Logistik
→ Ergänzungsfächer mit 3 LP
12. Lernziele: Im Modul Schüttgutfördertechnik
• haben die Studierenden einen Überblick über die unterschiedlichen Stetigförderer für Schüttgüter bekommen.
• die Studierenden erlernen die wesentlichen Eigenschaften von Schüttgütern sowie deren Bestimmung
• die Studierenden können eine Dimensionierung von Gurtförderern, Becherförderern, Schneckenförderern, Schwingrinnen und Trogkettenförderern durchführen.
• die Studierenden erlernen die Auslegung von Bunkern und Silos zur Lagerung von Schüttgütern
• die Studierenden erlernen die Gestaltung von Übergabestellen zwischen einzelnen Stetigförderer
• die Studierenden erlernen die beiden wesentlichen Simulationsmöglichkeiten von Schüttgutströmen (Diskrete Elemente Methode und kontinuumsmechanische Methode)
13. Inhalt: • Grundlagen Stetigförderer,
• Schüttguteigenschaften,
• Bunker- und Siloauslegung,
• Gurtförderer und
• Übergabestellen,
• Becherwerke,
• Kettenförderer,
• Schneckenförderer,
• Simulation von Schüttgutströmen mit kontinuumsmechanischen und diskreten Elementen Methoden.
• Schulze, D.: Pulver und Schüttgüter, Springer Verlag, 2006

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>326501 Vorlesung + Übung : Schüttgütfördertechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>21 Std. Präsenz 24 Std. Vor-/Nachbearbeitung 45 Std. Prüfungsvorbereitung und Prüfung Summe: 90 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32651 Schüttgütfördertechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
2242 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 13990 Grundlagen der Fördertechnik
- 32260 Logistik
- 32580 Sicherheitstechnik und Personenfördertechnik
- 32590 Seiltechnologie und Seilendverbindungen
- 32600 Supply Chain Management und Produktionslogistik
- 32610 Planung und Simulation in der Logistik
Modul: 13990 Grundlagen der Fördertechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
• Markus Schröppel |
➞ Ergänzungsmodul
➞ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
➞ Kernmodule
➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
➞ Ergänzungsmodul
➞ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
➞ Kernmodule
➞ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
➞ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Werkstoff- und Produktionstechnik
➞ Fördertechnik und Logistik
➞ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Werkstoff- und Produktionstechnik
➞ Fördertechnik und Logistik
➞ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagenausbildung in Technischer Mechanik I-IV
und Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinenkonstruktion I+II
und Grundzüge der Produktentwicklung I+II |

12. Lernziele: | Im Modul Grundlagen der Fördertechnik
• haben die Studierenden die Systematisierung verschiedenartiger Fördermittel in unterschiedlichen Anwendungsfällen und die Basiselemente für deren Konstruktion und Entwicklung kennen gelernt,
• können die Studierenden wichtige Aufgaben der Betriebsführung von fördertechnischen, materialflusstechnischen oder logistischen Einrichtungen durchführen.

Erworbene Kompetenzen: Die Studierenden
• sind mit den wichtigsten Methoden zur Planung der Gegebenheiten des jeweiligen Wirtschaftsbereiches und seiner zu fördernden Güter unter betriebswirtschaftlichen Gesichtspunkten vertraut,
• kennen die fördertechnischen Basiselemente für die Konstruktion und Entwicklung von Materialflusssystemen,

• verstehen den Vorgang der Entwicklung, Planung, Betrieb und der Instandhaltung von fördertechnischen, materialflusstechnischen oder logistischen Komponenten,

• können die richtigen technischen Basiselemente Ihrer Art und Form entsprechend unter Berücksichtigung der Vor- und Nachteile für die klassischen Aufgaben der Fördertechnik (Fördern, Verteilen, Sammeln und Lagern) zuordnen und auswählen

• verstehen Materialfluss als Verkettung aller Vorgänge beim Gewinnen, Be- und Verarbeiten sowie bei der Verteilung von Gütern innerhalb festgelegter Bereiche.

13. Inhalt:

Die Vorlesung vermittelt die **Grundlagen der Fördertechnik**.

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 139901 Vorlesung und Übung Grundlagen der Fördertechnik
- 139902 Praktikum 1 Grundlagen der Fördertechnik - wählbar aus dem APMB-Angebot des Instituts
- 139903 Praktikum 2 Grundlagen der Fördertechnik - wählbar aus dem APMB-Angebot des Instituts

16. Abschätzung Arbeitsaufwand:

- 42 Std. Präsenz
- 48 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 - 13991 Grundlagen der Materialflusstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
 - 13992 Konstruktionselemente (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32260 Logistik

2. Modulkürzel: 072100002
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Werkstoff- und Produktionstechnik
➞ Fördertechnik und Logistik
➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Werkstoff- und Produktionstechnik
➞ Fördertechnik und Logistik
➞ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
➞ Vertiefungsmodule
➞ Wahlmöglichkeit Gruppe 3: Produktion

12. Lernziele:
Die Studierenden entwickeln ein Verständnis für die Bedeutung der Logistik im Allgemeinen und als betriebliche Querschnittsfunktion. Sie bekommen einen Überblick über das breite Spektrum der logistischen Anwendungen und können einzelne Fachbereiche in den Unternehmensablauf und Produktionsprozess einordnen.

13. Inhalt:
Das Modul „Logistik“ besteht aus den Vorlesungen „Methoden und Strategien in der Logistik“ und „Distributionszentrum“.

Der **zweite Teil** des Moduls befasst sich mit der Analyse, Bewertung und Auslegung von **Distributionszentren**. Hierbei werden den Studierenden Aufgaben und Charakteristika der einzelnen Funktionsbereiche eines Distributionszentrums vermitteln:

- Wareneingang
- Lager & Kommissionierung
- Konsolidierung & Verpackung
- Warenausgang

14. Literatur:

- Pulverich, M.; Schietinger, J. (Hrsg.): Handbuch Kommissionierung - Effizient Picken und Packen; Verlag Heinrich Vogel, München 2009

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>322601 Vorlesung + Übung Logistik</td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | 45 Std. Präsenz
45 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung

Summe: 180 Stunden |
17. Prüfungsnummer/n und -name:	32261 Logistik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...:	
19. Medienform:	Beamer-Präsentation, Overhead-Projektor
20. Angeboten von:	
Modul: 32610 Planung und Simulation in der Logistik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072100013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
• Dirk Marrenbach |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fördertechnik und Logistik
→ Kern-/Ergänzungsfächer mit 6 LP |
| 13. Inhalt: | Das Modul Planung und Simulation in der Logistik besteht aus den Vorlesungen Planung logistischer Systeme und Modellierung und Simulation in Fördertechnik, Materialfluss und Logistik |
• VDI 3633: Simulation von Logistik-, Materialfluss- und Produktionssystemen, Beuth-Verlag, Berlin (Blatt 1 bis Blatt 11). |
| 15. Lehrveranstaltungen und -formen: | 326101 Vorlesung + Übung: Planung und Simulation in der Logistik |
| 16. Abschätzung Arbeitsaufwand: | 60 Std. Präsenz
60 Std. Vor-/Nachbearbeitung
60 Std. Prüfungsvorbereitung und Prüfung
Summe: 180 Stunden |

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32590 Seiltechnologie und Seilendverbindungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072100011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Sven Winter</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Sven Winter
• Peter Raach |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fördertechnik und Logistik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgeschlossene Grundlagenausbildung in Technischer Mechanik I-IV und Konstruktionslehre z. B. durch die Module Konstruktionslehre I-IV oder Grundzüge der Maschinenkonstruktion I+II und Grundzüge der Produktentwicklung I+II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Modul Seiltechnologie und Seilendverbindungen</td>
</tr>
<tr>
<td>• haben die Studierenden die Systematisierung verschiedenartiger Seilarten und -macharten in unterschiedlichen Anwendungsfällen und die Kriterien für deren Konstruktion und Entwicklung kennen gelernt,</td>
</tr>
<tr>
<td>• können die Studierenden wichtige Aufgaben von Draht- und Faserseilen in fördertechnischen, Systemen beurteilen.</td>
</tr>
</tbody>
</table>

Erworbene Kompetenzen : Die Studierenden

• sind mit den wichtigsten Methoden zur Bestimmung der Lebensdauer / Ablagereife von Seilen und der Auslegung von Seiltrieben vertraut
• kennen die Komponenten für die Konstruktion und Entwicklung von Seiltrieben
• verstehen die Hintergründe von Seilendverbindungen
• können die richtigen technischen Herstellungsverfahren unterschiedlicher Seilendverbindungen beurteilen und anwenden.

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Vorlesung vermittelt die Grundlagen der Seiltechnologie unter besonderer Berücksichtigung von Seilendverbindungen. Im ersten Teil der Vorlesung wird zunächst die Einordnung und Systematisierung von Drahtseilen vorgestellt:</td>
</tr>
<tr>
<td>• Machart von Drahtseilen,</td>
</tr>
<tr>
<td>• Spannungen,</td>
</tr>
<tr>
<td>• Lebensdauer,</td>
</tr>
<tr>
<td>• Ablagereife</td>
</tr>
<tr>
<td>• Regelwerke für die Bemessung,</td>
</tr>
<tr>
<td>• Auswahl der Seilmachart;</td>
</tr>
<tr>
<td>• Faserseile;</td>
</tr>
<tr>
<td>• Seilverbindungen;</td>
</tr>
<tr>
<td>• Seilrollen,</td>
</tr>
<tr>
<td>• Seiltrommeln,</td>
</tr>
<tr>
<td>• Treibscheiben;</td>
</tr>
</tbody>
</table>
| • Treibfähigkeit,
• Anordnung u. Wirkungsgrade von Seiltrieben.
• Kettentriebe: Last-, Förder- u. Treibketten;
• Kraftübertragung an Kettenrädern.
• Anschlagseile
• Anschlagtechnik und Handhabung.

Der zweite Teil beginnt mit der Vorstellung der theoretischen Grundlagen zu Seilendverbindungen und zur Herstellung von Vergüssen und beinhaltet im Folgenden:

• Ermittlung der Tragfähigkeit von Seilendvergüssen
• Grundlagen und Hintergründe zur Herstellung von Seilbesen sowie zur Herstellung von Seilendvergüssen,
• die selbstständige Vorbereitung von Seilen zur Herstellung von Seilendvergüssen,
• die selbstständige Ausführung von Seilendvergüssen,
• die Durchführung von Zerreißversuchen mit eigens hergestellten Vergüssen.

14. Literatur:
• Scheffler, M.: Grundlagen der Fördertechnik, Elemente und Triebwerke, 1. Auflage, Vieweg Verlag, 1994

15. Lehrveranstaltungen und -formen: 325901 Vorlesung + Übung: Seiltechnologie und Seilendverbindungen

16. Abschätzung Arbeitsaufwand:
42 Std. Präsenz
48 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32591 Seiltechnologie und Seilendverbindungen (PL), mündliche Prüfung, 60 Min., Gewichtung: 1.0. Die mündliche Prüfungsdauer ist entsprechend der jeweiligen Prüfungsordnung geregelt und beträgt für Seiltechnologie und Seilendverbindungen jeweils in der Regel 20 Minuten pro 3 Leistungspunkte, mindestens 20 und höchstens 60 Minuten.

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation

20. Angeboten von:
Modul: 32580 Sicherheitstechnik und Personenfördertechnik

2. Modulkürzel: 072100003
5. Modul zu: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Sven Winter

9. Dozenten:
• Sven Winter
• Ralf Eisinger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fördertechnik und Logistik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Fördertechnik und Logistik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
Im Modul Sicherheitstechnik und Personenfördertechnik lernen die Studierenden die wesentlichen Aspekte der Sicherheitstechnik kennen und verstehen die Komponenten und die Funktionsweise verschiedener Systeme der Personenfördertechnik. Die Studierenden sind in der Lage

• Zuverlässigkeitsfunktionen und Verteilungen zu verstehen,
• Sicherheitskriterien und Maßnahmen einzuschätzen und
• können die gegenseitige Gefährdung von Mensch-Maschine-Umwelt beurteilen.

Die Studierenden

• haben einen Überblick über das breite Spektrum der Bauarten von Seilbahnen, Fahrtreppen und -steigen, Schachtförderanlagen sowie Aufzügen und können die Aufgaben und die Funktionsweise der einzelnen Antriebs-, Brems-, Steuerungs- und Sicherheitskomponenten einordnen.

13. Inhalt:
Im ersten Teil der Vorlesung wird zunächst die Einordnung und Systematisierung der Sicherheitstechnik vorgestellt.

• Einführung in die Sicherheitstechnik,
• Zuverlässigkeitsfunktionen,
• Ermittlung von Verteilungen,
• Statistik,
• Sicherheitskriterien und Maßnahmen,
• Redundanz,
• Eintrittswahrscheinlichkeit,
- Diversitätsprinzip,
- Vorschriften,
- Sicherheitsanalyse,
- gegenseitige Gefährdung von Mensch-Maschine-Umwelt.

Im **zweiten Teil** werden die Aufgaben und Funktionen von unterschiedlichen Systemen zur Personenförderung anhand von

- Bauarten von Seilbahnen,
- Fahrtreppen,
- Fahrsteigen,
- Schachtförderanlagen,
- und Aufzügen,
- Antriebe,
- Treibscheibenwinden,
- Steuerung,
- Förderstrom und
- Bremsen

vorgestellt.

14. **Literatur:**

15. **Lehrveranstaltungen und -formen:**
325801 Vorlesung + Übung: Sicherheitstechnik und Personenfördertechnik

16. **Abschätzung Arbeitsaufwand:**
42 Std. Präsenz
48 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung

Summe: 180 Stunden

17. **Prüfungsnummer/n und -name:**

18. **Grundlage für ...:**

19. **Medienform:**
Beamer-Präsentation

20. **Angeboten von:**
Modul: 32600 Supply Chain Management und Produktionslogistik

2. Modulkürzel: 072100012
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

9. Dozenten:
 • Hans-Jörg Hager
 • Olaf Dunkler

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden lernen die Logistik aus zwei speziellen Perspektiven kennen: Auf der einen Seite wird die logistische Kette aus der Sicht eines Automobil-Montagewerks und auf der anderen Seite aus der Sicht eines Logistikdienstleisters vorgestellt.

 Die Studierenden sollen mit Hilfe des Perspektivenwechsels die unterschiedlichen Betrachtungsperspektiven auf Produktions- und Logistiksysteme kennenlernen und auf diese Weise die Problematik einer ganzheitlichen Optimierung von Produktion und Logistik verstehen.

 Die Studierenden sind in der Lage das Zusammenspiel von Produktion und Logistik sowie Produktion und Logistikdienstleister aus der jeweiligen Perspektive zu beschreiben und die Anforderungen der Partner an einem Logistiksystem zu identifizieren, zu benennen und Interessenkonflikte aufzuzeigen.

13. Inhalt:
 Supply Chain Management aus der Sicht eines Logistikdienstleisters:
 • Supply Chain Management
 • Logistikdienstleister
 • Multi Mandanten Logistik
 • Qualität der Logistikdienstleistung
 • Informationssysteme für Logistikdienstleister

 Vom Montagesystem zur Werksbelieferung in der Automobilindustrie
 • Produktions- und Montagesystem
 • Produktionslogistik im Montagewerk
 • Qualität der Logistik im Montagewerk
 • Belieferung des Montagewerks
14. Literatur:

15. Lehrveranstaltungen und -formen:
 326001 Vorlesung + Übung : Supply Chain Management und Produktionslogistik

16. Abschätzung Arbeitsaufwand:
 42 Std. Präsenz
 48 Std. Vor-/Nachbearbeitung
 90 Std. Prüfungsvorbereitung und Prüfung
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 32601 Supply Chain Management und Produktionslogistik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
2241 Kernfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13990</td>
<td>Grundlagen der Fördertechnik</td>
</tr>
<tr>
<td>32260</td>
<td>Logistik</td>
</tr>
<tr>
<td>32580</td>
<td>Sicherheitstechnik und Personenfördertechnik</td>
</tr>
</tbody>
</table>
Modul: 13990 Grundlagen der Fördertechnik

2. Modulkürzel: 072100001 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

 • Markus Schröppel

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
 Abgeschlossene Grundlagenausbildung in Technischer Mechanik I-IV
 und Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV
 oder Grundzüge der Maschinenkonstruktion I+II und Grundzüge der
 Produktentwicklung I+II

12. Lernziele:
 Im Modul Grundlagen der Fördertechnik
 • haben die Studierenden die Systematisierung verschiedenartiger
 Fördermittel in unterschiedlichen
 • Anwendungsfällen und die Basiselemente für deren Konstruktion und
 Entwicklung kennen gelernt,
 • können die Studierenden wichtige Aufgaben der Betriebsführung
 von fördertechnischen, materialflusstechnischen oder logistischen
 Einrichtungen durchführen.

 Erworbene Kompetenzen: Die Studierenden
 • sind mit den wichtigsten Methoden zur Planung der Gegebenheiten
 des jeweiligen Wirtschaftsbereiches und seiner zu fördernden Güter
 unter betriebswirtschaftlichen Gesichtspunkten vertraut,

- kennen die fördertechnischen Basiselemente für die Konstruktion und Entwicklung von Materialflussystemen,
- verstehen den Vorgang der Entwicklung, Planung, Betrieb und der Instandhaltung von fördertechnischen, materialflusstechnischen oder logistischen Komponenten,
- können die richtigen technischen Basiselemente Ihrer Art und Form entsprechend unter Berücksichtigung der Vor- und Nachteile für die klassischen Aufgaben der Fördertechnik (Fördern, Verteilen, Sammeln und Lagern) zuordnen und auswählen
- verstehen Materialfluss als Verkettung aller Vorgänge beim Gewinnen, Be- und Verarbeiten sowie bei der Verteilung von Gütern innerhalb festgelegter Bereiche.

13. Inhalt: Die Vorlesung vermittelt die **Grundlagen der Fördertechnik**.

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 139901 Vorlesung und Übung Grundlagen der Fördertechnik
- 139902 Praktikum 1 Grundlagen der Fördertechnik - wählbar aus dem APMB-Angebot des Instituts
- 139903 Praktikum 2 Grundlagen der Fördertechnik - wählbar aus dem APMB-Angebot des Instituts

16. Abschätzung Arbeitsaufwand: 42 Std. Präsenz

48 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung

Summe: 180 Stunden

| 17. Prüfungsnummer/n und -name: | • 13991 Grundlagen der Materialflusstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
| | • 13992 Konstruktionselemente (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |
| 19. Medienform: | Beamer-Präsentation, Overhead-Projektor |
| 20. Angeboten von: |
Modul: 32260 Logistik

4. SWS: 4.0 7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion

12. Lernziele:

13. Inhalt:
Das Modul „Logistik“ besteht aus den Vorlesungen „Methoden und Strategien in der Logistik“ und „Distributionzentrum“.

Der zweite Teil des Moduls befasst sich mit der Analyse, Bewertung und Auslegung von Distributionszentren. Hierbei werden den Studierenden Aufgaben und Charakteristika der einzelnen Funktionsbereiche eines Distributionszentrums vermitteln:

- Wareneingang
- Lager & Kommissionierung
- Konsolidierung & Verpackung
- Warenausgang

14. Literatur:

- Pulverich, M.; Schietinger, J. (Hrsg.): Handbuch Kommissionierung - Effizient Picken und Packen; Verlag Heinrich Vogel, München 2009
15. Lehrveranstaltungen und -formen: 322601 Vorlesung + Übung Logistik

16. Abschätzung Arbeitsaufwand: 45 Std. Präsenz
45 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32261 Logistik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32580 Sicherheitstechnik und Personenförderotechnik

2. Modulkürzel: 072100003
5. Moduldauber: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Sven Winter
9. Dozenten:
 • Sven Winter
 • Ralf Eisinger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Förder- und Logistik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Förder- und Logistik
 ➔ Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen:
12. Lernziele: Im Modul Sicherheitstechnik und Personenförderotechnik lernen die Studierenden die wesentlichen Aspekte der Sicherheitstechnik kennen und verstehen die Komponenten und die Funktionsweise verschiedener Systeme der Personenförderotechnik. Die Studierenden sind in der Lage
 • Zuverlässigkeitsfunktionen und Verteilungen zu verstehen,
 • Sicherheitskriterien und Maßnahmen einzuschätzen und
 • können die gegenseitige Gefährdung von Mensch-Maschine-Umwelt beurteilen.
 Die Studierenden
 • haben einen Überblick über das breite Spektrum der Bauarten von Seilbahnen, Fahrtreppen und -steigen, Schachtförderanlagen sowie Aufzügen und können die Aufgaben und die Funktionsweise der einzelnen Antriebs-, Brems-, Steuerungs- und Sicherheitskomponenten einordnen.
13. Inhalt: Im ersten Teil der Vorlesung wird zunächst die Einordnung und Systematisierung der Sicherheitstechnik vorgestellt.
 • Einführung in die Sicherheitstechnik,
 • Zuverlässigkeitsfunktionen,
 • Ermittlung von Verteilungen,
 • Statistik,
 • Sicherheitskriterien und Maßnahmen,
 • Redundanz,
 • Eintrittswahrscheinlichkeit,
• Diversitätsprinzip,
• Vorschriften,
• Sicherheitsanalyse,
• gegenseitige Gefährdung von Mensch-Maschine-Umwelt.

Im zweiten Teil werden die Aufgaben und Funktionen von unterschiedlichen Systemen zur Personenförderung anhand von

• Bauarten von Seilbahnen,
• Fahrtreppen,
• Fahrsteigen,
• Schachtförderanlagen,
• und Aufzügen,
• Antriebe,
• Treibscheibenwinden,
• Steuerung,
• Förderstrom und
• Bremsen

vorgestellt.

14. Literatur:

15. Lehrveranstaltungen und -formen: 325801 Vorlesung + Übung: Sicherheitstechnik und Personenfördertechnik

16. Abschätzung Arbeitsaufwand:
42 Std. Präsenz
48 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung

Summe: 180 Stunden

18. Grundlage für ...

19. Medienform: Beamer-Präsentation

20. Angeboten von:
Modul: 32660 Praktikum Fördertechnik und Logistik

2. Modulkürzel: 072100021
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch

9. Dozenten:
 • Sven Winter
 • André Friedrich Edwin Siepenkort

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Werkstoff- und Produktionstechnik
 → Fördertechnik und Logistik

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden sind in der Lage, theoretische Vorlesungsinhaltene anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter
 http://www.uni-stuttgart.de/mabau/msc/msc_mach/
 linksunddownloads.html
 • Spielzeitermittlung am Modell Hochregallager
 • Identifikation mittels RFID
 • Prüfungen am Bergseil
 • Prüfungen am Drahtseil
 • etc.

14. Literatur:
 Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:
 • 326601 Spezialisierungsfachversuch 1
 • 326602 Spezialisierungsfachversuch 2
 • 326603 Spezialisierungsfachversuch 3
 • 326604 Spezialisierungsfachversuch 4
 • 326605 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 326606 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 326607 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 326608 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 30 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudiumszeit/Nacharbeitszeit: 60 Stunden</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

| 17. Prüfungsnummer/n und -name: | 32661 Praktikum Fördertechnik und Logistik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben. |

| 18. Grundlage für ...: |

| 19. Medienform: |

| 20. Angeboten von: |
225 Kunststofftechnik

Zugeordnete Module:
- 2251 Kernfächer mit 6 LP
- 2252 Kern-/Ergänzungsfächer mit 6 LP
- 2253 Ergänzungsfächer mit 3 LP
- 33790 Praktikum Kunststofftechnik
2253 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>32690</td>
<td>Auslegung von Extrusions- und Spritzgießwerkzeugen</td>
</tr>
<tr>
<td>32700</td>
<td>Rheologie und Rheometrie der Kunststoffe</td>
</tr>
<tr>
<td>36910</td>
<td>Mehrphasenströmungen</td>
</tr>
<tr>
<td>39420</td>
<td>Kunststoffverarbeitung 1</td>
</tr>
<tr>
<td>39430</td>
<td>Kunststoffverarbeitung 2</td>
</tr>
<tr>
<td>39450</td>
<td>Kunststoffaufbereitung und Kunststoffrecycling</td>
</tr>
<tr>
<td>39960</td>
<td>Zerstörungsfreie Prüfung</td>
</tr>
<tr>
<td>41130</td>
<td>Konstruieren mit Kunststoffen</td>
</tr>
<tr>
<td>41140</td>
<td>Kunststoff-Werkstofftechnik 1</td>
</tr>
<tr>
<td>41160</td>
<td>Technologiemanagement für Kunststoffprodukte</td>
</tr>
</tbody>
</table>
Modul: 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041700005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>32690</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Christian Bonten</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Christian Bonten
| | • Kalman Geiger |
| | → Vorgezogene Master-Module
| | M.Sc. Technologiemanagement, PO 2011
| | → Gruppe Werkstoff- und Produktionstechnik
| | → Kunststofftechnik
| | → Ergänzungsfächer mit 3 LP |
| | Vorlesung: Grundlagen der Kunststofftechnik |
| 14. Literatur: | • Umfangreiches Skript
| | • W.Michaeli: Extrusionswerkzeuge für Kunststoffe und Kautschuk, C.Hanser Verlag München |
| 15. Lehrveranstaltungen und -formen: | 326901 Vorlesung Auslegung von Extrusions- und Spritzgießwerkzeugen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzzeit: 28 h
| | Selbststudium: 62 h
| | Gesamt: 90 h |

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 32691 Auslegung von Extrusions- und Spritzgießwerkzeugen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: Beamer-Präsentation, OHF, Tafelanschriebe</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Institut für Kunststofftechnik</td>
</tr>
</tbody>
</table>
Modul: 41130 Konstruieren mit Kunststoffen

2. Modulkürzel: 041710010
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Christian Bonten
9. Dozenten: Christian Bonten
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Kunststofftechnik
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Vorlesung: Grundlagen der Kunststofftechnik
12. Lernziele:
 Im Modul Konstruieren mit Kunststoffen
 • haben die Studierenden das Zusammenwirken von Bauteil-Gestaltung, Verarbeitungsverfahren und Werkstoff kennen gelernt.
 • haben die Studierenden die Gesamtheit der Einflüsse auf den Konstruktionsprozess gemeinsam erarbeitet, analysiert, weiterentwickelt und auf Produktbeispiele hin angepasst.
 Erworbene Kompetenzen: Die Studierenden
 • beherrschen die systematische Wahl des Werkstoffs und des Verarbeitungsverfahrens.
 • beherrschen die werkstoffgerechte, verarbeitungsgerechte und belastungsgerechte Konstruktion von Kunststoffbauteilen.
 • können das erlernte Wissen eigenständig erweitern und auf neue Produkt-Gestalt, Verarbeitungsrandbedingungen und neue eingesetzte Werkstoffe sinngemäß anpassen.
13. Inhalt:
 Konstruieren mit Kunststoffen:
 • Kunststoffspecifische Eigenschaften und deren Beeinflussung
 • Kunststoff-Verarbeitungsverfahren für Konstruktionsbauteile
 • Virtuelle Fertigung (Simulation des Verarbeitungs-prozesses) und dessen Einfluss auf Bauteileigenschaft.
 • Konstruktions- und Integrationsmöglichkeiten durch Sonderverfahren
 • Geometrische Unterteilung von Kunststoffbauteilen und systematische Werkstoffvorauswahl
 • Auswahl des Fertigungsverfahrens und fertigungsgerechtes Konstruieren
 • werkstoffgerechte Verbindungstechnik
 • werkstoffgerechtes Konstruieren
 • Auslegung von Kunststoffbauteilen (analytisch, empirisch und mit iterativen Näherungsverfahren)
 • Dimensionierung und Dimensionierungskennwerte
14. Literatur:
 Präsentation in pdf-Format
15. Lehrveranstaltungen und -formen: 411301 Vorlesung Konstruieren mit Kunststoffen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium: 69 h
 Summe: 90 h

17. Prüfungsnummer/n und -name: 41131 Konstruieren mit Kunststoffen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Beamer-Präsentation
 Tafelanschriebe

20. Angeboten von: Institut für Kunststofftechnik
Modul: 41140 Kunststoff-Werkstofftechnik 1

2. Modulkürzel: 041710014
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Christian Bonten
9. Dozenten: Christian Bonten

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Kunststofftechnik ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Vorlesung: Grundlagen der Kunststofftechnik

12. Lernziele: Erworbene Kompetenzen im Modul Kunststoff-Werkstofftechnik 1: Die Studierende
 • haben Polymerwerkstoffe, deren chemische Aufbau, Unterteilung, Geschichte und wachsende wirtschaftliche Bedeutung gelernt.
 • haben das rheologische Fließverhalten, die mechanischen Eigenschaften, sowie das elastische und viskoelastische Verhalten von Kunststoffen verstanden.
 • können die wichtigen Prüf- und Analyseverfahren zur Charakterisierung der thermischen, mechanischen, elektrischen, magnetischen sowie optischen Eigenschaften der Polymerwerkstoffe einordnen und entsprechend gegebener Aufgabenstellungen auswählen.
 • verstehen, wie die Eigenschaften von Polymerwerkstoffen durch die Anwendung von Additiven, Fasern, Füllstoffen, Verstärkungsstoffen und Weichmachern beeinflusst werden und wie Kunststoffe altern.

13. Inhalt:
 Kunststoff-Werkstofftechnik 1:
 • Einleitung: Geschichte, Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen, chemischer Aufbau und Struktur vom Monomer zum Polymer
 • Verhalten in der Schmelze: Rheologie und Rheometrie.
 • Elastisches und viskoelastisches Verhalten von Kunststoffen
 • Thermische und weitere Eigenschaften von Kunststoffen
 • Beeinflussung der Polymereigenschaften und Alterung
 • Grundlagen der Keramiken

14. Literatur:
 • Präsentation in pdf-Format
 • W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe , Hanser Verlag
 • G. Ehrenstein: Polymer-Werstoffe , Struktur - Eigenschaften - Anwendung , Hanser Verlag

15. Lehrveranstaltungen und -formen: 411401 Vorlesung Kunststoff-Werkstofftechnik 1

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium: 69 h
 Summe: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>41141 Kunststoff-Werkstofftechnik 1 (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
</tbody>
</table>
| 19. Medienform: | • Beamer-Präsentation
| | • Tafelanschriebe |
| 20. Angeboten von: | Institut für Kunststofftechnik |
Modul: 39450 Kunststoffaufbereitung und Kunststoffrecycling

2. Modulkürzel: 041710006
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Bonten
9. Dozenten: • Christian Bonten
• Michael Kroh
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Kunststofftechnik
 → Ergänzungsfächer mit 3 LP
 Vorlesung: Grundlagen der Kunststofftechnik
 Übersicht über gängige Kunststoffrecyclingprozesse; Verfahrens- und Anlagenkonzepte; Eigenschaften und Einsatzfelder von Rezyklaten.
14. Literatur:
• Umfangreiches Skript
• I. Manas, Z. Tadmor: Mixing and Compounding of Polymers, C. Hanser Verlag, München
15. Lehrveranstaltungen und -formen: 394501 Vorlesung Kunststoffaufbereitung und Kunststoffrecycling
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium / Nacharbeitszeit: 62 h
 Gesamt: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>39451</th>
<th>Kunststoffaufbereitung und Kunststoffrecycling (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td>• Beamer-Präsentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tafelanschriebe</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td>Institut für Kunststofftechnik</td>
</tr>
</tbody>
</table>
Modul: 39420 Kunststoffverarbeitung 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041710003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Christian Bonten</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Christian Bonten</td>
</tr>
<tr>
<td></td>
<td>• Simon Geier</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Kunststofftechnik</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

Extrusion:

Unterteilung der verschiedenen Arten der Extrusion (Doppelschnecke, Einschnecke), Maschinenkomponenten, Extrusionsprozess, rheologische und thermodynamische Detailvorgänge in Schnecke und Werkzeug, Grundlagen der Prozesssimulation. Folgeprozesse Folienblasen, Flachfolie, Blasformen, Thermoformen

Spritzgießen:

Maschinenkomponenten, Spritzgießprozess und -zyklus, rheologische und thermodynamische Detailvorgänge in Schnecke und Spritzgießwerkzeug, Grundlagen der Prozesssimulation. Sonderverfahren wie z.B.

Mehrkomponentenspritzgießen, Montagespritzgießen, In-Mold-Decoration u.a.

14. Literatur:

- Präsentation in pdf-Format
- W. Michaeli, Einführung in die Kunststoffverarbeitung, Hanser Verlag.

15. Lehrveranstaltungen und -formen: 394201 Vorlesung Kunststoffverarbeitung 1

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	28 h
Selbststudiumszeit / Nacharbeitszeit:	62 h
Gesamt:	90 h

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>39421 Kunststoffverarbeitung 1 (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, OHF, Tafelanschriebe</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kunststofftechnik</td>
</tr>
</tbody>
</table>
Modul: 39430 Kunststoffverarbeitung 2

2. Modulkürzel: 041710004
5. Modulldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Christian Bonten
9. Dozenten: • Christian Bonten
 • Hubert Ebbing
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Kunststofftechnik
 → Ergänzungsfächer mit 3 LP
 Vorlesung: Grundlagen der Kunststofftechnik

Verarbeitungstechnologie von Reaktionskunststoffen:

Werkstoffliche und prozesstechnische Aspekte der Polyurethanherstellung, Verarbeitungsverfahren für Kautschuke (z.B. Silikonkautschuk) und Harzsysteme, Werkstoffeigenschaften und wie diese gezielt durch den Formgebungsprozess beeinflusst werden können, Charakterisierung des Verarbeitungsverhaltens, Technologien zur Qualitätssicherung, Verwendung von Simulationswerkzeugen

Technologie der Pressen (z.B. SMC); Technologie der Schaumstoffherstellung:

Stoffliche und prozesstechnische Aspekte der Schaumstoffherstellung, Reaktionsschaumstoffe, Spritzgießen und Extrudieren thermoplastischer Schaumsysteme, Verwendung von Schaumwerkstoffen zur Gewichtsreduktion (Leichtbau) und zur Dämmung (akustische und thermische Dämmung), Gestalten mit Schaumstoffen

14. Literatur: • Präsentation in pdf-Format
 • W. Michaeli, Einführung in die Kunststoffverarbeitung, Hanser Verlag,

15. Lehrveranstaltungen und -formen: 394301 Vorlesung Kunststoffverarbeitung 2

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 39431 Kunststoffverarbeitung 2 (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td></td>
<td>• Beamer-Präsentation</td>
</tr>
<tr>
<td></td>
<td>• Tafelanschriebe</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
</tr>
<tr>
<td></td>
<td>Institut für Kunststofftechnik</td>
</tr>
</tbody>
</table>
Modul: 36910 Mehrphasenströmungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074610010</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Manfred Piesche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>→</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>→</td>
<td>Gruppe Verfahrenstechnik</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td>Mechanische Verfahrenstechnik</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>→</td>
<td>Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td>Kunststofftechnik</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Inhaltlich: Höhere Mathematik I - III, Strömungsmechanik
Formal: keine

12. Lernziele:

Die Studierenden sind am Ende der Lehrveranstaltung in der Lage, mathematisch-numerische Modelle von Mehrphasenströmungen zu erstellen. Sie kennen die mathematisch-physikalischen Grundlagen von Mehrphasenströmungen.

13. Inhalt:

Mehrphasenströmungen:
- Transportprozesse bei Gas-Flüssigkeitsströmungen in Rohren
- Kritische Massenströmre
- Blasendynamik
- Bildung und Bewegung von Blasen
- Widerstandsverhalten von Feststoffpartikeln
- Pneumatischer Transport körniger Feststoffe durch Rohrleitungen
- Kritischer Strömungszustand in Gas-Feststoffgemischen
- Strömungsmechanik des Fließbettes

14. Literatur:

- Durst, F.: Grundlagen der Strömungsmechanik, Springer Verlag, 2006
- Brauer, H.: Grundlagen der Ein- und Mehrphasenströmungen, Sauerlaender, 1971

15. Lehrveranstaltungen und -formen:

| 369101 | Vorlesung Mehrphasenströmungen |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 21 h | Selbststudium: 69 h |
| Summe: 90 h |

17. Prüfungsnummer/n und -name:

| 36911 | Mehrphasenströmungen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, Rechnerübungen

20. Angeboten von:
Modul: 32700 Rheologie und Rheometrie der Kunststoffe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041700005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Christian Bonten</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Kalman Geiger
| | • Christian Bonten |
| | → Vorgezogene Master-Module
| | M.Sc. Technologiemanagement, PO 2011
| | → Gruppe Werkstoff- und Produktionstechnik
| | → Kunststofftechnik
| | → Ergänzungsfächer mit 3 LP |
| | Vorlesung: Grundlagen der Kunststofftechnik |
| 14. Literatur: | • Umfassendes Skript
| | • Praktische Rheologie der Kunststoffe und Elastomere, VDI-Verlag |
| 15. Lehrveranstaltungen und -formen: | 327001 Vorlesung Rheologie und Rheometrie der Kunststoffe |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
| | Selbststudium: 62 h
| | Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 32701 Rheologie und Rheometrie der Kunststoffe (BSL), mündliche Prüfung, Gewichtung: 1.0 |
| 18. Grundlage für ... : |
19. Medienform:

- Beamer-Präsentation
- OHF
- Tafelanschriebe

20. Angeboten von: Institut für Kunststofftechnik
Modul: 41160 Technologiemanagement für Kunststoffprodukte

2. Modulkürzel: 041710011 5. Moduldauer: 1 Semester

4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Bonten

9. Dozenten: Christian Bonten

 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Kunststofftechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Vorlesung: Grundlagen der Kunststofftechnik

12. Lernziele:
 Im Modul Technologiemanagement für Kunststoffprodukte
 • haben die Studierenden die Phasen der Entstehung von Kunststoffprodukten, von der Idee bis zum fertigen Produkt, kennen gelernt.
 • haben die Studierenden die Gesamtheit der Einflüsse auf den Produktentstehungsprozess gemeinsam erarbeitet, analysiert, weiterentwickelt und auf Produktbeispiele hin angepasst.

 Erworbene Kompetenzen: Die Studierenden
 • können Strategien für die Ausrichtung des Produktsortiments eines Unternehmens ableiten.
 • beherrschen die Koordination von Entwicklungsprojekten in den verschiedenen Produktentstehungsphasen.
 • beherrschen die Koordination von Entwicklungsprojekten innerhalb verschiedener Organisationsformen eines Unternehmens.
 • können das erlernte Wissen eigenständig erweitern und auf neue Märkte, Produkte und Verarbeitungstechnologien sinngemäß anpassen.

13. Inhalt: Technologiemanagement für Kunststoffprodukte:
 Behandlung der wichtigsten Phasen der Entstehung von Kunststoffprodukten aus der
 • **Marktsicht**: Produktinnovationen für die Unternehmens-sicherung; Impulse für neue Produkte; Zeitmanagement für Produktinnovationen; Strategien zur Ausrichtung des Produktsortiments.
 • **Unternehmenssicht**: Management von Entwicklungs-projekten; betriebliche Organisationsformen; Simul-taneous Engineering in der Kunststoffindustrie; strateg., taktische und operative Entscheidungen während der Produktentstehung; Technologiemanagement für Kunststoffprodukte; Wissens- und, Innovationsmanagement.
 • **Technologiesicht**: Alleinstellungsmerkmale von Kunststoffprodukten: Werkstoffspezifische Alleinstellungsmerkmale; Vorteile der hohen Formgebungsvielfalt.
 Konzeptphase: Aufgaben der Vorentwicklung; Anforder-ungen und Funktionen von Produkten; Umsetzung in Werkstoffkennwerte;
Wahl des richtigen Werkstoffes; Wahl des geeigneten Verarbeitungsverfahrens; Wahl eines geeigneten Fügeverfahrens

Ausarbeitungsphase: Nutzung von Prototypen; Möglichkeiten der virtuellen Gestaltung; Möglichkeiten der virtuellen Fertigung; Relevanz der virtuellen Erprobung; Erproben und Bewerten von Produkten

14. Literatur:
- Präsentation in pdf-Format

15. Lehrveranstaltungen und -formen:
- 411601 Vorlesung Technologiemanagement für Kunststoffprodukte

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 h
- Selbststudium: 69 h
- Summe: 90 h

17. Prüfungsnummer/n und -name:
- 41161 Technologiemanagement für Kunststoffprodukte (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Beamer-Präsentation
- Tafelanschriebe

20. Angeboten von:
- Institut für Kunststofftechnik
Modul: 39960 Zerstörungsfreie Prüfung

2. Modulkürzel: 041711023 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Gerhard Busse
9. Dozenten: Gerhard Busse

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Kunststofftechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden sind mit dem Prinzip und den typischen Anwendungsbereichen der einzelnen zerstörungsfreien Prüfverfahren vertraut, sie kennen die Besonderheiten, so daß sie die am besten geeigneten Verfahren für spezifische Anwendungen auswählen und die damit erzielten Ergebnisse zuverlässig interpretieren können.

14. Literatur:
 • Detailliertes Vorlesungsskript
 • Spezielle und aktuelle Veröffentlichungen, die im Laufe der Vorlesungen verteilt werden.
 • Weiterführende Literaturzitate.

15. Lehrveranstaltungen und -formen: 399601 Vorlesung Zerstörungsfreie Prüfverfahren

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudiumszeit / Nacharbeitszeit: 69 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 39961 Zerstörungsfreie Prüfung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

20. Angeboten von: Institut für Kunststofftechnik

Stand: 23. Oktober 2012 Seite 336 von 1220
2252 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 14010 Grundlagen der Kunststofftechnik
- 37690 Kunststoff-Konstruktionstechnik
- 37700 Kunststoffverarbeitungstechnik
- 41150 Kunststoff-Werkstofftechnik
Modul: 14010 Grundlagen der Kunststofftechnik

2. Modulkürzel: 041710001 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Bonten
9. Dozenten: Christian Bonten

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Werkstoff- und Produktionstechnik
 ➞ Kunststofftechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Werkstoff- und Produktionstechnik
 ➞ Kunststofftechnik
 ➞ Kernfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➞ Vertiefungsmodul
 ➞ Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

 • Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
 • Erstarrung und Kraftübertragung der Kunststoffe
 • Rheologie und Rheometrie der Polymerschmelze
• Eigenschaften des Polymerfeste Körpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymereigenschaften; Alterung der Kunststoffe
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
• Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
• Präsentation in pdf-Format
• W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: *Werkstoffkunde Kunststoffe*, Hanser Verlag
• W. Michaeli: *Einführung in die Kunststoffverarbeitung*, Hanser Verlag
• G. Ehrenstein: *Faserverbundkunststoffe, Werkstoffe - Verarbeitung - Eigenschaften*, Hanser Verlag

15. Lehrveranstaltungen und -formen:
140101 Vorlesung Grundlagen der Kunststofftechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Nachbearbeitungszeit: 124 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
14011 Grundlagen der Kunststofftechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
• 37690 Kunststoff-Konstruktionstechnik
• 37700 Kunststoffverarbeitungstechnik
• 18380 Kunststoffverarbeitung 1
• 39420 Kunststoffverarbeitung 1
• 18390 Kunststoffverarbeitung 2
• 39430 Kunststoffverarbeitung 2
• 41150 Kunststoff-Werkstofftechnik
• 18400 Auslegung von Extrusion- und Spritzgießwerkzeugen
• 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 18410 Kunststoffaufbereitung und Kunststoffrecycling
• 39450 Kunststoffaufbereitung und Kunststoffrecycling
• 18420 Rheologie und Rheometrie der Kunststoffe
• 32700 Rheologie und Rheometrie der Kunststoffe

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von:
Institut für Kunststofftechnik
Modul: 37690 Kunststoff-Konstruktionstechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Christian Bonten
9. Dozenten: Christian Bonten

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Kunststofftechnik
 → Kern-/Ergänzungsfächer mit 6 LP

 Vorlesung: Grundlagen der Kunststofftechnik

12. Lernziele:

13. Inhalt:
 Kunststoff-Konstruktionstechnik 1:
 - Einführung zur Notwendigkeit und Anforderung bei der Entwicklung neuer Produkte
 - Schritte zur Umsetzung des Lösungskonzeptes in ein stofflich und maßlich festgelegtes Bauteil: Auswahl des Werkstoffes und des Fertigungsverfahrens, sowie die Gestaltung und Dimensionierung
 - Korrelation zwischen Stoffeigenschaften und Verarbeitungseinflüssen
 - Fertigungsgerechte Produktenwicklung: Beispiel der Spritzgießsonderverfahren
 - Einführung in die Auslegung des Spritzgießwerkzeuges
 - Gestaltungs- und Dimensionierungsrichtlinien im konstruktiven Einsatz mit Kunststoff
 - Modellbildung und Simulation in der Bauteilauslegung unter Berücksichtigung des jeweiligen Verarbeitungsprozesses
 - Werkstoffgerechtes Konstruieren und spezielle Verbindungstechniken
 - Überblick über Maschinenelemente aus Kunststoff
 - Einführung in Rapid Prototyping und Rapid Tooling
 - Einführung in die Bauteilprüfung

 Kunststoff-Konstruktionstechnik 2:
Marktsicht: Produktinnovationen für die Unternehmenssicherung;
Impulse für neue Produkte; Zeitmanagement für Produktinnovationen;
Strategien zur Ausrichtung des Produktportfolios.

Unternehmenssicht: Management von Entwicklungsprojekten;
betriebliche Organisationsformen; Simultaneous Engineering in der
Kunststoffindustrie; strategische, taktische und operative Entscheidungen
während der Produktentstehung; Technologiemanagement für
Kunststoffprodukte; Wissensmanagement; Innovationsmanagement.

Technologiesicht:
• Alleinstellungsmerkmale von Kunststoffprodukten:
 Werkstoffspezifische Alleinstellungsmerkmale; Vorteile der hohen
 Formgebungsvielfalt.
• Konzeptphase: Aufgaben der Vorentwicklung; Anforderungen und
 Funktionen von Produkten; Umsetzung in Werkstoffkennwerte;
 Wahl des richtigen Werkstoffes; Wahl des geeigneten
 Verarbeitungsverfahrens; Wahl eines geeigneten Fügeverfahrens
• Ausarbeitungsphase: Nutzung von Prototypen; Möglichkeiten der
 virtuellen Gestaltung; Möglichkeiten der virtuellen Fertigung;
 Relevanz der virtuellen Erprobung; Erproben und Bewerten von
 Produkten

Resümee

14. Literatur:
• Präsentation in pdf-Format
• Gottfried W. Ehrenstein: Mit Kunststoffen konstruieren - Eine
 Einführung, Carl Hanser Verlag München, ISBN-10: 3-446-41322-7/
• Gunter Erhard: Konstruktion mit Kunststoffen, Carl Hanser Verlag
• Bonten, Christian: Produktentwicklung - Technologiemanagement
 für Kunststoffprodukte, Carl Hanser Verlag München, ISBN
 3-446-21696-0.

15. Lehrveranstaltungen und -formen:
• 376901 Vorlesung Kunststoff-Konstruktionstechnik 1
• 376902 Vorlesung Kunststoff-Konstruktionstechnik 2

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
37691 Kunststoff-Konstruktionstechnik (PL), mündliche Prüfung, 60
Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von:
Institut für Kunststofftechnik
Modul: 41150 Kunststoff-Werkstofftechnik

2. Modulkürzel: 041710012
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Christian Bonten

9. Dozenten: Christian Bonten

M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Werkstoff- und Produktionsverfahren ➞ Kunststofftechnik ➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Vorlesung: Grundlagen der Kunststofftechnik

12. Lernziele: Erworbene Kompetenzen im Modul Kunststoff-Werkstofftechnik 1: Die Studierenden

- haben Polymerwerkstoffe, deren chemische Aufbau, Unterteilung, Geschichte und wachsende wirtschaftliche Bedeutung kennen gelernt.
- haben die Studierenden das rheologische Fließverhalten, die mechanischen Eigenschaften, sowie das elastische und viskoelastische Verhalten von Kunststoffen verstanden.
- können die wichtigen Prüf- und Analyseverfahren zur Charakterisierung der thermischen, mechanischen, elektrischen, magnetischen sowie optischen Eigenschaften der Polymerwerkstoffe einordnen und entsprechend gegebener Aufgabenstellungen auswählen.
- verstehen, wie die Eigenschaften von Polymerwerkstoffen durch die Anwendung von Additiven, Fasern, Füllstoffen, Verstärkungsstoffen und Weichmachern beeinflusst werden und wie Kunststoffe altern.

Erworbene Kompetenzen im Modul Kunststoff-Werkstofftechnik 2: Die Studierenden

- haben die Fähigkeit erlangt, Kunststoffaufbereitungsprozesse zu analysieren und aus Modellen die wichtigsten Kenngrößen eines Aufbereitungsprozesses abzuleiten.
- haben einfache Modelle entwickelt, mit deren Hilfe Experimente beschrieben und daraus die richtigen Schlüsse für den Aufbereitungsprozess gezogen werden können.
- sind in der Lage mit den erlernten methodischen Werkzeugen Versuchsergebnisse zu bewerten und Vorhersagen hinsichtlich der Qualität neu generierter Kunststoffe zu machen.
- können damit neue Grundlagen für die Gestaltung von Kunststoffaufbereitungs- und -prozessen aufzeigen.

13. Inhalt: Kunststoff-Werkstofftechnik 1:

- Einleitung: Geschichte, Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen, chemischer Aufbau und Struktur vom Monomer zum Polymer
- Verhalten in der Schmelze: Rheologie und Rheometrie.
- Elastisches und viskoelastisches Verhalten von Kunststoffen
• Thermische und weitere Eigenschaften von Kunststoffen
• Beeinflussung der Polymereigenschaften und Alterung

Kunststoff-Werkstofftechnik 2:

• Darstellung und formale Beschreibung der kontinuierlichen und diskontinuierlichen Grundoperationen der Kunststoffaufbereitung (Zerteilen, Verteilen, Homogenisieren, Entgasen, Granulieren)
• Modifizierung von Polymeren durch Einarbeitung von Additiven (Pigmente, Stabilisatoren, Gleitmittel, Füll- und Verstärkungsstoffen, Schlagzähmacher, etc.)
• Grundlagen der reaktiven Kunststoffaufbereitung
• Generierung neuer Werkstoffeigenschaftsprofile durch Funktionalisieren, Blenden und Legieren
• Theoretische Ansätze zur Beschreibung der Morphologieausbildung bei Mehrphasensystemen sowie Konzepte zur Herstellung von Kunststoffen auf der Basis nachwachsender Rohstoffe
• Übersicht über gängige Kunststoffrecyclingprozesse; Verfahrens- und Anlagenkonzepte; Eigenschaften und Einsatzfelder von Rezyklaten

14. Literatur:
• Präsentation in pdf-Format
• W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser Verlag
• G. Ehrenstein: Polymer-Werkstoffe, Struktur - Eigenschaften - Anwendung, Hanser Verlag
• I. Manas, Z. Tadmor: Mixing and Compounding of Polymers, Hanser Verlag

15. Lehrveranstaltungen und -formen:
• 411501 Vorlesung Kunststoff-Werkstofftechnik 1
• 411502 Vorlesung Kunststoff-Werkstofftechnik 2

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
41151 Kunststoff-Werkstofftechnik (BSL), mündliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von:
Institut für Kunststofftechnik
Modul: 37700 Kunststoffverarbeitungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041710009</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Bonten

9. Dozenten: • Hubert Ehbing • Christian Bonten • Simon Geier

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Werkstoff- und Produktionstechnik
➞ Kunststofftechnik
➞ Kern-/Ergänzungsfächer mit 6 LP

Vorlesung: Grundlagen der Kunststofftechnik

13. Inhalt:

Kunststoffverarbeitungstechnik 1:
Behandlung der wichtigsten Formgebungsverfahren Extrusion und Spritzgießen sowie Folgeverfahren und Sonderverfahren.

- **Extrusion:** Unterteilung der verschiedenen Arten der Extrusion (Doppelschnecke, Einschnecke), Maschinenkomponenten, Extrusionsprozess, rheologische und thermodynamische Detailvorgänge in Schnecke und Werkzeug, Grundlagen der Prozesssimulation. Folgeprozesse Folienblasen, Flachfolie, Blasformen, Thermoformen

- **Spritzgießen:** Maschinenkomponenten, Spritzgießprozess und -zyklus, rheologische und thermodynamische Detailvorgänge in Schnecke und Spritzgießwerkzeug, Grundlagen der Prozesssimulation. Sonderverfahren wie z.B. Mehrkomponentenspritzgießen, Montagespritzgießen, In-Mold-Decoration u.a.

Kunststoffverarbeitungstechnik 2:
Die Vorlesung behandelt die gängigen Formgebungsprozesse für reagierende Polymerwerkstoffe unter verfahrens-, betriebs- und anlagentechnischen Gesichtspunkten.

Verarbeitungstechnologie von Reaktionskunststoffen: Werkstoffliche und prozesstechnische Aspekte der Polyurethanherstellung, Verarbeitungsverfahren für Kautschuke (z.B. Silikonkautschuk) und Harzsysteme, Werkstoffeigenschaften und wie diese gezielt durch den
Formgebungsprozess beeinflusst werden können, Charakterisierung des Verarbeitungsverhaltens, Technologien zur Qualitätssicherung, Verwendung von Simulationswerkzeugen

Technologie der Pressen (z.B. SMC); Technologie der Schaumstoffherstellung: Stoffliche und prozesstechnische Aspekte der Schaumstoffherstellung, Reaktionsschaumstoffe, Spritzgießen und Extrudieren thermoplastischer Schaumsysteme, Verwendung von Schaumwerkstoffen zur Gewichtsreduktion (Leichtbau) und zur Dämmung (akustische und thermische Dämmung), Gestalten mit Schaumstoffen

| 14. Literatur: | • Präsentation in pdf-Format
| | • W. Michaeli, Einführung in die Kunststoffverarbeitung, Hanser Verlag. |
| 15. Lehrveranstaltungen und -formen: | • 377001 Vorlesung Kunststoffverarbeitungstechnik 1
| | • 377002 Vorlesung Kunststoffverarbeitungstechnik 2 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
| | Selbststudium: 124 h
	Summe: 180 h
17. Prüfungsnummer/n und -name:	37701 Kunststoffverarbeitungstechnik (PL), mündliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ... :	
19. Medienform:	• Beamer-Präsentation
	• Tafelanschriebe
20. Angeboten von:	Institut für Kunststofftechnik
2251 Kernfächer mit 6 LP

Zugeordnete Module: 14010 Grundlagen der Kunststofftechnik
Modul: 14010 Grundlagen der Kunststofftechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041710001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ.-Prof. Dr.-Ing. Christian Bonten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christian Bonten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kernmodule
- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kernmodule
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Pflichtmodule mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Kunststofftechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Kunststofftechnik
 - Kernfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsdkurse
 - Wahlmöglichkeit Gruppe 1: Werkstoffe und Festigkeit

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstaun und Kraftübertragung der Kunststoffe
- Rheologie und Rheometrie der Polymerschmelze

13. Inhalt:

- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstaun und Kraftübertragung der Kunststoffe
- Rheologie und Rheometrie der Polymerschmelze
• Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymereigenschaften; Alterung der Kunststoffe
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
• Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
• Präsentation in pdf-Format
• W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser Verlag
• W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
• G. Ehrenstein: Faserverbundkunststoffe, Werkstoffe - Verarbeitung - Eigenschaften, Hanser Verlag

15. Lehrveranstaltungen und -formen: 140101 Vorlesung Grundlagen der Kunststofftechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 Stunden
Nachbearbeitungszeit: 124 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
14011 Grundlagen der Kunststofftechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
• 37690 Kunststoff-Konstruktionstechnik
• 37700 Kunststoffverarbeitungstechnik
• 18380 Kunststoffverarbeitung 1
• 39420 Kunststoffverarbeitung 1
• 18390 Kunststoffverarbeitung 2
• 39430 Kunststoffverarbeitung 2
• 41150 Kunststoff-Werkstofftechnik
• 18400 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 18410 Kunststoffaufbereitung und Kunststoffrecycling
• 39450 Kunststoffaufbereitung und Kunststoffrecycling
• 18420 Rheologie und Rheometrie der Kunststoffe
• 32700 Rheologie und Rheometrie der Kunststoffe

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von:
Institut für Kunststofftechnik
Modul: 33790 Praktikum Kunststofftechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041710009</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Christian Bonten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Hans Gerhard Fritz</td>
<td>• Kalman Geiger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer A (ING)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➔ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➔ Kunststofftechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte sinnvoll anzuwenden und sie weitgehend selbständig in die Praxis umzusetzen

13. Inhalt:

Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

1. Glattrohr- und Nutbuchsenextruder im Vergleich

- Ermittlung der Durchsatzkennfelder m& (n) für verschiedene Werkzeugwiderstandsbeiwerte
- Messung der axialen Massedruckverläufe p(z)
- Ermittlung der Massetemperaturen und Massetemperaturhomogenitäten an der Schneckenspitze
- Ermittlung der spezifischen Energieumsätze
- Energiebilanzen beider Extrudertypen
- Möglichkeiten der Energieeinsparung
- Beeinflussung der thermischen und mischtechnischen Schmelzehomogenität durch

1) Schneckengeometrie-Variationen
2) Systemdrosselung
3) Materialvorwärzung

2. Rheologische Charakterisierung von Polymermischungen (Blends)

- Messtechnische Ermittlung rheologischer Stoffwertfunktionen mittels Kapillar- und Rotationsrheometer
- Erlernen und Praktizieren der numerischen Parameteridentifikation rheologischer Stoffgesetze und diskreter Relaxationszeitspektren von viskoelastischen Flüssigkeiten
- Unter Verwendung verschiedener Softwarepakete (MATLAB, IRIS, RheoHub) werden die mit den Rheometersystemen ermittelten Messdatensätze ausgewertet und die rheologischen Stoffwertfunktionen der viskoelastischen Fluide dargestellt
• Darstellung der Ergebnisse und deren Diskussion unter Reflexion auf den makromolekularen Aufbau und die Morphologie der Polymerblendes

14. Literatur: Skript, e-learning Programme, Praktikumsunterlagen

15. Lehrveranstaltungen und -formen:
• 337901 Spezialisierungsfachversuch 1
• 337902 Spezialisierungsfachversuch 2
• 337903 Spezialisierungsfachversuch 3
• 337904 Spezialisierungsfachversuch 4
• 337905 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 337906 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 337907 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 337908 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
33791 Praktikum Kunststofftechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
226 Laser in der Materialbearbeitung

Zugeordnete Module:

- 2261 Kernfächer mit 6 LP
- 2262 Kern-/Ergänzungsfächer mit 6 LP
- 2263 Ergänzungsfächer mit 3 LP
- 33800 Praktikum Lasertechnik
2263 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29980</td>
<td>Einführung in das Optik-Design</td>
</tr>
<tr>
<td></td>
<td>32110</td>
<td>Thermokinnetische Beschichtungsverfahren</td>
</tr>
<tr>
<td></td>
<td>32740</td>
<td>Physikalische Prozesse der Lasermaterialbearbeitung</td>
</tr>
<tr>
<td></td>
<td>32750</td>
<td>Faserlaser</td>
</tr>
<tr>
<td></td>
<td>32760</td>
<td>Diodenlaser</td>
</tr>
</tbody>
</table>
Modul: 32760 Diodenlaser

2. Modulkürzel: 073000008 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Thomas Graf
9. Dozenten: • Uwe Brauch
• Andreas Voß

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik → Technische Optik → Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik → Laser in der Materialbearbeitung → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

14. Literatur: Skript und Folien der Vorlesung

15. Lehrveranstaltungen und -formen: 327601 Vorlesung Diodenlaser

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32761 Diodenlaser (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Strahlwerkzeuge
Modul: 29980 Einführung in das Optik-Design

2. Modulkürzel: 073100007
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Christoph Menke
9. Dozenten: • Christoph Menke
• Alois Herkommer
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätelektrotechnik und Technische Optik
 → Technische Optik
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Laser in der Materialbearbeitung
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
 empfohlen: Grundlagen der Technischen Optik
12. Lernziele:
 Die Studierenden
 - kennen die physikalischen Grundlagen der optischen Abbildung und sind mit den
 Konventionen und Bezeichnungen der geometrischen Optik vertraut
 - können die Bildgüte von optischen Systemen bewerten
 - kennen die Entstehung und die Auswirkung einzelner Abbildungsfehler
 - können geeignete Korrektionsmittel zu den einzelnen Abbildungsfehler benennen und anwenden
 - sind in der Lage mit Hilfe des Optik-Design Programms ZEMAX (auf bereitgestellten
 Rechnern) einfache Optiksysteme zu optimieren
13. Inhalt:
 - Grundlagen der geometrischen Optik
 - Geometrische und chromatische Aberrationen (Entstehung, Systematik, Auswirkung,
 Gegenmaßnahmen)
 - Bewertung der Abbildungsgüte optischer Systeme
 - Verschiedene Typen optischer Systeme (Fotoobjektive, Teleskope, Okulare,
 Mikroskope, Spiegelsysteme, Zoomsysteme)
 - Systementwicklung (Ansatzfindung, Optimierung, Tolerierung, Konstruktion)
14. Literatur:
 - Manuskript der Vorlesung
 - Gross: Handbook of optical systems Vol. 1-4
 - Kingslake: Lens Design Fundamentals
 - Smith: Modern Optical Engineering
 - Fischer/Tadic-Galeb: Optical System Design
 - Shannon: The Art and Science of Optical Design
15. Lehrveranstaltungen und -formen: 299801 Vorlesung Einführung in das Optik-Design
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>29981 Einführung in das Optik-Design (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Powerpoint-Vortrag für Studenten bereitgestellte Notebooks mit Zemax-Optik-Design Programm</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Technische Optik</td>
</tr>
</tbody>
</table>
Modul: 32750 Faserlaser

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000007</th>
<th>5. Modul:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Voß, Uwe Brauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Laser in der Materialbearbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>- Folien der Vorlesungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Michel J. F. Digonnet: Rare-Earth-Doped Fiber Lasers and Amplifiers, 2. Auflage, Marcel Dekker (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>327501 Vorlesung Wellenleiter in der Lasertechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32751 Faserlaser (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Strahlwerkzeuge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32740 Physikalische Prozesse der Lasermaterialbearbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000006</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Peter Berger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thomas Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik → Laser in der Materialbearbeitung → Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anhand zahlreicher Beispiele wird die Bedeutung der einzelnen Wechselwirkungsmechanismen für das jeweilige Verfahrensergebnis erläutert.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Folien der Vorlesungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>Vorlesung Physikalische Prozesse der Lasermaterialbearbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32741 Physikalische Prozesse der Lasermaterialbearbeitung (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Institut für Strahlwerkzeuge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Oktober 2012
Modul: 32110 Thermokinetische Beschichtungsverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072200005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: PD Dr. Andreas Killinger
9. Dozenten: Andreas Killinger
10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>Laser in der Materialbearbeitung</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studenten können:
- Funktionsprinzipien thermokinetischer Beschichtungsverfahren beschreiben und erklären.
- Verfahrensspezifische Eigenschaften von Schichten auflisten und benennen.
- Unterschiede der einzelnen Verfahrensvarianten untereinander wiedergeben und gegenüberstellen.
- Eignung einer bestimmten Verfahrensvariante hinsichtlich vorgegebener Schichteigenschaften beurteilen und begründen.
- Herstellverfahren für Pulver und Drähte wiedergeben, vergleichen und Beispiele geben.
- Einfluss der Pulvereigenschaften auf den Prozess vorhersagen und bewerten.
- Einfluss der Pulvereigenschaften auf die Schichteigenschaften verstehen und ableiten.
- Industrielle Anwendungsfelder im Maschinenbau benennen und wiedergeben.

13. Inhalt:

Stichpunkte:
- Flammspritzen, Elektrolichtbogendrahtspritzen, Überschallpulverflammspritzen, Suspensionsflammspritzen, Plasmaspritzen.
- Herstellung und Eigenschaften von Spritzzusatzwerkstoffen.
- Fertigungs- und Anlagentechnik.
- Industrielle Anwendungen (Überblick).
14. Literatur:
- Skript, Literaturliste

15. Lehrveranstaltungen und -formen:
- 321101 Vorlesung Thermokinetische Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnr/n und -name:
- 32111 Thermokinetische Beschichtungsverfahren (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
2262 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 14140 Materialbearbeitung mit Lasern
- 29990 Grundlagen der Laserstrahlquellen
- 33420 Anlagentechnik für die laserbasierte Fertigung
- 36120 Scheibenlaser
Modul: 33420 Anlagentechnik für die laserbasierte Fertigung

2. Modulkürzel: 073000003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 2 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Thomas Graf
9. Dozenten: • Rudolf Weber • Andreas Letsch
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik
 → Laser in der Materialbearbeitung
 → Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen:
12. Lernziele:
 • Die Voraussetzungen für sinnvolle und effiziente Laser-Anwendungen in der Materialbearbeitung kennen und verstehen.
 • Begreifen der für den Anlagenbau entscheidenden Laserprozessgrößen.
 • Wissen wie diese durch geeignete Auslegung der Anlagen erfüllt werden können.
 • Anlagen bezüglich technischen und wirtschaftlichen Gesichtspunkten bewerten und verbessern können.
13. Inhalt:
 • Die wichtigsten Anwendungen des Lasers in der Materialbearbeitung
 • Anlagenkonzepte vom Roboterschweißen bis zur Laserfusion
 • Auslegung der Anlage von den mechanischen Komponenten und Strahlführungssystemen bis zur Achsendynamik
 • Peripherie von der Steuerung bis zu Sicherheitsaspekten
 • Kommerzielle Aspekte von der Stückkostenrechnung bis zur Anlagenamortisation
14. Literatur:
 Folien der Vorlesungen
15. Lehrveranstaltungen und -formen:
 • 334201 Vorlesung Anlagentechnik für die laserbasierte Fertigung Teil I: von der Anwendung zur Anlage
 • 334202 Vorlesung Anlagentechnik für die laserbasierte Fertigung Teil II: von der Anlage zum Betrieb
16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
17. Prüfungsnummer/n und -name:
 • 33421 Anlagentechnik für die laserbasierte Fertigung - Teil I: von der Anwendung zur Anlage (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0
 • 33422 Anlagentechnik für die laserbasierte Fertigung - Teil II: von der Anlage zum Betrieb (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Strahlwerkzeuge
Modul: 29990 Grundlagen der Laserstrahlquellen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000002</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Laser in der Materialbearbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Laser in der Materialbearbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Physikalische Grundlagen der Strahlausbreitung, Strahlerzeugung und Strahlverstärkung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• laseraktives Medium, Inversionserzeugung, Wechselwirkung der Strahlung mit dem laseraktiven Medium (Rategleichungen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Laser als Verstärker und Oszillator, Güteschaltung, Modenkopplung, Resonatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• technologische Aspekte, insbesondere CO2-, Nd:YAG-, Yb:YAG-, Faser- und Diodenlaser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Buch:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graf Thomas, „Laser - Grundlagen der Laserstrahlquellen“, Vieweg +Teubner 2009,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISBN:978-3-8348-0770-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>299901 Vorlesung (mit integrierten Übungen) Grundlagen der Laserstrahlquellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 138 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>29991 Grundlagen der Laserstrahlquellen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Strahlwerkzeuge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14140 Materialbearbeitung mit Lasern

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaure:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>10. Dozenten:</td>
<td>Thomas Graf</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Graf</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II
- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Laser in der Materialbearbeitung
 - Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Laser in der Materialbearbeitung
 - Kernfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodule
 - Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:

Schulkenntnisse in Mathematik und Physik.

12. Lernziele:

13. Inhalt:

- Laser und die Auswirkung ihrer Strahleigenschaften (Wellenlänge, Intensität, Polarisation, etc.) auf die Fertigung,
- Komponenten und Systeme zur Strahlformung und Stahlführung, Werkstückhandhabung,
- Wechselwirkung Laserstrahl-Werkstück
14. Literatur:

 ISBN 978-3-8351-0005-3

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>141401</td>
<td>Vorlesung mit integrierter Übung Materialbearbeitung mit Lasern</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Prüfungsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14141</td>
<td>Materialbearbeitung mit Lasern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Institut für Strahlwerkzeuge
Modul: 36120 Scheibenlaser

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000088</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>36120</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Graf</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Voß
• Uwe Brauch |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Laser in der Materialbearbeitung
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: |
| 13. Inhalt: | • Definition, Arten und Anwendungsbereiche von Scheibenlasern.
• Theoretische Grundlagen, Auslegung, Herstellung und Charakterisierung von Scheibenlasern und deren Komponenten.
• Optische Komponenten für Scheibenlaser: Scheibenlaserkristalle einschließlich Beschichtungen, Wärmesenke und Montage, Pumplichtanordnungen, Hochleistungs-Laserspiegel, Modulatoren, Verdoppler etc.
| 14. Literatur: | - Folien der Vorlesungen
| 15. Lehrveranstaltungen und -formen: | 361201 Vorlesung Scheibenlaser |
Selbststudium: 62 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 36121 Scheibenlaser (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
|
19. Medienform:

20. Angeboten von:
2261 Kernfächer mit 6 LP

Zugeordnete Module:

14140 Materialbearbeitung mit Lasern
29990 Grundlagen der Laserstrahlquellen
Modul: 29990 Grundlagen der Laserstrahlquellen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Graf</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Graf</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Werkstoff- und Produktionstechnik ➔ Laser in der Materialbearbeitung ➔ Kern-/Ergänzungsfächer mit 6 LP |
| 12. Lernziele: | • Physikalische Grundlagen der Strahlausbreitung, Strahlerzeugung und Strahlverstärkung
• laseraktives Medium, Inversionserzeugung, Wechselwirkung der Strahlung mit dem laseraktiven Medium (Ratengleichungen)
• Laser als Verstärker und Oszillator, Güteschaltung, Modenkopplung, Resonatoren
• technologische Aspekte, insbesondere CO₂-, Nd:YAG-, Yb:YAG-, Faser- und Diodenlaser |
| 14. Literatur: | 299901 Vorlesung (mit integrierten Übungen) Grundlagen der Laserstrahlquellen |
| 15. Lehrveranstaltungen und -formen: | 16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 29991 Grundlagen der Laserstrahlquellen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Antworten</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Strahlwerkzeuge</td>
</tr>
</tbody>
</table>
Modul: 14140 Materialbearbeitung mit Lasern

2. Modulkürzel: 073010001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Thomas Graf
9. Dozenten: Thomas Graf

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Laser in der Materialbearbeitung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Laser in der Materialbearbeitung
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion

12. Lernziele:

13. Inhalt:
 • Laser und die Auswirkung ihrer Strahl eigenschaften (Wellenlänge, Intensität, Polarisation, etc.) auf die Fertigung,
 • Komponenten und Systeme zur Strahlformung und Stahlführung, Werkstückhandhabung,
 • Wechselwirkung Laserstrahl-Werkstück
14. Literatur:

ISBN 978-3-8351-0005-3

15. Lehrveranstaltungen und -formen:

141401 Vorlesung mit integrierter Übung Materialbearbeitung mit Lasern

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:

14141 Materialbearbeitung mit Lasern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Institut für Strahlwerkzeuge
Modul: 33800 Praktikum Lasertechnik

| 2. Modulkürzel: | 073000009 | 5. Modulduauer: | 1 Semester |
| 4. SWS: | 2.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Prof. Dr. Thomas Graf

9. Dozenten:
- Thomas Graf
- Andreas Voß

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Werkstoff- und Produktionstechnik
 → Laser in der Materialbearbeitung

12. Lernziele:
Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter
http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Beispiele:

1) Scheibenlaser

2) Laserstrahlpropagation
Mit der Messerschneidenmethode wird in mehreren Ebenen der Strahldurchmesser eines HeNe-Lasers gemessen. Um die Strahlpropagationseigenschaften zu bestimmen, muss nach ISO 11146 der Strahldurchmesser in mindestens 10 Messebenen ermittelt werden. Fünf dieser Messebenen sind im Bereich der Taille und fünf Messebenen bei Positionen größer als zwei Rayleighlängen aufzunehmen. Im Rahmen dieses Versuchs ist ein Teleskop so einzurichten, dass die oben beschriebene Messvorschrift angewendet werden kann.

3) Polarisation
Im Rahmen dieses Versuchs werden die Polarisationseigenschaften eines HeNe-Lasers untersucht.

4) Interferometer

Stand: 23. Oktober 2012
5) Faserlaser

14. Literatur: Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:

- 338001 Spezialisierungsfachversuch 1
- 338002 Spezialisierungsfachversuch 2
- 338003 Spezialisierungsfachversuch 3
- 338004 Spezialisierungsfachversuch 4
- 338005 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 338006 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 338007 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 338008 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudium / Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
33801 Praktikum Lasertechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für...

19. Medienform:

20. Angeboten von:
Institut für Strahlwerkzeuge
227 Umformtechnik

Zugeordnete Module:
- 2271 Kernfächer mit 6 LP
- 2272 Kern-/Ergänzungsfächer mit 6 LP
- 2273 Ergänzungsfächer mit 3 LP
- 32860 Praktikum Grundlagen der Umformtechnik
2273 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 32820 Werkzeuge der Blechumformung 1
- 32830 Werkzeuge der Blechumformung 2
- 32840 Maschinen und Anlagen der Umformtechnik 1 - Blechumformung
- 32850 Maschinen und Anlagen der Umformtechnik 2 - Massivumformung
Modul: 32840 Maschinen und Anlagen der Umformtechnik 1 - Blechumformung

2. Modulkürzel:	073200201
3. Leistungspunkte:	3.0 LP
4. SWS:	2.0
5. Moduldaurer:	1 Semester
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Jens Baur
9. Dozenten:	Jens Baur

Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➞ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Werkstoff- und Produktionstechnik ➞ Umformtechnik ➞ Ergänzungsfächer mit 3 LP

Empfohlene Voraussetzungen:
- Möglichst Vorlesung „Grundlagen der Umformtechnik 1/2.“

Lernziele:
- Erworbene Kompetenzen: Die Studierenden kennen die Grundlagen des Pressenbaus, der Pressenantriebe, der Mechanisierung sowie der zur Automatisierung notwendigen weiteren Anlagen der Blechumformung, können teilespezifisch die zur Herstellung optimalen Maschinen und Anlagen auswählen, kennen die Möglichkeiten und Grenzen einzelner Maschinen und Anlagen, sowie ihre stückzahlabhängige Wirtschaftlichkeit, können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen.

Inhalt:
- Grundlagen der Werkzeugmaschinen der Umformtechnik.
- Umformmaschine und Umformvorgang. Karosseriepresswerksanlagen.
- Kraftgebundene und weggebundene Maschinen, Kraftangebot und Arbeitsvermögen; Auffederung; Genauigkeitsfragen.

Literatur:
- Download Skript „Maschinen und Anlagen der Umformtechnik 1 - Blechumformung“
- K. Lange: Umformtechnik, Band 1 und 3
- Schuler: Handbuch der Umformtechnik

Lehrveranstaltungen und -formen:
- 328401 Vorlesung Maschinen und Anlagen der Umformtechnik 1 - Blechumformung

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

Prüfungsnummer/n und -name:
- 32841 Maschinen und Anlagen der Umformtechnik 1 - Blechumformung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

Medienform:
- Download-Skript, Beamerpräsentation

Angeboten von:
Modul: 32850 Maschinen und Anlagen der Umformtechnik 2 - Massivumformung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073200202</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jens Baur</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jens Baur</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Werkstoff- und Produktionstechnik
 - Umformtechnik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
- Möglicher Vorlesung „Grundlagen der Umformtechnik 1/2.“

12. Lernziele:
- Erworbbene Kompetenzen: Die Studierenden kennen die Grundlagen des Pressenbaus, der Pressenantriebe, der Mechanisierung sowie der zur Automatisierung notwendigen weiteren Anlagen der Massivumformung, können teilespezifisch die zur Herstellung optimalen Maschinen und Anlagen auswählen, kennen die Möglichkeiten und Grenzen einzelner Maschinen und Anlagen, sowie ihre stückzahlabhängige Wirtschaftlichkeit, können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen.

13. Inhalt:
- Vertiefung des in der Vorlesung Maschinen der Umformtechnik I vermittelten Stoffes, arbeitsgebundene Pressen, Schmiedepressen und -hämmer, Warmwalzwerke, Kaltwalzwerke, Rohrherstellungsanlagen, Strangpressanlagen

14. Literatur:
- Download Skript „Maschinen und Anlagen der Umformtechnik 2 - Massivumformung“
- K. Lange: Umformtechnik, Band 1 und 2
- Schuler: Handbuch der Umformtechnik

15. Lehrveranstaltungen und -formen:
- 328501 Maschinen und Anlagen der Umformtechnik 2 - Massivumformung

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
- 32851 Maschinen und Anlagen der Umformtechnik 2 - Massivumformung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Download-Skript, Beamerpräsentation

20. Angeboten von:
- Institut für Umformtechnik
Modul: 32820 Werkzeuge der Blechumformung 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073200401</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Stefan Wagner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Wagner</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik → Umformtechnik → Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Möglichst Grundkenntnisse Vorlesung „Grundlagen der Umformtechnik 1/2“ |
| 14. Literatur: | Download Folien „Werkzeuge der Blechumformung 1“
Skript „Werkzeuge der Blechumformung 1“
| 15. Lehrveranstaltungen und -formen: | 328201 Vorlesung Werkzeuge der Blechumformung 1 |
des Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32821 Werkzeuge der Blechumformung 1 (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

Stand: 23. Oktober 2012
Modul: 32830 Werkzeuge der Blechumformung 2

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073200402</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Stefan Wagner

9. Dozenten: Stefan Wagner

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Umformtechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Möglichst Vorlesung „Grundlagen der Umformtechnik 1/2“

13. Inhalt: Biege- und Falzwerkzeuge, Folgeverbundwerkzeuge, Kostenkalkulation, Zeitplanung

14. Literatur: Download Skript „Werkzeuge der Blechumformung 2“

15. Lehrveranstaltungen und -formen: 328301 Vorlesung Werkzeuge der Blechumformung 2

- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32831 Werkzeuge der Blechumformung 2 (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Folien-Download, Skript, Beamerpräsentation

20. Angeboten von:
2272 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13550</td>
<td>Grundlagen der Umformtechnik</td>
</tr>
<tr>
<td>32780</td>
<td>Karosseriebau</td>
</tr>
<tr>
<td>32790</td>
<td>Prozesssimulation in der Umformtechnik</td>
</tr>
<tr>
<td>32800</td>
<td>CAx in der Umformtechnik</td>
</tr>
<tr>
<td>32810</td>
<td>Verfahren und Werkzeuge der Massivumformung</td>
</tr>
</tbody>
</table>
Modul: 32800 CAx in der Umformtechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Mathias Liewald</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Heinrich Flegel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik → Umformtechnik → Kern-/Ergänzungsfächer mit 6 LP |

| 11. Empfohlene Voraussetzungen: | Möglichst Vorlesung "Grundlagen der Umformtechnik" |
| 12. Lernziele: | Erworbene Kompetenzen: Die Studierenden kennen die Grundlagen des Einsatzes der verschiedenen CA-Technologien sowie der NC-Programmierung im Bereich der Produktion und haben Grundkenntnisse im Konstruieren mit dem CAD-System CATIA. |

| 13. Inhalt: | Grundlagen des rechnerunterstützten Konstruierens mit dem CAD-System CATIA, Einführung in den modularen Aufbau des Systems CATIA (base, drafting, 3-D design, advanced surfaces, solids), Grundlagen der NC-Programmierung (NCmill, NC-lathe), CAD-Schnittstellen zu FESystemen, praktische Übungen an CATIA-Arbeitsplätzen. |

| 14. Literatur: | Download Skript "CAx in der Umformtechnik" |

| 15. Lehrveranstaltungen und -formen: | 328001 Vorlesung + Übungen CAx in der Umformtechnik |

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden
	Selbststudium: 138 Stunden
	Summe: 180 Stunden

| 17. Prüfungsnummer/n und -name: | 328001 CAx in der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | Download-Skript, Beamerpräsentation |

| 20. Angeboten von: |
Modul: 13550 Grundlagen der Umformtechnik

2. Modulkürzel: 073210001
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Mathias Liewald

9. Dozenten: Mathias Liewald

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Umformtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Umformtechnik
 ➔ Kernfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen: vor allem Werkstoffkunde, aber auch Technische Mechanik und Konstruktionslehre

12. Lernziele:

 Erworbene Kompetenzen: Die Studierenden

 • kennen die Grundlagen und Verfahren der spanlosen Formgebung von Metallen in der Blech- und Massivumformung
 • können teilespezifisch die zur Herstellung optimalen Verfahren auswählen
 • kennen die Möglichkeiten und Grenzen einzelner Verfahren, sowie ihre stückzahlabhängige Wirtschaftlichkeit
 • können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen
 • sind mit dem Aufbau und der Herstellung von Werkzeugen vertraut

13. Inhalt:

 Grundlagen:

 Vorgänge im Werkstoff (Verformungsmechanismen, Verfestigung, Energiehypothese, Fließkurven), Oberfläche und Oberflächen behandlung, Reibung und Schmierung, Erwärmung

Freiwillige Exkursionen: 1 Tag im WS, 1 Woche im SS, jeweils zu Firmen und Forschungseinrichtungen.

| 14. Literatur: | • Download: Folien „Einführung in die Umformtechnik 1/2“
| | • K. Lange: Umformtechnik, Band 1 - 3
| | • K. Siegert: Strangpressen
| | • H. Kugler: Umformtechnik
| | • K. Lange, H. Meyer-Nolkemper: Gesenkschmieden
| | • Schuler: Handbuch der Umformtechnik
| | • G. Oehler/F. Kaiser: Schneid-, Stanz- und Ziehwerkzeuge
| | • R. Neugebauer: Umform- und Zerteiltechnik

| 15. Lehrveranstaltungen und -formen: | • 135501 Vorlesung Grundlagen der Umformtechnik I
| | • 135502 Vorlesung Grundlagen der Umformtechnik II

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 138 h
| | Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 13551 Grundlagen der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

| 18. Grundlage für ... : |

| 19. Medienform: | Download-Skript, Beamerpräsentation, Tafelaufschrift

| 20. Angeboten von: | Institut für Umformtechnik |
Modul: 32780 Karosseriebau

2. Modulkürzel: 073200701
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Mathias Liewald
9. Dozenten: Mathias Liewald
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Umformtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Umformtechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Möglichst Vorlesung „Grundlagen der Umformtechnik 1/2“
12. Lernziele:

13. Inhalt:

14. Literatur:

 Download: Skript „Karosseriebau 1/2“
 Braess, H.-H., Seiffert: Handbuch Kraftfahrzeugtechnik

15. Lehrveranstaltungen und -formen: 327801 Vorlesung Karosseriebau 1/2

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32781 Karosseriebau (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

 Download-Skript, Beamerpräsentation, Tafelaufschrieb

20. Angeboten von:
Modul: 32790 Prozesssimulation in der Umformtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073200501</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Mathias Liewald</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Karl Roll</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik
➡️ Umformtechnik
➡️ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Möglichst Vorlesung „Grundlagen der Umformtechnik“ |
| 12. Lernziele: | Erworbene Kompetenzen: Die Studierenden kennen die theoretischen und mathematischen Grundlagen, Randbedingungen und Verfahren, sowie die praktischen Anwendungen der Umformsimulation, sowohl für die Blech-, als auch für die Massivumformung |
| 14. Literatur: | Skript „Prozesssimulation in der Umformtechnik“
| 15. Lehrveranstaltungen und -formen: | 327901 Vorlesung und Übung Prozesssimulation in der Umformtechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 32791 Prozesssimulation in der Umformtechnik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Skript, Beamerpräsentation |
| 20. Angeboten von: | |
Modul: 32810 Verfahren und Werkzeuge der Massivumformung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Umformtechnik
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Möglichst Vorlesung „Grundlagen der Umformtechnik“ |
| 12. Lernziele: | Erworbene Kompetenzen: Die Studenten können teilspezifisch passende Verfahren und Werkzeuge der Massivumformung auswählen, berechnen und konstruieren, sowie die zugehörigen Anlagen auslegen. |
| 13. Inhalt: | Verfahren der Umform- und Schneidtechnik; Vorteile des Umformens; Theoretische Grundlagen; Werkstoff; Anlieferungsart; Fertigung des Rohteils; Oberflächenbehandlung; Rohteilernwärmung; Umformteil und Stadienplanentwicklung; Theorie zum Kraft- und Arbeitsbedarf; Berechnung und Grenzen der Umformverfahren; ergänzende Umformverfahren; Werkzeugkonstruktion: Gestelle, Matrizen, Stempel, Druckplatten, Auslegung; Sondervorrichtungen; Teletransport; Kaltumformanlagen; Warm- und Halbwarmumformanlagen; kombinierte Verfahren auf Anlagen zur Warm- und Halbwarmumformung mit Anlagen zur Kaltumformung. |
| 15. Lehrveranstaltungen und -formen: | 328101 Vorlesung Verfahren und Werkzeuge der Massivumformung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 32811 Verfahren und Werkzeuge der Massivumformung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: | Skript, Beamerpräsentation |
| 20. Angeboten von:
2271 Kernfächer mit 6 LP

Zugeordnete Module: 13550 Grundlagen der Umformtechnik
32780 Karosseriebau
Modul: 13550 Grundlagen der Umformtechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Prof.Dr.-Ing. Mathias Liewald |
| 9. Dozenten: | Mathias Liewald |

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahmlichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzfeld II

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Kernmodule
 - Pflichtmodule mit Wahmlichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Umformtechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Umformtechnik
 - Kernfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodul
 - Wahmlichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:

Ingenieurwissenschaftliche Grundlagen: vor allem Werkstoffkunde, aber auch Technische Mechanik und Konstruktionslehre

12. Lernziele:

- Erworbene Kompetenzen: Die Studierenden
 - kennen die Grundlagen und Verfahren der spanlosen Formgebung von Metallen in der Blech- und Massivumformung
 - können telespezifisch die zur Herstellung optimalen Verfahren auswählen
 - kennen die Möglichkeiten und Grenzen einzelner Verfahren, sowie ihre stückzahlabhängige Wirtschaftlichkeit
 - können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen
 - sind mit dem Aufbau und der Herstellung von Werkzeugen vertraut

13. Inhalt:

- **Grundlagen**
 - Vorgänge im Werkstoff (Verformungsmechanismen, Verfestigung, Energiehypothese, Fließkurven), Oberfläche und Oberflächen behandlung, Reibung und Schmierung, Erwärmung

Freiwillige Exkursionen: 1 Tag im WS, 1 Woche im SS, jeweils zu Firmen und Forschungseinrichtungen.

14. Literatur:
- Download: Folien „Einführung in die Umformtechnik 1/2"
- K. Lange: Umformtechnik, Band 1 - 3
- K. Siegert: Strangpressen
- H. Kugler: Umformtechnik
- K. Lange, H. Meyer-Nolkemper: Gesenkschmieden
- Schüler: Handbuch der Umformtechnik
- G. Oehler/F. Kaiser: Schneid-, Stanz- und Ziehwerkzeuge
- R. Neugebauer: Umform- und Zerteiltechnik

15. Lehrveranstaltungen und -formen:
- 135501 Vorlesung Grundlagen der Umformtechnik I
- 135502 Vorlesung Grundlagen der Umformtechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13551 Grundlagen der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Download-Skript, Beamerpräsentation, Tafelaufschrift

20. Angeboten von:
Institut für Umformtechnik
Modul: 32780 Karosseriebau

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Mathias Liewald

9. Dozenten: Mathias Liewald

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011 ➞ Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Werkstoff- und Produktionstechnik ➞ Umformtechnik ➞ Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Werkstoff- und Produktionstechnik ➞ Umformtechnik ➞ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Möglichkeitst Vorlesung „Grundlagen der Umformtechnik 1/2“

12. Lernziele:

13. Inhalt:

14. Literatur:

Download: Skript „Karosseriebau 1/2“
Braess, H.-H., Seiffert: Handbuch Kraftfahrzeugtechnik

15. Lehrveranstaltungen und -formen:

327801 Vorlesung Karosseriebau 1/2

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

32781 Karosseriebau (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Download-Skript, Beamerpräsentation, Tafelaufschrieb

20. Angeboten von:
Modul: 32860 Praktikum Grundlagen der Umformtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073200110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.8</td>
</tr>
<tr>
<td>5. Modulcode:</td>
<td>073200110</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jens Baur</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jens Baur
• Stefan Wagner |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer A (ING)
→ Gruppe Werkstoff- und Produktionstechnik
→ Umformtechnik |

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:

Beispiele:

- Tiefziehen: im Praktikum wird das Verfahren des Tiefziehens, die Werkzeuge und die Maschine im Versuchsfeld vorgestellt. Anschließend werden Versuche mit Parametervariationen durchgeführt, ausgewertet und erarbeitet, wo die Grenzen des Prozesses liegen.

- Fließpressen: im Praktikum wird das Verfahren des Fließpressens, die Werkzeuge und die Maschine im Versuchsfeld vorgestellt. Anschließend werden Versuche mit Parametervariationen durchgeführt und ausgewertet und erarbeitet, welchen Einfluss welcher Parameter auf die Qualität des Werkstücks hat.

14. Literatur:

Download Praktikumsunterlagen

15. Lehrveranstaltungen und -formen:

- 328601 Spezialisierungsfachversuch 1
- 328602 Spezialisierungsfachversuch 2
- 328603 Spezialisierungsfachversuch 3
- 328604 Spezialisierungsfachversuch 4
- 328605 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 328606 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 328607 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 328608 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 30 Stunden
- Selbststudium: 60 Stunden
- Summe: 90 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>32861 Praktikum Grundlagen der Umformtechnik (USL), schriftlich oder mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Download Praktikumsunterlagen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Umformtechnik</td>
</tr>
</tbody>
</table>
228 Werkzeugmaschinen

Zugeordnete Module:

- 2281 Kernfächer mit 6 LP
- 2282 Kern-/Ergänzungsfächer mit 6 LP
- 2283 Ergänzungsfächer mit 3 LP
- 33910 Praktikum Werkzeugmaschinen
2283 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
33440 Beurteilung des Verhaltens von Werkzeugmaschinen
33670 Rechnergestützte Konstruktion von Werkzeugmaschinen
Modul: 33440 Beurteilung des Verhaltens von Werkzeugmaschinen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Uwe Heisel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Werkzeugmaschinen</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen die wesentlichen Messverfahren für die Maschinenabnahme und die Beurteilung des Verhaltens von Werkzeugmaschinen, sie kennen die wesentlichen Gleichungen, Formeln und Kenngrößen für die statische, dynamische und thermische Beschreibung des Verhaltens von Werkzeugmaschinen, sie wissen, welche Aussagen die Kenngrößen erlauben, sie können das statische, dynamische und thermische Verhalten von Werkzeugmaschinen messtechnisch und rechnerisch bestimmen sowie analysieren</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>334401 Vorlesung Beurteilung des Verhaltens von Werkzeugmaschinen</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33441 Beurteilung des Verhaltens von Werkzeugmaschinen (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Medienmix: Präsentation, Tafelanschrieb, Videoclips</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33670 Rechnergestützte Konstruktion von Werkzeugmaschinen

2. Modulkürzel: 073310007
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel

9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Werkzeugmaschinen
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Werkzeugmaschinen und Produktionssysteme

12. Lernziele:

13. Inhalt:
Einführung - Übersicht über computergestützte Hilfsmittel - Einführung in CAD - Einführung in die Teilekonstruktion mit freien Übungen - Erstellung von Zeichnungen - Einführung in FEM mit Praxisbeispiel, freies Üben - Baugruppenkonstruktion - CAD-FEM-Kopplung, Preprocessing

14. Literatur:

15. Lehrveranstaltungen und -formen:
336701 Vorlesung(inkl PraxisArbeit) Rechnergestützte Konstruktion von Werkzeugmaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
33671 Rechnergestützte Konstruktion von Werkzeugmaschinen (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, interaktive Programme am Rechner

20. Angeboten von: Institut für Werkzeugmaschinen
2282 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 13570 Werkzeugmaschinen und Produktionssysteme
- 32870 Grundlagen spanender Werkzeugmaschinen
- 33520 Grundlagen der Holzbearbeitungstechnologie
Modul: 33520 Grundlagen der Holzbearbeitungstechnologie

2. Modulkürzel: 073310025 5. Moduldauer: 2 Semester
4. SWS: 0.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel
9. Dozenten: • Hans Dietz • Marco Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Werkzeugmaschinen
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine
12. Lernziele:

 Teil 1:

 Teil 2: Wissen-Verstehen:

13. Inhalt:

 Teil 1:
 Grundlagen und Verfahren der Holzbearbeitung: Die Vorlesung beinhaltet die Grundzüge der Holzverarbeitung, insbesondere die Eigenschaften des Werkstoffs Holz, die Grundbegriffe und Definitionen, die Besonderheiten des Werkstoffs und seiner Bearbeitung. Kernbestandteile sind die Basisverfahren der spanenden Holzbearbeitung, die Werkzeuge
und Maschinen, die auftretenden Kräfte, der Verschleiß und die Qualitätsbildung und -beurteilung.

Teil 2:

Es kann auch erst Teil 2 und dann Teil 1 gehört werden.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Skript, alte Prüfungsaufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>335201 Vorlesung Grundlagen der Holzbearbeitungstechnologie</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33521 Grundlagen der Holzbearbeitungstechnologie (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Medienmix, Präsentation, Tafelanschrieb, Videoclips</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32870 Grundlagen spanender Werkzeugmaschinen

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel

9. Dozenten: • Uwe Heisel • Johannes Rothmund

11. Empfohlene Voraussetzungen: Werkzeugmaschinen und Produktionssysteme

12. Lernziele:

Teil 1:

Die Studierenden kennen die begrifflichen Definitionen und Rechenformeln der Metallzerspanung, sie kennen die Vorgänge bei der Spanbildung und beim Werkzeugverschleiß, sie kennen die wichtigsten Werkzeuge und Schnittstellen, sie kennen die wichtigsten Schneidstoffe und Beschichtungen, sie kennen die Grundlagen der Kühl- und Schmiersysteme, sie wissen, welche Einflüsse auf die Vorgänge bei der Zerspanung wirken, sie können einfache Zerspanungsprozesse auslegen und Kräfte und Leistungen berechnen.

Teil 2:

Die Studierenden kennen die Grundlagen, Prinzipien und Hilfsmittel der Werkzeugmaschinenkonstruktion, sie kennen die wesentlichen Normen und Richtlinien, sie kennen die Merkmale von Gestellen, Führungen, Hauptschneiden und Vorschubantrieben von Werkzeugmaschinen, sie wissen, welche Konstruktionshilfsmittel für welche Aufgaben eingesetzt werden müssen, sie können einfache Berechnungen und Auslegungen von Baugruppen von Werkzeugmaschinen vornehmen.

Es kann auch erst Teil 2 und dann Teil 1 gehört werden.

13. Inhalt:

Teil 1:

Teil 2:

Einführung in die Konstruktion und Berechnung von Werkzeugmaschinen: Grundlagen, Prinzipien und Konstruktionshilfsmittel - Normung, Standardisierung, mech. Schnittstellen, Baukastensysteme - Instandhaltungsgerechte

Es kann auch erst Teil 2 und dann Teil 1 gehört werden.

14. Literatur:

15. Lehrveranstaltungen und -formen: 328701 Vorlesung Grundlagen spanender Werkzeugmaschinen

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32871 Grundlagen spanender Werkzeugmaschinen (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Uwe Heisel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2008, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fertigungstechnik keramischer Bauteile, Verbandwerkstoffe und Oberflächentechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Werkzeugmaschinen</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Werkzeugmaschinen</td>
</tr>
<tr>
<td>→ Kernfärcher mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodul</td>
</tr>
<tr>
<td>→ Wahrscheinlichkeit Gruppe 3: Produktion</td>
</tr>
</tbody>
</table>

12. Lernziele:

Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur: Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme
16. Abschätzung Arbeitsaufwand: Präsenzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips
20. Angeboten von: Institut für Werkzeugmaschinen
2281 Kernfächer mit 6 LP

Zugeordnete Module: 13570 Werkzeugmaschinen und Produktionssysteme
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
5. Moduldauser: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Uwe Heisel
9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungs module
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungs module
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Werkzeugmaschinen
→ Kern-/Ergänzungsfächer mit 6 LP

12. Lernziele:
Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktio-nieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:

Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen:

135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand:

Präsenzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:

Institut für Werkzeugmaschinen
Modul: 33910 Praktikum Werkzeugmaschinen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulcode:</td>
<td>073310011</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Uwe Heisel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer A (ING)
→ Gruppe Werkstoff- und Produktionstechnik
→ Werkzeugmaschinen |
| 11. Empfohlene Voraussetzungen: | Werkzeugmaschinen und Produktionssysteme |
4 Versuche, z.B.
• Zerspankraftmessung Messung der Schnitt-, Vorschub- und Passivkräfte bei der Zerspanung mittels 3-Komponenten-Messplattorm
• Modalanalyse Bestimmung der Eigenschwingungsformen einer Maschinenbaugruppe mittels Modalanalyse |
| 14. Literatur: | Praktikums Unterlagen/Skript |
| 15. Lehrveranstaltungen und -formen: |
• 339101 Spezialisierungsfachversuch 1
• 339102 Spezialisierungsfachversuch 2
• 339103 Spezialisierungsfachversuch 3
• 339104 Spezialisierungsfachversuch 4
• 339105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 339106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 339107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 339108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 33911 Praktikum Werkzeugmaschinen (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ...: |
19. Medienform: Medienmix: Präsentation, Tafelanschrieb, praktische Einweisung
20. Angeboten von: Institut für Werkzeugmaschinen
230 Gruppe Mikrotechnik, Gerätetechnik und Technische Optik

Zugeordnete Module:

- 231 Biomedizinische Technik
- 232 Elektronikfertigung
- 233 Feinwerktechnik
- 234 Mikrosystemtechnik
- 235 Technische Optik
231 Biomedizinische Technik

Zugeordnete Module:

- 2311 Kernfächer mit 6 LP
- 2312 Kern-/Ergänzungsfächer mit 6 LP
- 2313 Ergänzungsfächer mit 3 LP
- 33510 Praktikum Biomedizinischen Technik
2313 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 30710 Strahlenschutz
- 33470 Übungen zur Biomedizinischen Technik
- 33480 Biomedizinische Gerätetechnik
- 33490 Klinische Dosimetrie und Bestrahlungsplanung
- 33500 Grundlagen der medizinischen Strahlentechnik
Modul: 33480 Biomedizinische Gerätetechnik

2. Modulkürzel: 040900006
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Joachim Nagel

9. Dozenten: • Bernhard Kübler
• Joachim Nagel

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik ➔ Biomedizinische Technik ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Lernziele sind:
• Die Studierenden haben einen Basiswortschatz medizinischer Terminologie erworben,
• sie besitzen grundlegende Kenntnisse der Beatmungs-/Narkosetechnik,
• sowie Kenntnisse zu den wichtigsten Gewebedissektionsverfahren,
• sie kennen das Basisinstrumentarium der minimal invasiven Chirurgie,
• sie haben die theoretischen Grundkenntnisse des Kardiotechnikers erworben,
• sie besitzen Grundkenntnisse medizinisch-interventioneller Robotiksysteme und entsprechender Anforderungen an die Systeme,
• sie haben ein Verständnis von medizintechnischen Entwicklungsschwerpunkten und der notwendigen Komplexität klinischer Medizingeräte erworben.

13. Inhalt: Erfordernisse technischer Geräte im klinischen Einsatzbereich; Mittel der Ingenieurwissenschaft (mit Schwerpunkt Maschinenbau) werden auf konkrete medizinische Problemstellungen übertragen und angewendet:
- Einführung in die Beatmungs-/Narkosetechnik,
- Grundlagen der Chirurgietechnik, Schwerpunkt minimal invasive Chirurgie, mit Anwendungsbeispielen
- Einführung in das theoretische Basiswissen des Kardiotechnikers mit Anwendungsbeispielen
- Grundlagen der medizinisch-interventionellen Robotertechnik mit Anwendungsbeispielen

14. Literatur:
• Vorlesungsskriptum
• Kumar, S.; Marescaux, J.: Telesurgery. Springer Verlag, 2008

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>334801 Vorlesung Biomedizinische Gerätetechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33481 Biomedizinische Gerätetechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33500 Grundlagen der medizinischen Strahlentechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Grundlagen der medizinischen Strahlentechnik</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Jörg Starflinger</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Talianna Schmidt</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik ➔ Biomedizinische Technik ➔ Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Ingenieurwissenschaftliche Grundlagen, Grundlagen in Mathematik, Physik</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Im Rahmen des Moduls sollen die Grundlagen der verschiedenen Strahlungsarten, der eingesetzten technischen Bestrahlungsgeräte und die biologischen Auswirkungen auf menschliches Gewebe erarbeitet werden.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Anwendungen ionisierender Strahlen in der medizinischen Diagnostik und Therapie</td>
</tr>
<tr>
<td></td>
<td>• Vorstellung der technischen Bestrahlungsgeräte</td>
</tr>
<tr>
<td></td>
<td>• Physikalische Einflüsse auf die Bildqualität bei diagnostischen Untersuchungen</td>
</tr>
<tr>
<td></td>
<td>• Überblick über die Methoden der Strahlentherapie</td>
</tr>
<tr>
<td></td>
<td>• Biologische Wirkungen bei kleinen und großen Strahlendosen</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>335001 Vorlesung Grundlagen der medizinischen Strahlentechnik</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 25 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumzeit / Nachbearbeitungszeit / Prüfungsvorbereitung: 65 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33501 Grundlagen der medizinischen Strahlentechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, (gegebenenfalls mündlich)</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentationen, PPT-Skripte zur Vorlesung</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
Modul: 33490 Klinische Dosimetrie und Bestrahlungsplanung

2. Modulkürzel: 040900007
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Joachim Nagel

9. Dozenten: Christian Gromoll

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Biomedizinische Technik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Die Studierenden
 • besitzen grundlegende Kenntnisse in der strahlentherapeutischen Instrumentierung
 • kennen die wichtigsten Geräte zur klinischen Strahlentherapie sowie deren Aufbau und Wirkungsweise
 • besitzen grundlegende Kenntnisse der klinischen Dosimetrie
 • kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen zur Dosimetrie,
 • sind vertraut mit der praktischen Durchführung der Dosimetrie von Photonen
 • besitzen grundlegende Kenntnisse der klinischen Bestrahlungsplanung
 • sind vertraut mit dem Ablauf der Bestrahlungsplanung
 • kennen die physikalischen Grundlagen und theoretischen Herleitungen der Algorithmen
 • können die Verfahren bewerten und deren Einsatzmöglichkeiten in der Strahlentherapie beurteilen
 • verfügen über einen wesentlichen Grundwortschatz strahlentherapeutischer Begriffe
 • besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse

13. Inhalt:

 In dem Modul werden folgende Inhalte vermittelt:
 - Aufbau und Funktion von strahlentherapeutischen Anlagen,
 - prinzipieller Aufbau von Elektronenbeschleunigern
 - Gerätesicherheit und Strahlenschutz,
 - Wechselwirkung ionisierender Strahlung mit Materie,
 - physikalische Grundlagen der Messung ionisierender Strahlung,
 - Dosimetrie nach der Sondenmethode,
- klinische Dosimetrie nach int. Dosimetrieprotokollen (DIN6800-2, AAPM-TG43),
- die grundlegenden Eigenschaften biologischer Gewebe,
- Bildgebende Verfahren in der Bestrahlungsplanung, wie die Computertomografie, Magnetresonanztomographie, PET,
- Techniken zur Bestrahlungsplanung,
- Beschreibung der wichtigsten Algorithmen zur Bestrahlungsplanung,
- Grundzüge der Strahlenbiologie zum Verständnis der Strahlentherapie,
- Tumorschädigung und Nebenwirkungen,
- Neue Techniken (IMRT, Hadronen, nuklearmedizinische Therapieansätze, etc.)

14. Literatur:
 • Gromoll, Ch.: Klinische Dosimetrie und Bestrahlungsplanung, Vorlesungsskript und Vorlesungsfolien,
 • Reich, H.: Dosimetrie ionisierender Strahlung, B.G. Teubner, Stuttgart, 1990
 • Smith, R.: Radiation Therapy Physics: Springer, 1995
 • Steel, G.G.: Basic Clinical Radiobiology, Oxford University Press, New York, 2002

15. Lehrveranstaltungen und -formen:
 334901 Vorlesung Klinische Dosimetrie und Bestrahlungsplanung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
 33491 Klinische Dosimetrie und Bestrahlungsplanung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30710 Strahlenschutz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610005</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Starflinger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Jörg Starflinger • Talianna Schmidt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Kernenergie technik ➔ Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik ➔ Biomedizinische Technik ➔ Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Ingenieurwissenschaftliche Grundlagen, Grundlagen in Mathematik, Physik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Physikalische Grundlagen zu ionisierender Strahlung • Strahlenmesstechnik • Gesetzliche Grundlagen zu Strahlenschutz • Natürliche und zivilisatorische Strahlenbelastung • Ausbreitung radioaktiver Stoffe in die Umwelt • Radiologische Auswirkung von Emissionen • Biologische Strahlenwirkung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>307101 Vorlesung Strahlenschutz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30711 Strahlenschutz (BSL), mündliche Prüfung, 60 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentationen, PPT-Skripte zu Vorlesungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33470 Übungen zur Biomedizinischen Technik

2. Modulkürzel: 040900002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Johannes Port
9. Dozenten: Johannes Port

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Biomedizinische Technik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 Modul 040900001, d.h. die Vorlesungen 36478 und 36496
 Biomedizinische Technik I und II, 4 SWS

12. Lernziele:
 Die Studierenden
 • besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
 • kennen die physikalischen Grundlagen und theoretischen Herleitungen
 und Annahmen wichtiger biomedizinischer Messverfahren
 • haben wesentliche Kenntnisse gängiger bildgebender Verfahren
 • besitzen fundamentale Kenntnisse der funktionellen Stimulation und
 von der Physiologie der zu ersetzenden natürlichen Funktionen
 • können die Verfahren bewerten und deren Einsatzmöglichkeiten in der
 biomedizinischen Technik beurteilen
 • verfügen über einen wesentlichen Grundwortschatz biomedizinischer
 Begriffe
 • besitzen sowohl grundlegendes theoretisches und praktisches
 Fach- und Methodenwissen als auch biologische und medizinische
 Kenntnisse
 • sind in der Lage, eine Verbindung zwischen der Medizin und Biologie
 einerseits und den IngenieurModulhandbuch und Naturwissenschaften
 andererseits herzustellen sowie neue Kenntnisse von der molekularen
 Ebene bis hin zu gesamten Organsystemen zu erforschen und neue
 Materialien, Systeme, Verfahren und Methoden zu entwickeln, mit dem
 Ziel der Prävention, Diagnose und Therapie von Krankheiten sowie
 der Verbesserung der Patientenversorgung, der Rehabilitation und der
 Leistungsfähigkeit der Gesundheitssysteme.

13. Inhalt:
 In den Übungen werden folgende Inhalte vermittelt:
 • theoretische Grundlagen der Ionenkonzentrationsbestimmung
 • Berechnung charakteristischer Kennwerte der Hautimpedanz
 • Berechnung charakteristischer Kennwerte von Druckwandlern
 • Berechnung charakteristischer Kennwerte von Verstärkern
 • Berechnung charakteristischer Kennwerte von Ultraschall
 • theoretische Bestimmung der Belastung der Bandscheiben
 • umfangreiche praktische Messungen verschiedener physiologischer
 Kenngrößen sowie Interpretation bzw. Analyse der Ergebnisse und
 Probleme
 • praktische Übungen zur Signalverarbeitung
ausgewählte Anwendungsbeispiele von biomedizinischer Technik in der klinischen Praxis (Klinikbesuche).

14. Literatur:

- Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien, Skripten für die theoretischen und praktischen Übungen

15. Lehrveranstaltungen und -formen: 334701 Übungen Biomedizinischen Technik I + II

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungnummer/n und -name: 33471 Übungen zur Biomedizinischen Technik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Tafel, Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
2312 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Lehrstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>32220</td>
<td>Grundlagen der Biomedizinischen Technik</td>
</tr>
<tr>
<td>32920</td>
<td>Bildgebende Verfahren und Bildverarbeitung in der Medizin</td>
</tr>
<tr>
<td>32930</td>
<td>Biologische Informations-, Kommunikations- und Regelsysteme</td>
</tr>
</tbody>
</table>
Modul: 32920 Bildgebende Verfahren und Bildverarbeitung in der Medizin

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr. Joachim Nagel</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Nagel</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Biomedizinische Technik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

Im Modul Bildgebende Verfahren in der Medizin

- haben die Studenten grundlegende Kenntnisse der bildgebenden Verfahren erworben;
- haben die Studierenden die physikalischen und technischen Prinzipien der bildgebenden Verfahren, Realisierungen der unterschiedlichen Systeme, sowie deren medizinische Anwendungen gelernt;
- haben die Studenten detaillierte Kenntnisse der Computertomographie erworben;
- haben die Studenten grundlegende Kenntnisse der Bildverarbeitung erworben.

Die Studierenden kennen die Verfahren, Realisierungen und Anwendungen von:

- traditionellen Röntgen Abbildungen,
- Röntgen Computer Tomographie,
- Nuklearmedizinische Bildgebungsmethoden,
- Magnet-Resonanz Tomographie,
- Ultraschall Abbildungsverfahren,
- Thermographie,
- Impedanz-Tomographie,
- Abbildung elektrischer Quellen,
- optische Tomographie,
- Endoskopie.

Die Studierenden beherrschen:

- die Grundlagen der Systemtheorie bildgebender Verfahren, und
- Grundlagen der digitalen Bildverarbeitung.

Die Studierenden kennen die biologischen Wirkungen ionisierender Strahlung und die Grundlagen der Dosimetrie.

13. Inhalt:

In dem Modul werden folgende Inhalte vermittelt:

Physikalisch-technische Grundlagen und Realisierungen der Bilderzeugung, sowie Anwendung diagnostischer und therapeutischer Verfahren in der Medizin. Inhalte sind: systemtheoretische Grundlagen der Bilderzeugung und Bildverarbeitung; Wechselwirkungen der in der Medizin genutzten Strahlen und Wellen mit Materie;
Bilderzeugung in der Röntgendiagnostik; Grundlagen und Techniken der Computertomographie, Rekonstruktionsverfahren; Röntgen CT; nuklearmedizinische Verfahren (planare Szintigraphie, PET; SPECT); Kernspintomographie; Impedanz-Tomographie; Optische Tomographie, Endoskopie; bildgebende Ultraschallverfahren; Thermographie; Abbildung bioelektrischer Quellen; ausgewählte Anwendungen der Bildverarbeitung. Es werden die Grundlagen der Systemtheorie bildgebender Verfahren und die Grundlagen der digitalen Bildverarbeitung dargelegt. Die biologischen Wirkungen ionisierender Strahlung und die Grundlagen der Dosimetrie werden analysiert.

14. Literatur:

- Nagel, J.: Bildgebende Verfahren in der Medizin. Vorlesungsfolien und Internetquellen
- Morneburg, H.: Bildgebende Systeme für die medizinische Diagnostik, Publicis MCD Verlag, 1995
- Ott, R.: Manuskript zur Vorlesung Digitale Bildverarbeitung, Institut für Physikalische Elektronik, 1996

15. Lehrveranstaltungen und -formen: 329201 Vorlesung Bildgebende Verfahren in der Medizin

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32921 Bildgebende Verfahren und Bildverarbeitung in der Medizin (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation mit Animationen und Filmen, Overhead-Projektor und Tafel

20. Angeboten von:
Modul: 32930 Biologische Informations-, Kommunikations- und Regelsysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Joachim Nagel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Nagel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Biomedizinische Technik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
keine

12. Lernziele:

Im Modul Biologische Informations-, Kommunikations- und Regelsysteme haben die Studenten grundlegende Kenntnisse biologischer Informations-, Kommunikations- und Regelsysteme erworben; haben die Studierenden die biologischen, physikalischen, biochemischen, und elektrobiologischen Prinzipien der Informationsentstehung und Speicherung, der neurologischen Informationsübertragung sowie der Informationsverarbeitung in neuronalen Netzwerken einschließlich des Gehirns erlernt; haben die Studierenden die unterschiedlichen biologischen Regelkreise im menschlichen Körper verstanden; haben die Studierenden eine Vorstellung über die Funktion des menschlichen Gehirns erworben (wie denkt der Mensch?).

Die Studierenden kennen die Grundlagen der Informationsspeicherung und -verarbeitung in der DNS und RNS, die Studierenden haben ein tiefgreifendes Wissen über die Funktion von Sensoren zur Erfassung von Informationen aus der inneren und äußeren Umwelt erworben, sie kennen die Mechanismen der Übertragung und Verarbeitung von Informationen in einem neuronalen Netzwerk, die Studierenden kennen die Mechanismen eines biologischen Regelkreises, die Studierenden beherrschen die Grundlagen der Funktionen des Gehirns und können Prozesse wie Informationsspeicherung (Gedächtnis) und Informationsverarbeitung (Denken) erklären, sowie Parallelen zwischen biologischen und technischen Systemen aufzeigen.

Die Studierenden haben grundlegende Kenntnisse über die diagnostischen und therapeutischen Anwendungen von Informations-, Kommunikations- und Regelsystemen erworben.

13. Inhalt:

In dem Modul werden folgende Inhalte vermittelt:

Kriterien und Elemente lebender Systeme; biologische Informationsspeicherung, genetischer Code, Proteinsynthese; physikalische, elektrische und chemische Prozesse an der Zellmembran; Reiz- und Informationserzeugung; Übertragung von Information, und Prinzipien der biologischen Informationsverarbeitung; Grundlagen der Neurophysiologie und des menschlichen Denkens; motorisches, sensorisches und autonomes Nervensystem; Reflexe; neuronale...
und humorale Steuerungs- und Regelprozesse wie kardiovaskulärer Regelkreis und Temperaturregelung; neuronale Netze, Beispiele biologischer Nachrichtenverarbeitung; diagnostische und therapeutische Anwendungen in der Medizin.

14. Literatur:

- Bear, M.F., B.W. Connors, B.W. und Paradiso, M.A.: Neuroscience, Exploring the Brain, Williams & Wilkins, 1996.

15. Lehrveranstaltungen und -formen:

329301 Vorlesung Biologische Informations-, Kommunikations- und Regelsysteme

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit: 42 Stunden</th>
<th>Selbststudium: 138 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe: 180 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

32931 Biologische Informations-, Kommunikations- und Regelsysteme (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Beamer-Präsentation mit Animationen und Filmen, Overhead-Projektor und Tafel

20. Angeboten von:
Modul: 32220 Grundlagen der Biomedizinischen Technik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr. Joachim Nagel</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>• Johannes Port • Joachim Nagel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>→ Biomedizinische Technik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>→ Biomedizinische Technik</td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>→ Mikrosystemtechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodul</td>
</tr>
<tr>
<td>→ Wahlmöglichkeit Gruppe 2: Konstruktion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden</td>
</tr>
<tr>
<td>• besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung</td>
</tr>
<tr>
<td>• kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren</td>
</tr>
<tr>
<td>• haben wesentliche Kenntnisse gängiger bildgebender Verfahren</td>
</tr>
<tr>
<td>• besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen</td>
</tr>
<tr>
<td>• können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen</td>
</tr>
<tr>
<td>• verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe</td>
</tr>
<tr>
<td>• besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In dem Modul werden folgende Inhalte vermittelt:</td>
</tr>
</tbody>
</table>
• die besonderen Probleme bei der Messung physiologischer Kenngrößen
• die grundlegenden Eigenschaften biologischer Gewebe
• die Besonderheiten der Elektroden und damit die entsprechenden einzuhaltenen Maßnahmen bei der Ableitung der Signale
• die physikalischen Grundlagen wichtiger mechanoelektrischer, photoelektrischer, elektrochemischer und thermoelektrischer Wandler
• die wesentlichen Prinzipien und die biomedizinisch spezifischen Besonderheiten der Signalerfassung, Signalverarbeitung, Signalverstärkung und Signalübertragung
• allgemeine Eigenschaften des kardiovaskulären und respiratorischen Systems
• Messverfahren kardiovaskulärer Kenngrößen, wie Elektrokardiogramm, Impedanzkardiogramm, Impedanzplethysmogramm, Blutdruckmessung, Blutflussmessung, etc.
• Messverfahren respiratorischer Kenngrößen, wie Impedanzneumographie, Pneumotachographie, Spirometrie, Ganzkörperplethysmographie, etc.
• Messverfahren biochemischer Kenngrößen, wie pH-Wert-Messung, Ionenkonzentrationsmessung, Sauerstoffmessung, etc.
• Messverfahren neurologischer Kenngrößen, wie das Elektroenzephalogramm, Elektrencephalogramm, Evozierte Potentiale, etc.
• Messverfahren visueller Kenngröße, wie das Elektrookulogramm, das Elektoretinogramm, etc., - wichtige physikalische, akustische Kenngrößen
• Messverfahren akustischer Kenngrößen, wie das Audiogramm, otoakustisch evozierte Potentiale, Elektrocochleogramm, etc.
• Messverfahren weiterer wichtiger Kenngrößen, wie das Elektromyogramm, Elektrolystagramm, etc.
• Bildgebende Verfahren, wie die Röntgentechnik, Ultraschall, Magnetresonanztomographie, Endoskopietechnik, Thermographie, etc.
• Beispiele für Implantate und Funktionsersatz, wie das Cochlea-Implantat, Mittelohrprothese, Hörgeräte, Herzschrittmacher, Herzklappenersatz, etc.
• Beispiele aktueller Forschung, wie das Brain-Computer Interface, biohybride Armprothese, etc.

14. Literatur:
• Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien
• Czichos, H., Hennecke, M., Hütte: Das Ingenieurwissen, 33. Auflage, Springer-Verlag Berlin
• Heidelberg, 2008 - Dössel, O.: Bildgebende Verfahren in der Medizin, Springer-Verlag Berlin
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007
15. Lehrveranstaltungen und -formen: 322201 Vorlesung Biomedizinische Technik I und II und 2-tägige Exkursion

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 58 Stunden
Selbststudium: 122 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32221 Grundlagen der Biomedizinischen Technik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Beamer-Präsentation, Overhead-Projektor, Tafel

20. Angeboten von:
2311 Kernfächer mit 6 LP

Zugeordnete Module: 32220 Grundlagen der Biomedizinischen Technik
Modul: 32220 Grundlagen der Biomedizinischen Technik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>040900001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Joachim Nagel</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Johannes Port
• Joachim Nagel |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Biomedizinische Technik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Biomedizinische Technik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 2: Konstruktion |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden
• besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
• kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren
• haben wesentliche Kenntnisse gängiger bildgebender Verfahren
• besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen
• können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen
• verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe
• besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse
| 13. Inhalt: | In dem Modul werden folgende Inhalte vermittelt: |
• die besonderen Probleme bei der Messung physiologischer Kenngrößen
• die grundlegenden Eigenschaften biologischer Gewebe
• die Besonderheiten der Elektroden und damit die entsprechenden einzuhaltenen Maßnahmen bei der Ableitung der Signale
• die physikalischen Grundlagen wichtiger mechanoelektrischer, photoelektrischer, elektrochemischer und thermoelektrischer Wandler
• die wesentlichen Prinzipien und die biomedizinisch spezifischen Besonderheiten der Signalerfassung, Signalverarbeitung, Signalverstärkung und Signalübertragung
• allgemeine Eigenschaften des kardiovaskulären und respiratorischen Systems
• Messverfahren kardiovaskulärer Kenngrößen, wie Elektrokardiogramm, Impedanzkardiogramm, Impedanzplethysmogramm, Blutdruckmessung, Blutflossmessung, etc.
• Messverfahren respiratorischer Kenngrößen, wie Impedanzenomographie, Pneumotachographie, Spirometrie, Ganzkörperplethysmographie, etc.
• Messverfahren biochemischer Kenngrößen, wie pH-Wert-Messung, Ionenkonzentrationsmessung, Sauerstoffmessung, etc.
• Messverfahren neurologischer Kenngrößen, wie das Elektrozephalogramm, Elektroencephalogramm, Evozierte Potentiale, etc.
• Messverfahren visueller Kenngrößen, wie das Elektrookulogramm, das Elektoretingrogramm, etc., - wichtige physikalische, akustische Kenngrößen
• Messverfahren akustischer Kenngrößen, wie das Audiogramm, otoakustisch evozierte Potentiale, Elektrocochleogramm, etc.
• Messverfahren weiterer wichtiger Kenngrößen, wie das Elektromyogramm, Elektronystagmogramm, etc.
• Bildgebende Verfahren, wie die Röntgentechnik, Ultraschall, Magnetresonanztomographie, Endoskopietechnik, Thermographie, etc.
• Beispiele für Implantate und Funktionsersatz, wie das Cochlea-Implantat, Mittelohrprothese, Hörgeräte, Herzschnittmacher, Herzklappenersatz, etc.
• Beispiele aktueller Forschung, wie das Brain-Computer Interface, biohybride Armprothese, etc.

14. Literatur:

• Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien
• Czichos, H., Hennecke, M., Hütte: Das Ingenieurwissen, 33. Auflage, Springer-Verlag Berlin
• Heidelberg, 2008 - Dössel, O.: Bildgebende Verfahren in der Medizin, Springer-Verlag Berlin
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>322201 Vorlesung Biomedizinische Technik I und II und 2-tägige Exkursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 58 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 122 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32221 Grundlagen der Biomedizinischen Technik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33510 Praktikum Biomedizinischer Technik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>040900008</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr. Joachim Nagel

9. Dozenten: • Joachim Nagel
 • Johannes Port

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Biomedizinische Technik

11. Empfohlene Voraussetzungen: Modul 040900001, d.h. die Vorlesungen 36478 und 36496 Biomedizinische Technik I und II, 4 SWS

In den Praktika werden folgende praktische Inhalte in der Bestimmung biomedizinischer Kenngrößen vermittelt:
- Grundlagen der klinischen Photometrie,
- Grundlagen der Magnetresonanztomographie,
- Grundlagen der Lungenfunktionsdiagnostik,
- Grundlagen der Biopotentialmessung,
- Grundlagen der nicht invasiven und der invasiven Blutdruckmessung,
- Grundlagen des Ultraschalls,
- Grundlagen der Audiometrie.

14. Literatur:
 - Skripten zu den Praktikumsversuchen
 - Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007

15. Lehrveranstaltungen und -formen:
• 335101 Spezialisierungsfachversuch 1
• 335102 Spezialisierungsfachversuch 2
• 335103 Spezialisierungsfachversuch 3
• 335104 Spezialisierungsfachversuch 4
• 335105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 335106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 335107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 335108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
33511 Praktikum Biomedizinischen Technik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL.Art und Umfang wird zu Beginn des Moduls bekannt gegeben

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
232 Elektronikfertigung

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2321</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>2322</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2323</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>33290</td>
<td>Praktikum Mikroelektronikfertigung</td>
</tr>
</tbody>
</table>
2323 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
33450 Elektronik für Mikrosystemtechniker
33770 Technologien der Nano- und Mikrosystemtechnik II
Modul: 33450 Elektronik für Mikrosystemtechniker

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400004</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Rainer Mohr

9. Dozenten: Rainer Mohr

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Elektronikfertigung
 - Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Feinwerktechnik
 - Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Mikrosystemtechnik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

Die Studierenden sind in der Lage
- Einfache Schaltungen zu dimensionieren
- Schaltbilder zu lesen und zu verstehen
- elektrische Messtechnik durchzuführen
- ein Schaltungssimulationsprogramm zu bedienen

14. Literatur: Manuskript der Vorlesung, Literatur zu den einzelnen Kapiteln (Literaturverzeichnis im Manuskript)

15. Lehrveranstaltungen und -formen: 334501 Vorlesung (inkl. Elektronikpraktikum) Elektronik für Mikrosystemtechniker

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33451 Elektronik für Mikrosystemtechniker (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Beamerpräsentation, Overheadprojektor, Tafel
20. Angeboten von:
Modul: 33770 Technologien der Nano- und Mikrosystemtechnik II

2. Modulkürzel: 072420004
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Hermann Sandmaier

9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Ergänzungsfächer mit 3 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Technologien der Nano- und Mikrosystemtechnik I

12. Lernziele:

 Im Modul Technologien der Nano- und Mikrosystemtechnik II
 • haben die Studierenden die Technologien der Oberflächen-
 und Bulkmikromechanik sowie die Röntgenlithographie und das
 LIGA Verfahren zur Herstellung von Bauelementen der Nanound
 Mikrosystemtechnik vertiefend kennen gelernt,
 • können die Studierenden die Prozessverfahren bewerten und sind in
 der Lage Prozessabläufe selbstständig zu entwerfen.

 Erworbene Kompetenzen:

 Die Studierenden
 • können die Verfahren der Oberflächen- und Bulkmikromechanik sowie
 die Röntgenlithographie und das LIGA-Verfahren benennen und mit
 Hilfe physikalischer Grundlagenkenntnisse erläutern,
 • beherrschen die wesentlichen Grundlagen des methodischen
 Vorgehens zur Herstellung von mikrotechnischen Bauelementen auf
 der Basis der oben genannten Technologien
 • haben ein Gefühl für den Aufwand der einzelnen Verfahren entwickeln
 können,
 • sind mit den technologischen Grenzen der Verfahren vertraut und
 können diese bewerten,
 • sind in der Lage, auf der Basis gegebener technologischer und
 wirtschaftlicher Randbedingungen einen kompletten Prozessablauf zur
 Herstellung von mikrotechnischen Bauelementen und Systemen zu
 entwerfen.

13. Inhalt:

 Die Vorlesung vermittelt den Studierenden die Grundlagen, um
 die spezifischen Prozessabläufe zur Herstellung von modernen
 Bauelementen der Mikrosystemtechnik zu verstehen. Nach einer kurzen
 Einführung in die Thematik werden die Oberflächenmikromechanik
 (OMM), die Bulkmikromechanik (BMM), die Röntgenlitho-
 graphie und das LIGA-Verfahren ausführlich behandelt, und die
 Grundlagen zu den einzelnen technologischen Prozessen vermittelt.
Anhand von Anwendungsbeispielen wird gezeigt, wie durch eine geschickte Aneinanderreihung der einzelnen Prozesse komplexe Bauelemente der Nano- und Mikrosystemtechnik, wie z.B. Druck-, Beschleunigungssensoren und das Digital Mirror Device (DMD) hergestellt werden können.

14. Literatur:
- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts und CD zur Vorlesung

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen: 337701 Vorlesung Technologien der Nano- und Mikrosystemtechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33771 Technologien der Nano- und Mikrosystemtechnik II (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:
2322 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>13560</td>
<td>Technologien der Nano- und Mikrosystemtechnik I</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
<tr>
<td>14030</td>
<td>Grundlagen der Mikroelektronikfertigung</td>
</tr>
<tr>
<td>14230</td>
<td>Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
<tr>
<td>32250</td>
<td>Design und Fertigung mikro- und nanoelektronischer Systeme</td>
</tr>
<tr>
<td>32730</td>
<td>Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten</td>
</tr>
<tr>
<td>33710</td>
<td>Optische Messtechnik und Messverfahren</td>
</tr>
<tr>
<td>33760</td>
<td>Aufbau- und Verbindungstechnik II - Technologien</td>
</tr>
</tbody>
</table>
Modul: 32730 Actorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe
9. Dozenten: Wolfgang Schinköthe

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in einem Bachelor

13. Inhalt: Behandelt werden feinwerktechnische Antriebe unterschiedlicher Wirkprinzip mit den Schwerpunkten:
 • Magnettechnik/-technologie (Werkstoffe, Verfahren, konstruktive Auslegung, Magnetisierung)
 • Elektromagnetische Antriebe (rotatorische und lineare Schrittmotoren; Berechnung, Gestaltung, Anwendung)
 • Elektrodynamische Antriebe (rotatorische und lineare Gleichstromkleinstmotoren; Berechnung, Gestaltung, Anwendung)
 • Piezoelektrische, magnetostriktive und andere unkonventionelle Aktorik (neue Werkstoffe in mechatronischen Komponenten, Berechnung, Gestaltung, Anwendung)
• Beispiele zur Realisierung mechatronischer Lösungen in der Geräteotechnik. Beispielhafte Vertiefung in zugehörigen Übungen und Praktika (Spezialisierungsfachpraktika und APMB).

14. Literatur:

15. Lehrveranstaltungen und -formen:
327301 Vorlesung + Übung Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32731 Aktorik in der Gerätetechnik: Konstruktion, Berechnung und Anwendung mechatronischer Komponenten (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafel, Overhead-Projektor, Beamer-Präsentation

20. Angeboten von:
Konstruktion und Fertigung in der Feinwerktechnik
Modul: 33760 Aufbau- und Verbindungstechnik II - Technologien

2. Modulkürzel: 073400002
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr. Heinz Kück
9. Dozenten: Bernhard Polzinger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Die Studierenden sollen:
 • die wichtigsten Fertigungsverfahren der Aufbau- und Verbindungstechnik kennen und in Abhängigkeit der Systemerfordernisse zu bewerten lernen;
 • die Eigenschaften der wichtigen Werkstoffe und deren Einfluss auf Qualität und Zuverlässigkeit der Mikrosysteme kennenlernen;
 • die wesentlichen technologischen Einflussgrößen der Verfahren kennenlernen;
 • die wichtigsten Merkmale der Fertigungsanlagen kennen und zu bewerten lernen;
13. Inhalt:
 Einführung in die Aufbau- und Verbindungstechnik; Leiterplatten; Löten und Kleben in der SMDTechnik; Dickschichttechnik; Gehäusearten und Typen; Chipmontage mit Die-Bonden, Drahtbonden, Flip-Chip-Technik, TAB-Bonden; Thermoplastische Systemträger (Moulded Interconnect Devices „MID“) mit Spritzgießtechnik, Zweikomponentenspritzguss - MID-Technik, Laserbasierte MID-Technik; Chemische Metallbeschichtung von Kunststoffen; Chip-und SMD -Montage auf MID; Heißpräge-MID-Technik; Sensoren und Aktoren in MID-Technik; Fügen und Verbinden von Kunststoffbauteilen mit Kleben und Schweißen; Qualitätsmanagement in der Aufbau- und Verbindungstechnik.

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen: 337601 Vorlesung (inkl. ÜB, Pr, Exkursion) Aufbau- und Verbindungstechnik II - Technologien

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33761 Aufbau- und Verbindungstechnik II - Technologien (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamerpräsentation, Overheadprojektor, Tafel, Demonstrationsobjekte

20. Angeboten von:
Modul: 32250 Design und Fertigung mikro- und nanoelektronischer Systeme

2. Modulkürzel: 052110003 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Joachim Burghartz
9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kernfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Feinwerktechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Technische Optik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: V/Ü Grundlagen der Mikroelektronikfertigung (Empfehlung)
12. Lernziele: Vermittlung weiterführender Kenntnisse der wichtigsten Technologien und Techniken in der Elektronikfertigung
 • Grundlagen der Mikroelektronik
 • Lithografieverfahren
 • Wafer-Prozesse
 • CMOS-Gesamtprozesse
 • Packaging und Test
 • Qualität und Zuverlässigkeit

14. Literatur:
 - D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
- L.E. Glasser and D.W. Dobberpuhl: The Design and Analysis of VLSI Circuits, Addison Wesley.

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>322501 Vorlesung und Übung Design und Fertigung mikro- und nanoelektronischer Systeme (Blockveranstaltung)</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 32251 Design und Fertigung mikro- und nanoelektronischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, oder bei geringer Anzahl Studierender: mündlich, 40 min. |
| 18. Grundlage für ... : | |
| 19. Medienform: | PowerPoint |
| 20. Angeboten von: | |
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

2. Modulkürzel: 072510002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe
9. Dozenten: • Wolfgang Schinköthe
 • Eberhard Burkard
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodulle
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 → Feinwerktechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodulle
 → Wahlmöglichkeit Gruppe 2: Konstruktion
11. Empfohlene Voraussetzungen:
 Abgeschlossene Grundlagenausbildung in Konstruktionslehre
12. Lernziele:
 Fähigkeiten zur Analyse und Lösung von komplexen feinwerktechnischen Aufgabenstellungen im Gerätebau unter Berücksichtigung des Gesamtsystems, insbesondere unter Berücksichtigung von Präzision, Zuverlässigkeit, Sicherheit, Umgebungs- und Toleranzinflüssen beim Entwurf von Geräten und Systemen
13. Inhalt:
 Entwicklung und Konstruktion feinwerktechnischer Geräte und Systeme mit Betonung des engen Zusammenhangs zwischen konstruktiver Gestaltung und zugehöriger Fertigungstechnologie.

Stand: 23. Oktober 2012

14. Literatur:
- Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
- 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Messtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauer-Tests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für...

19. Medienform:
- Tafel
- OHP
- Beamer

20. Angeboten von: Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 14030 Grundlagen der Mikroelektronikfertigung

2. Modulkürzel: 052110002
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Prof. Dr.-Ing. Joachim Burghartz
9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2008, 6. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 6. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Ergänzungsmodul
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 6. Semester
 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Studierende kennen wesentliche Grundlagen der Werkstoffe, Prozessschritte, Integrationsprozesse und Volumenproduktionsverfahren in der Silizium-Technologie

13. Inhalt:
- History and Basics of IC Technology
- Process Technology I and II
- Process Modules
- MOS Capacitor
- MOS Transistor
- Non-Ideal MOS Transistor
- Basics of CMOS Circuit Integration
- CMOS Device Scaling
- Metal-Silicon Contact
- Interconnects
- Design Metrics
- Special MOS Devices
- Future Directions

14. Literatur:
- D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>140301 Vorlesung und Übung Grundlagen der Mikroelektronikfertigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14031 Grundlagen der Mikroelektronikfertigung (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, persönliche Interaktion</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13540 Grundlagen der Mikrotechnik

2. Modulkürzel: 073400001
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Heinz Kück

9. Dozenten: Heinz Kück

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

- Eigenschaften der wichtigsten Werkstoffe der MST
- Silizium-Mikromechanik
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünner Schichten
• (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
• Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (Mikrospritzguss, Heißprägen)
• Mikrobearbeitung von Metallen (Funkenerosion, spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
• 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: 42 h
• Selbststudiumszeit / Nacharbeitszeit: 138 h
• Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13541 Grundlagen der Mikrotechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von: Institut für Zeitmesstechnik, Fein- und Mikrotechnik
Modul: 33710 Optische Messtechnik und Messverfahren

2. Modulkürzel: 073100002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Wolfgang Osten
9. Dozenten: Wolfgang Osten

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Feinwerken
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Technische Optik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Technische Optik
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden
 • verstehen die Unterschiede zwischen wellenoptischem und geometrisch-optischem Beschreibung,
 • sind in der Lage, die in Wellenfeldern enthaltene, Information zu beschreiben,
 • können Messungen kritisch mittels Fehleranalyse bewerten,
 • kennen die Rolle und Wirkungsweise der wichtigsten Komponenten und sind in der Lage, optische Mess-Systeme aus einzelnen Komponenten zusammenzustellen und zu bewerten,
 • sind in der Lage, Methoden zur Vermessung von optischen und technischen Oberflächen sowie deren Oberflächenveränderungen zielgerichtet einzusetzen.

13. Inhalt:
 Grundlagen der geometrischen Optik:
 - optische Komponenten
 - optische Systeme
 Grundlagen der Wellenoptik:
 - Wellentypen
 - Interferenz und Kohärenz
 - Beugung und Auflösungsvermögen
 Holografie
Speckle
Messfehler
Grundprinzipien und Klassifikation optischer Messtechniken
Komponenten optischer Messsysteme:
- Lichtquellen
- Lichtmodulatoren
- Auge und Detektoren
Messmethoden auf Basis der geometrischen Optik:
- Strukturierte Beleuchtung
- Moiré
- Messmikroskope und Messfernrohre
Messmethoden auf Basis der Wellenoptik:
- interferometrische Messtechniken
- Interferenzmikroskopie
- holografische Interferometrie
- Speckle-Messtechniken
- Laufzeittechniken

14. Literatur:
Manuskript der Vorlesung;

15. Lehrveranstaltungen und -formen:
• 337101 Vorlesung Optische Messtechnik und Messverfahren
• 337102 Übung Optische Messtechnik und Messverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33711 Optische Messtechnik und Messverfahren (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

2. Modulkürzel: 072910003 5. Moduldaurer: 1 Semester

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Alexander Verl

9. Dozenten: Alexander Verl

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Bachelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologiemanagement, PO 2008, 6. Semester</td>
</tr>
<tr>
<td>Technologiemanagement, PO 2011, 6. Semester</td>
</tr>
<tr>
<td>Technologiemanagement, PO 2011, 6. Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologiemanagement, PO 2011</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs- und Steuerungstechnik)

12. Lernziele:

Industrieroboter können die Studierenden die Komponenten innerhalb der Steuerung, wie z.B. Lagesollwertbildung oder Adaptive Control-Verfahren interpretieren. Sie können die Auslegung der Antriebstechnik und die zugehörigen Problemstellungen der Regelungs- und Messtechnik verstehen, bewerten und Lösungen erarbeiten.

Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

| | • Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
| | • Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
| | • Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung. |

| 15. Lehrveranstaltungen und -formen: | • 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
| | • 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
| | • 142303 Praktikum 1 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
| | • 142304 Praktikum 2 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 50h
| | Nacharbeitszeit: 130h
| | Gesamt: 180h |

| 17. Prüfungsnummer/n und -name: | 14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |
| 19. Medienform: | Beamer, Overhead, Tafel |
| 20. Angeboten von: | Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen |
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel: 072420001</th>
<th>5. Moduldauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier

9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlsprüche
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlsprüche
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätegeechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätegeechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätegeechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätegeechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 - haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Bauelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik kennen gelernt,
 - können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:
Die Studierenden

- können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
- können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
- haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
- sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
- sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

13. Inhalt:

14. Literatur:

- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen:

| Vorlesung Technologien der Nano- und Mikrosystemtechnik I |
| 135601 |

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudium / Nacharbeitszeit: 138 h
- Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
2321 Kernfächer mit 6 LP

Zugeordnete Module: 14030 Grundlagen der Mikroelektronikfertigung
32250 Design und Fertigung mikro- und nanoelektronischer Systeme
Modul: 32250 Design und Fertigung mikro- und nanoelektronischer Systeme

2. Modulkürzel: 052110003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Joachim Burghartz
9. Dozenten: Joachim Burghartz
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion
11. Empfohlene Voraussetzungen: V/Ü Grundlagen der Mikroelektronikfertigung (Empfehlung)
12. Lernziele: Vermittlung weiterführender Kenntnisse der wichtigsten Technologien und Techniken in der Elektronikfertigung
 • Grundlagen der Mikroelektronik
 • Lithografieverfahren
 • Wafer-Prozesse
 • CMOS-Gesamtprozesse
 • Packaging und Test
 • Qualität und Zuverlässigkeit
14. Literatur:
 - D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
- L.E. Glasser and D.W. Dobberpuhl: The Design and Analysis of VLSI Circuits, Addison Wesley.

15. Lehrveranstaltungen und -formen: 322501 Vorlesung und Übung Design und Fertigung mikro- und nanoelektronischer Systeme (Blockveranstaltung)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32251 Design und Fertigung mikro- und nanoelektronischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, oder bei geringer Anzahl Studierender: mündlich, 40 min.

18. Grundlage für ...

19. Medienform: PowerPoint

20. Angeboten von:
Modul: 14030 Grundlagen der Mikroelektronikfertigung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052110002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Joachim Burghartz
9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2008, 6. Semester |
| → Ergänzungsmodul |
| → Kompetenzfeld II |
| B.Sc. Technologiemanagement, PO 2008, 6. Semester |
| → Kernmodule |
| → Pflichtmodule 4 und 5 mit Wahlmöglichkeit |
| B.Sc. Technologiemanagement, PO 2011, 6. Semester |
| → Ergänzungsmodul |
| → Kernmodul |
| → Kompetenzfeld II |
| B.Sc. Technologiemanagement, PO 2011, 6. Semester |
| → Kernmodule |
| → Pflichtmodule mit Wahlmöglichkeit |
| B.Sc. Technologiemanagement, PO 2011, 6. Semester |
| → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik |
| → Elektronikfertigung |
| → Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik |
| → Elektronikfertigung |
| → Kernfächer mit 6 LP |

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Studierende kennen wesentliche Grundlagen der Werkstoffe, Prozessschritte, Integrationsprozesse und Volumenproduktionsverfahren in der Silizium-Technologie

13. Inhalt:

- History and Basics of IC Technology
- Process Technology I and II
- Process Modules
- MOS Capacitor
- MOS Transistor
- Non-Ideal MOS Transistor
- Basics of CMOS Circuit Integration
- CMOS Device Scaling
- Metal-Silicon Contact
- Interconnects
- Design Metrics
- Special MOS Devices
- Future Directions

14. Literatur:

- D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
• S. Sze: Fundamentals of Semiconductor Fabrication, Wiley Interscience, 2003

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>140301 Vorlesung und Übung Grundlagen der Mikroelektronikfertigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14031 Grundlagen der Mikroelektronikfertigung (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, persönliche Interaktion</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33290 Praktikum Mikroelektronikfertigung

2. Modulkürzel: 052110003
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer A (ING)
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Elektronikfertigung

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden lernen theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
Praktische Beispiele und Teilschritte der Halbleiterfertigung in einer modernen CMOS-Prozesslinie vom Wafersubstrat bis zum aufgebauten Chips.

14. Literatur:
Präsentationen, Moderation, Praktikumsunterlagen

15. Lehrveranstaltungen und -formen:
• 332901 Spezialisierungsfachversuch 1
• 332902 Spezialisierungsfachversuch 2
• 332903 Spezialisierungsfachversuch 3
• 332904 Spezialisierungsfachversuch 4
• 332905 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 332906 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 332907 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 332908 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
33291 Praktikum Mikroelektronikfertigung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ...

19. Medienform:
Umdrucke, elektronische Medien (Powerpoint, Excel, Mindmapping, Eagle, Speq, …), Demonstrationen und Bedienung von Geräten

20. Angeboten von:

Stand: 23. Oktober 2012
233 Feinwerktechnik

Zugeordnete Module:
- 2331 Kernfächer mit 6 LP
- 2332 Kern-/Ergänzungsfächer mit 6 LP
- 2333 Ergänzungsfächer mit 3 LP
- 33780 Praktikum Feinwerktechnik
2333 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 32480 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I)
- 32880 Elektronische Bauelemente in der Mikrosystemtechnik
- 33280 Praktische FEM-Simulation mit ANSYS und MAXWELL
- 33300 Elektrische Bauelemente in der Feinwerktechnik
- 33310 Elektronik für Feinwerktechniker
- 33450 Elektronik für Mikrosystemtechniker
Modul: 32480 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I)

2. Modulkürzel: 100410110
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr. Alexander Bulling
9. Dozenten: Alexander Bulling
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Feinwerktechnik
 ➔ Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionstechnik
 ➔ Fabrikbetrieb
 ➔ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
12. Lernziele: Grundkenntnisse im Umgang mit Erfindungen beherrschen und daraus resultierende Patente erkennen.
13. Inhalt:
 • Sinn und Zweck von Schutzrechten
 • Wirkungen und Schutzbereich eines Patents
 • Unmittelbare und Mittelbare Patentverletzung, Vorbenutzungsrecht, Erschöpfung, Verwirkung
 • Patentfähigkeit und Erfindungsbegriff
 • Schutzvoraussetzungen
 • Von der Erfindung zur Patentanmeldung
 • Das Recht auf das Patent (Erfinder/Anmelder)
 • Das Patenterteilungsverfahren
 • Priorität und Nachanmeldungen: Europäisches und internationales Anmeldeverfahren.
 • Rechtsbehelfe und Prozesswege
 • Vorgehensweise bei Patentverletzung
 • Übertragung, Lizenzen, Schutzrechtsbewertung
 • Das Arbeitnehmererfindergesetz
 • EXKURSION: Patentinformationszentrum im Haus der Wirtschaft/ Stuttgart
 Lit.: Beck-Text, Patent- und Musterrecht
15. Lehrveranstaltungen und -formen: 324801 Vorlesung Deutsches und europäisches Patentrecht
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 32481 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I) (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...:

Stand: 23. Oktober 2012
19. Medienform:

20. Angeboten von:
Modul: 33300 Elektrische Bauelemente in der Feinwerktechnik

2. Modulkürzel: 072510008
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: PD Dr.-Ing. Hubert Effenberger
9. Dozenten: Hubert Effenberger

⇒ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
⇒ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
⇒ Feinwerktechnik
⇒ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in einem Bachelor

12. Lernziele: Die Studierenden kennen diskrete und integrierte, analoge und digitale Bauelemente und haben die Fähigkeiten zur praktischen Anwendung in der Feinwerktechnik.

14. Literatur:
• Effenberger, H.: Umdrucke zur Vorlesung
• Tietze, U; Schenk, Ch.: Halbleiter-Schaltungstechnik. Berlin: Springer 2002

15. Lehrveranstaltungen und -formen: 333001 Vorlesung Elektrische Bauelemente in der Feinwerktechnik

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33301 Elektrische Bauelemente in der Feinwerktechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... : Tafel, Overhead-Projektor, Beamer-Präsentation

19. Medienform:

20. Angeboten von: Konstruktion und Fertigung in der Feinwerktechnik
Modul: 33310 Elektronik für Feinwerktechniker

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510007</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Hubert Effenberger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Abgeschlossene Grundlagenausbildung in einem Bachelor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. Lernziele:
Die Studierenden kennen die Grundschaltungen der Analog- und Digitaltechnik. Sie kennen integrierte Schaltkreise in Bipolar- und MOS-Technik und haben die Fähigkeiten zur praktischen Anwendung.

13. Inhalt:

14. Literatur:
- Effenberger, H.: Umdrucke zur Vorlesung
- Tietze, U; Schenk, Ch.: Halbleiter-Schaltungstechnik. Berlin: Springer 2002

15. Lehrveranstaltungen und -formen:
333101 Vorlesung Elektronik für Feinwerktechniker

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
33311 Elektronik für Feinwerktechniker (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

19. Medienform:
Tafel, Overhead-Projektor, Beamer-Präsentation

20. Angeboten von:
Konstruktion und Fertigung in der Feinwerktechnik
Modul: 33450 Elektronik für Mikrosystemtechniker

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Rainer Mohr</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Mohr</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte-und Technische Optik
→ Elektronikfertigung
→ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte-und Technische Optik
→ Feinwerktechnik
→ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte-und Technische Optik
→ Mikrosystemtechnik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | keine |
Die Studierenden sind in der Lage
- Einfache Schaltungen zu dimensionieren
- Schaltbilder zu lesen und zu verstehen
- elektrische Messtechnik durchzuführen
- ein Schaltungssimulationsprogramm zu bedienen |
| 14. Literatur: | Manuskript der Vorlesung, Literatur zu den einzelnen Kapiteln (Literaturverzeichnis im Manuskript) |
| 15. Lehrveranstaltungen und -formen: | 334501 Vorlesung (inkl. Elektronikpraktikum) Elektronik für Mikrosystemtechniker |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 33451 Elektronik für Mikrosystemtechniker (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Beamerpräsentation, Overheadprojektor, Tafel |

Stand: 23. Oktober 2012
20. Angeboten von:
Modul: 32880 Elektronische Bauelemente in der Mikrosystemtechnik

2. Modulkürzel: 073400005
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Rainer Mohr
9. Dozenten: Rainer Mohr
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Die Studierenden sind in der Lage
 • Elektronische Bauelemente zu qualifizieren, d.h. ein für den gedachten Anwendungszweck geeignetes Bauelement auszusuchen.
 • Ersatzschaltbilder für Bauelemente zu erstellen
 • elektrische Messtechnik durchzuführen
 • ein Schaltungssimulationsprogramm zu bedienen
13. Inhalt:
 Allgemeines zu elektronischen Bauelementen, Leitungsmechanismen, Widerstände, Kondensatoren, Spulen, Halbleiter (Diode, Bipolare Transistoren, Feldeffekttransistoren), Ladungsverschiebungselemente (CCD), Elektronische Speicher, Parasitäre Eigenschaften bei elektronischen Bauelementen, Piezoelektrische Bauelemente (Quarz, Piezokeramik), Organische elektronische Bauelemente (OLED, OFET)
14. Literatur:
 Manuskript der Vorlesung, Literatur zu den einzelnen Kapiteln (Literaturverzeichnis im Manuskript)
15. Lehrveranstaltungen und -formen:
 328801 Vorlesung (inkl. Übungen und Schaltungssimulation)
 Elektronische Bauelemente in der Mikrosystemtechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name:
 32881 Elektronische Bauelemente in der Mikrosystemtechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
 Beamerpräsentation, Overheadprojektor, Tafel
20. Angeboten von:
Modul: 33280 Praktische FEM-Simulation mit ANSYS und MAXWELL

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510005</th>
<th>5. Moduldauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td></td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Wolfgang Schinköthe</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Schinköthe</td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Feinwerktechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Abgeschlossene Grundlagenausbildung in einem Bachelor</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden haben die Fähigkeit die FEM-Programme ANSYS und MAXWELL für Simulationsaufgaben verschiedenster Art einzusetzen.</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Schinköthe, W.; Ulmer, M.; Joerges, P.; Zülich, M.: Praktische FEM-Simulation mit ANSYS und MAXWELL. Skript zur Vorlesung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>332801 Vorlesung und Übung Praktische FEM-Simulation mit ANSYS und MAXWELL</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit: 21 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33281 Praktische FEM-Simulation mit ANSYS und MAXWELL (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>am PC, Beamer-Präsentation,</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Konstruktion und Fertigung in der Feinwerktechnik</td>
<td></td>
</tr>
</tbody>
</table>
2332 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 13540 Grundlagen der Mikrotechnik
- 13560 Technologien der Nano- und Mikrosystemtechnik I
- 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik
- 32250 Design und Fertigung mikro- und nanoelektronischer Systeme
- 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten
- 33260 Praxis des Spritzgießens in der Gerätetechnik, Verfahren, Prozesskette, Simulation
- 33710 Optische Messtechnik und Messverfahren
Modul: 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

2. Modulkürzel: 072510003
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe

9. Dozenten: Wolfgang Schinköthe

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Elektronikfertigung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Feinwerktechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Feinwerktechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in einem Bachelor

12. Lernziele:

13. Inhalt:
Behandelt werden feinwerktechnische Antriebe unterschiedlicher Wirkprinzipien mit den Schwerpunkten:

- Magnettechnik/-technologie (Werkstoffe, Verfahren, konstruktive Auslegung, Magnetisierung)
- Elektromagnetische Antriebe (rotatorische und lineare Schrittmotoren; Berechnung, Gestaltung, Anwendung)
- Elektrodynamische Antriebe (rotatorische und lineare Gleichstromkleinmotoren; Berechnung, Gestaltung, Anwendung)
- Piezoelektrische, magnetostriktive und andere unkonventionelle Aktorik (neue Werkstoffe in mechatronischen Komponenten, Berechnung, Gestaltung, Anwendung)
• Beispiele zur Realisierung mechatronischer Lösungen in der Gerätetechnik. Beispielhafte Vertiefung in zugehörigen Übungen und Praktika (Spezialisierungsfachpraktika und APMB).

14. Literatur:

15. Lehrveranstaltungen und -formen:

327301 Vorlesung + Übung Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

32731 Aktorik in der Gerätetechnik: Konstruktion, Berechnung und Anwendung mechatronischer Komponenten (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Tafel, Overhead-Projektor, Beamer-Präsentation

20. Angeboten von:

Konstruktion und Fertigung in der Feinwerktechnik
Modul: 32250 Design und Fertigung mikro- und nanoelektronischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052110003</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Joachim Burghartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Burghartz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
<td>Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>Elektronikfertigung</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Elektronikfertigung</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: V/Ü Grundlagen der Mikroelektronikfertigung (Empfehlung)

12. Lernziele: Vermittlung weiterführender Kenntnisse der wichtigsten Technologien und Techniken in der Elektronikfertigung

- Grundlagen der Mikroelektronik
- Lithografieverfahren
- Wafer-Prozesse
- CMOS-Gesamtprozesse
- Packaging und Test
- Qualität und Zuverlässigkeit

14. Literatur:
- D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Übung Design und Fertigung mikro- und nanoelektronischer Systeme (Blockveranstaltung)</td>
<td>322501</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungskennzahl</th>
<th>Prüfungsdetails</th>
</tr>
</thead>
<tbody>
<tr>
<td>32251</td>
<td>Design und Fertigung mikro- und nanoelektronischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, oder bei geringer Anzahl Studierender: mündlich, 40 min.</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

- PowerPoint

20. Angeboten von:
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Wolfgang Schinköthe</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Schinköthe
• Eberhard Burkard |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |

| B.Sc. Technologiemanagement, PO 2008, 5. Semester |
| → Ergänzungsmodule |
| → Kompetenzfeld II |
| B.Sc. Technologiemanagement, PO 2008, 5. Semester |
| → Kernmodule |
| → Pflichtmodule 4 und 5 mit Wahrmöglichkeit |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester |
| → Ergänzungsmodule |
| → Kernmodule |
| → Kompetenzfeld II |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester |
| → Kernmodule |
| → Pflichtmodule mit Wahrmöglichkeit |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester |
| → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik |
| → Elektronikfertigung |
| → Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik |
| → Feinwerktechnik |
| → Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik |
| → Feinwerktechnik |
| → Kernfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Werkstoff- und Produktionstechnik |
| → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik |
| → Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| → Vertiefungsmoduls |
| → Wahrmöglichkeit Gruppe 2: Konstruktion |

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

14. Literatur:
 • Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
 • 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
 • 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Messtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 h
 Selbststudium / Nacharbeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:

 13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1,0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für ... :

19. Medienform:
 • Tafel
 • OHP
 • Beamer

20. Angeboten von:

 Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 13540 Grundlagen der Mikrotechnik

2. Modulkürzel: 073400001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Heinz Kück
9. Dozenten: Heinz Kück

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Elektronikfertigung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Feinwerktechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Mikrosystemtechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Technische Optik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:
• Eigenschaften der wichtigsten Werkstoffe der MST
• Silizium-Mikromechanik

Stand: 23. Oktober 2012
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünner Schichten
• (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
• Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (Mikrospritzguss, Heißprägen)
• Mikrobearbeitung von Metallen (Funkenerosion, spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
• 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13541 Grundlagen der Mikrotechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von:
Institut für Zeitmesstechnik, Fein- und Mikrotechnik
Modul: 33710 Optische Messtechnik und Messverfahren

2. Modulkürzel: 073100002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Wolfgang Osten
9. Dozenten: Wolfgang Osten

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
→ M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP

→ M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP

→ M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP

→ M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP

→ M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Technische Optik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden
 • verstehen die Unterschiede zwischen wellenoptischer und geometrisch-optischer Beschreibung,
 • sind in der Lage, die in Wellenfeldern enthaltene, Information zu beschreiben,
 • können Messungen kritisch mittels Fehleranalyse bewerten,
 • kennen die Rolle und Wirkungsweise der wichtigsten Komponenten und sind in der Lage, optische Mess-Systeme aus einzelnen Komponenten zusammenzustellen und zu bewerten,
 • sind in der Lage, Methoden zur Vermessung von optischen und technischen Oberflächen sowie deren Oberflächenveränderungen zielgerichtet einzusetzen.

13. Inhalt:
Grundlagen der geometrischen Optik:
- optische Komponenten
- optische Systeme
Grundlagen der Wellenoptik:
- Wellentypen
- Interferenz und Kohärenz
- Beugung und Auflösungsvermögen
Holografie
Speckle
Messfehler
Grundprinzipien und Klassifikation optischer Messtechniken
Komponenten optischer Messsysteme:
- Lichtquellen
- Lichtmodulatoren
- Auge und Detektoren
Messmethoden auf Basis der geometrischen Optik:
- Strukturierte Beleuchtung
- Moiré
- Messmikroskope und Messfernrohre
Messmethoden auf Basis der Wellenoptik:
- interferometrische Messtechniken
- Interferenzmikroskopie
- holografische Interferometrie
- Speckle-Messtechniken
- Laufzeittechniken

14. Literatur:
Manuskript der Vorlesung;

15. Lehrveranstaltungen und -formen:
• 337101 Vorlesung Optische Messtechnik und Messverfahren
• 337102 Übung Optische Messtechnik und Messverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungssnummer/n und -name:
33711 Optische Messtechnik und Messverfahren (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 33260 Praxis des Spritzgießens in der Gerätetechnik, Verfahren, Prozesskette, Simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510004</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauran:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe

9. Dozenten: • Wolfgang Schinköthe • Eberhard Burkard

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 - Feinwerktechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 - Feinwerktechnik
 - Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in einem Bachelor

13. Inhalt:

14. Literatur:
- Burkard, E.: Praxis des Spritzgießens in der Gerätetechnik; Verfahren, Prozesskette, Simulation. Skript zur Vorlesung
- Jaroschek, Ch.: Spritzgießen für Praktiker. München: Carl Hanser 2008

15. Lehrveranstaltungen und -formen: 332601 Vorlesung + Übung Praxis des Spritzgießens in der Gerätetechnik; Verfahren, Prozesskette, Simulation

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33261 Praxis des Spritzgießens in der Gerätetechnik, Verfahren, Prozesskette, Simulation (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Tafel, Overhead-Projektor, Beamer-Präsentation, PC

Stand: 23. Oktober 2012
20. Angeboten von: Konstruktion und Fertigung in der Feinwerkenchnik
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

2. Modulkürzel: 072420001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Feinwerktechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Werkstoff- und Produktionsforschung
 ➔ Fabrikbetrieb
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Im Modul Technologien der Nano- und Mikrosystemtechnik I

- haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Bauelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik kennen gelernt,
- können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:
Die Studierenden

- können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
- können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
- haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
- sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
- sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

13. Inhalt:

14. Literatur:

- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schweginger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen:

135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
2331 Kernfächer mit 6 LP

Zugeordnete Module:

- 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik
- 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten
- 33260 Praxis des Spritzgießens in der Gerätetechnik, Verfahren, Prozesskette, Simulation
Modul: 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

2. Modulkürzel: 072510003
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Wolfgang Schinköthe

9. Dozenten: Wolfgang Schinköthe

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte technik und Technische Optik
→ Elektronikfertigung
→ Kern/-Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte technik und Technische Optik
→ Feinwerktechnik
→ Kern/-Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte technik und Technische Optik
→ Feinwerktechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte technik und Technische Optik
→ Mikrosystemtechnik
→ Kern/-Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte technik und Technische Optik
→ Technische Optik
→ Kern/-Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagen ausbildung in einem Bachelor

12. Lernziele:

13. Inhalt:
Behandelt werden feinwerktechnische Antriebe unterschiedlicher Wirkprinzip mit den Schwerpunkten:

- Magnettechnik/-technologie (Werkstoffe, Verfahren, konstruktive Auslegung, Magnetisierung)
- Elektromagnetische Antriebe (rotatorische und lineare Schrittmotoren; Berechnung, Gestaltung, Anwendung)
- Elektrodynamische Antriebe (rotatorische und lineare Gleichstromkleinstmotoren; Berechnung, Gestaltung, Anwendung)
- Piezoelektrische, magnetostriktive und andere unkonventionelle Aktorik (neue Werkstoffe in mechatronischen Komponenten, Berechnung, Gestaltung, Anwendung)
• Beispiele zur Realisierung mechatronischer Lösungen in der Geräteotechnik. Beispielhafte Vertiefung in zugehörigen Übungen und Praktika (Spezialisierungsfachpraktika und APMB).

14. Literatur:

15. Lehrveranstaltungen und -formen: 327301 Vorlesung + Übung Aktorik in der Geräteotechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

17. Prüfungsnummer/n und -name: 32731 Aktorik in der Geräteotechnik: Konstruktion, Berechnung und Anwendung mechatronischer Komponenten (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Overhead-Projektor, Beamer-Präsentation

20. Angeboten von: Konstruktion und Fertigung in der Feinwerktechnik
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

2. Modulkürzel: 072510002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe
9. Dozenten: • Wolfgang Schinköthe
• Eberhard Burkard

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>2. Modulkürzel: 072510002</th>
<th>5. Modulduauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

Stand: 23. Oktober 2012

14. Literatur:
- Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
- 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Messtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 42 h |
| Selbstdstudiumszeit / Nacharbeitszeit: | 138 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für ...

19. Medienform:
- Tafel
- OHP
- Beamer

20. Angeboten von:
Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 33260 Praxis des Spritzgießens in der Gerätetechnik, Verfahren, Prozesskette, Simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510004</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Wolfgang Schinköthe</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Schinköthe
• Eberhard Burkard |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
→ Feinwerktechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
→ Feinwerktechnik
→ Kernfärcher mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagenausbildung in einem Bachelor |
• Jaroschek, Ch.: Spritzgießen für Praktiker. München: Carl Hanser 2008 |
| 15. Lehrveranstaltungen und -formen: | 332601 Vorlesung + Übung Praxis des Spritzgießens in der Gerätetechnik; Verfahren, Prozesskette, Simulation |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 33261 Praxis des Spritzgießens in der Gerätetechnik, Verfahren, Prozesskette, Simulation (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: | Tafel, Overhead-Projektor, Beamer-Präsentation, PC |
20. Angeboten von: Konstruktion und Fertigung in der Feinwerktechnik
Modul: 33780 Praktikum Feinwerktechnik

2. Modulkürzel: 072510006 5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP 6. Turnus: jedes Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Schinköthe
9. Dozenten: Wolfgang Schinköthe

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Feinwerktechnik

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in einem Bachelor

14. Literatur: Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:

 • 337801 Spezialisierungsfachversuch 1
 • 337802 Spezialisierungsfachversuch 2
 • 337803 Spezialisierungsfachversuch 3
 • 337804 Spezialisierungsfachversuch 4
 • 337805 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 337806 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 337807 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
 • 337808 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 30 Stunden
 Selbststudium/Nacharbeit: 60 Stunden
 Summe: 90 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33781</th>
<th>Praktikum Feinwerktechnik (USL), schriftlich oder mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>am Versuchsstand</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Konstruktion und Fertigung in der Feinwerktechnik</td>
<td></td>
</tr>
</tbody>
</table>
234 Mikrosystemtechnik

Zugeordnete Module:
- 2341 Kernfächer mit 6 LP
- 2342 Kern-/Ergänzungsfächer mit 6 LP
- 2343 Ergänzungsfächer mit 3 LP
- 33810 Praktikum Mikrosystemtechnik
2343 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 32880 Elektronische Bauelemente in der Mikrosystemtechnik
- 33110 Modellierung und Simulation in der Mikrosystemtechnik
- 33450 Elektronik für Mikrosystemtechniker
- 33530 Mikrofluidik (Übungen)
- 33540 Grundlagen der Mikrosystemtechnik (Übungen)
- 33770 Technologien der Nano- und Mikrosystemtechnik II
Modul: 33450 Elektronik für Mikrosystemtechniker

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400004</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Rainer Mohr
9. Dozenten: Rainer Mohr

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 - Elektronikfertigung
 - Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 - Feinwerktechnik
 - Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 - Mikrosystemtechnik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden sind in der Lage
- einfache Schaltungen zu dimensionieren
- Schaltbilder zu lesen und zu verstehen
- elektrische Messtechnik durchzuführen
- ein Schaltungssimulationsprogramm zu bedienen

13. Inhalt:

- Einfache Stromkreise, Elektrische Netzwerke, Wechselstromlehre
- Signalverarbeitung, Verstärker, Analog integrierte Schaltungen (Operationsverstärker), Sensorsignalverarbeitung, Oszillatoren, Schwingschaltungen, Stromversorgungen, Rauschen, Elektromagnetische Verträglichkeit, Schaltsbeispiele

14. Literatur:

Manuskript der Vorlesung, Literatur zu den einzelnen Kapiteln (Literaturverzeichnis im Manuskript)

15. Lehrveranstaltungen und -formen:

334501 Vorlesung (inkl. Elektronikpraktikum) Elektronik für Mikrosystemtechniker

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

33451 Elektronik für Mikrosystemtechniker (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Beamerpräsentation, Overheadprojektor, Tafel

Stand: 23. Oktober 2012
20. Angeboten von:
Modul: 32880 Elektronische Bauelemente in der Mikrosystemtechnik

2. Modulkürzel: 073400005
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Rainer Mohr
9. Dozenten: Rainer Mohr

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Die Studierenden sind in der Lage

 • Elektronische Bauelemente zu qualifizieren, d.h. ein für den gedachten Anwendungszweck geeignetes Bauelement auszusuchen.
 • Ersatzschaltbilder für Bauelemente zu erstellen
 • elektrische Messtechnik durchzuführen
 • ein Schaltungssimulationsprogramm zu bedienen

13. Inhalt:
 Allgemeines zu elektronischen Bauelementen, Leitungsmechanismen, Widerstände, Kondensatoren, Spulen, Halbleiter (Diode, Bipolare Transistoren, Feldeffekttransistoren), Ladungsverschiebungselemente (CCD), Elektronische Speicher, Parasitäre Eigenschaften bei elektronischen Bauelementen, Piezoelektrische Bauelemente (Quarz, Piezokeramik), Organische elektronische Bauelemente (OLED, OFET)

14. Literatur:
 Manuskript der Vorlesung, Literatur zu den einzelnen Kapiteln (Literaturverzeichnis im Manuskript)

15. Lehrveranstaltungen und -formen:
 328801 Vorlesung (inkl. Übungen und Schaltungssimulation)
 Elektronische Bauelemente in der Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
 32881 Elektronische Bauelemente in der Mikrosystemtechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienformen:
 Beamerpräsentation, Overheadprojektor, Tafel
20. Angeboten von:
Modul: 33540 Grundlagen der Mikrosystemtechnik (Übungen)

2. Modulkürzel: 072420102
5. Moduldauer: 2 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 0.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
14. Literatur:
15. Lehrveranstaltungen und -formen: 335401 Übungen Mikrosystemtechnik
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 33541 Grundlagen der Mikrosystemtechnik (Übungen) (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 33530 Mikrofluidik (Übungen)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Modulkürzel:</td>
<td>072420106</td>
</tr>
<tr>
<td>3.</td>
<td>Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4.</td>
<td>SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5.</td>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6.</td>
<td>Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7.</td>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8.</td>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Sandmaier</td>
</tr>
</tbody>
</table>
| 9. | Dozenten: | • Hermann Sandmaier
| | | • Nourdin Boufercha |
| | | → Vorgezogene Master-Module
| | | M.Sc. Technologiemanagement, PO 2011
| | | → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
| | | → Mikrosystemtechnik
| | | → Ergänzungsfächer mit 3 LP |
| 11. | Empfohlene Voraussetzungen: | Teilnahme an der Vorlesung Mikrofluidik und Mikroaktorik |
| 12. | Lernziele: | Im Modul Mikrofluidik (Übungen)
| | | - vertiefen die Studierenden das in der Vorlesung Mikrofluidik vermittelte theoretische Wissen von fluidischen Systemen an praktischen Übungsbeispielen.
| | | Erworbene Kompetenzen:
| | | Die Studierenden
| | | - können fluidische Systeme modellieren,
| | | - können diese Systeme simulieren
| | | - lernen das Werkzeug „Simulation“ kennen und zu bedienen. |
| 13. | Inhalt: | |
| 14. | Literatur: | |
| 15. | Lehrveranstaltungen und -formen: | 335301 Übungen Mikrofluidik |
| | | Selbststudium: 69 Stunden
| | | Summe: 90 Stunden |
| 17. | Prüfungsnummer/n und -name: | 33531 Mikrofluidik (Übungen) (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. | Grundlage für ... : | |
| 19. | Medienform: | Beamer, handouts, Gruppenarbeit, einzeln am PC |
| 20. | Angeboten von: | |
Modul: 33110 Modellierung und Simulation in der Mikrosystemtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Rainer Mohr</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Rainer Mohr
• Marc Schober |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | keine |
| 14. Literatur: | Manuskript der Vorlesung, Literatur zu den einzelnen Kapiteln (Literaturverzeichnis im Manuskript) |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 33111 Modellierung und Simulation in der Mikrosystemtechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 20. Angeboten von: | |
Modul: 33770 Technologien der Nano- und Mikrosystemtechnik II

2. Modulkürzel: 072420004 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte- und Technische Optik
 ➔ Elektronikfertigung
 ➔ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Geräte- und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Technologien der Nano- und Mikrosystemtechnik I

12. Lernziele:
Im Modul Technologien der Nano- und Mikrosystemtechnik II
 • haben die Studierenden die Technologien der Oberflächen- und Bulkmikromechanik sowie die Röntgenlithographie und das LIGA-Verfahren zur Herstellung von Bauelementen der Nanound Mikrosystemtechnik vertiefend kennen gelernt,
 • können die Studierenden die Prozessverfahren bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:

Die Studierenden
 • können die Verfahren der Oberflächen- und Bulkmikromechanik sowie die Röntgenlithographie und das LIGA-Verfahren benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
 • beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen auf der Basis der oben genannten Technologien
 • haben ein Gefühl für den Aufwand der einzelnen Verfahren entwickeln können,
 • sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
 • sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen einen kompletten Prozessablauf zur Herstellung von mikrotechnischen Bauelementen und Systemen zu entwerfen.

13. Inhalt:
Die Vorlesung vermittelt den Studierenden die Grundlagen, um die spezifischen Prozessabläufe zur Herstellung von modernen Bauelementen der Mikrosystemtechnik zu verstehen. Nach einer kurzen Einführung in die Thematik werden die Oberflächenmikromechanik (OMM), die Bulkmikromechanik (BMM), die Röntgenlithographie und das LIGA-Verfahren ausführlich behandelt, und die Grundlagen zu den einzelnen technologischen Prozessen vermittelt.
Anhand von Anwendungsbeispielen wird gezeigt, wie durch eine geschickte Aneinanderreihung der einzelnen Prozesse komplexe Bauelemente der Nano- und Mikrosystemtechnik, wie z.B. Druck-, Beschleunigungssensoren und das Digital Mirror Device (DMD) hergestellt werden können.

14. Literatur:
- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts und CD zur Vorlesung

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen: 337701 Vorlesung Technologien der Nano- und Mikrosystemtechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33771 Technologien der Nano- und Mikrosystemtechnik II (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:
2342 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 13540 Grundlagen der Mikrotechnik
- 13560 Technologien der Nano- und Mikrosystemtechnik I
- 13580 Wissens- und Informationsmanagement in der Produktion
- 32220 Grundlagen der Biomedizinischen Technik
- 32230 Grundlagen der Mikrosystemtechnik
- 32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau
- 32250 Design und Fertigung mikro- und nanoelektronischer Systeme
- 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten
- 33690 Mikrofluidik und Mikroaktorik
- 33710 Optische Messtechnik und Messverfahren
- 33760 Aufbau- und Verbindungstechnik II - Technologien
Modul: 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

2. Modulkürzel: 072510003
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Wolfgang Schinköthe

9. Dozenten: Wolfgang Schinköthe

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Elektronikfertigung
 ➔ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Feinwerktechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Feinwerktechnik
 ➔ Kernfacher mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Mikrosystemtechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Technische Optik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

 Abgeschlossene Grundlagenausbildung in einem Bachelor

12. Lernziele:

13. Inhalt:

 Behandelt werden feinwerktechnische Antriebe unterschiedlicher Wirkprinzipen mit den Schwerpunkten:

 • Magnettechnik/-technologie (Werkstoffe, Verfahren, konstruktive Auslegung, Magnetisierung)
 • Elektromagnetische Antriebe (rotatorische und lineare Schrittmotoren; Berechnung, Gestaltung, Anwendung)
 • Elektrodynamische Antriebe (rotatorische und lineare Gleichstromkleinstmotoren; Berechnung, Gestaltung, Anwendung)
 • Piezoelektrische, magnetostriktive und andere unkonventionelle Aktorik (neue Werkstoffe in mechatronischen Komponenten, Berechnung, Gestaltung, Anwendung)
• Beispiele zur Realisierung mechatronischer Lösungen in der Geräteotechnik. Beispielhafte Vertiefung in zugehörigen Übungen und Praktika (Spezialisierungsfachpraktika und APMB).

14. Literatur:

15. Lehrveranstaltungen und -formen: 327301 Vorlesung + Übung Aktorik in der Geräteotechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32731 Aktorik in der Geräteotechnik: Konstruktion, Berechnung und Anwendung mechatronischer Komponenten (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Overhead-Projektor, Beamer-Präsentation

20. Angeboten von: Konstruktion und Fertigung in der Feinwerktechnik
Modul: 32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau

4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Heinz Kück

9. Dozenten: • Heinz Kück • Tobias Grözinger

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern/-Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodule
 → Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: keine

 Die Studierenden sollen:

 • die Vielfalt und Verschiedenheit der Aufbauten von Mikrosystemen und der Technologien der Aufbau- und Verbindungstechnik kennenlernen;
 • erkennen, wie das Einsatzgebiet von Sensoren und Systemen die Anforderungen an die Aufbau- und Verbindungstechnik bestimmt und welche Anforderungen zu erfüllen sind;
 • die Einflüsse insbesondere die parasitären Einflüsse der Aufbau- und Verbindungstechnik auf die Eigenschaften der Sensoren und Systeme erkennen;
 • die Auswirkungen der Aufbau- und Verbindungstechniken auf Qualität, Zuverlässigkeit und Kosten kennenlernen;

13. Inhalt: Einführung; Übersicht zu Aufbauten von Mikrosystemen; Einteilung der Sensoren und Mikrosysteme nach Anforderungen und Spezifikationen für

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen: 322401 Vorlesung (inkl. Übungen, praktischer Teil am Institut, und Exkursion) : Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau, Vorlesung (inkl. Übungen, praktischer Teil am Institut, und Exkursion),

17. Prüfungsnummer/n und -name: 32241 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamerpräsentation, Overheadprojektor, Tafel, Demonstrationsobjekte

20. Angeboten von:
Modul: 33760 Aufbau- und Verbindungstechnik II - Technologien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400002</th>
<th>5. Modulsdauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

	→ Vorgezogene Master-Module
	M.Sc. Technologiemanagement, PO 2011
	→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	→ Elektronikfertigung
	→ Kern-/Ergänzungsfächer mit 6 LP
	M.Sc. Technologiemanagement, PO 2011
	→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	→ Mikrosystemtechnik
	→ Kern-/Ergänzungsfächer mit 6 LP
	M.Sc. Technologiemanagement, PO 2011
	→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	→ Mikrosystemtechnik
	→ Kernfächer mit 6 LP

| 11. Empfohlene Voraussetzungen: | keine |

	• die wichtigsten Fertigungsverfahren der Aufbau- und Verbindungstechnik kennen und in Abhängigkeit der Systemerfordernisse zu bewerten lernen;
	• die Eigenschaften der wichtigen Werkstoffe und deren Einfluss auf Qualität und Zuverlässigkeit der Mikrosysteme kennenlernen;
	• die wesentlichen technologischen Einflussgrößen der Verfahren kennenlernen;
	• die wichtigsten Merkmale der Fertigungsanlagen kennen und zu bewerten lernen;

| 13. Inhalt: | Einführung in die Aufbau- und Verbindungstechnik; Leiterplatten; Löten und Kleben in der SMDTechnik; Dickschichttechnik; Gehäusearten und Typen; Chipmontage mit Die-Bonden, Drahtboden, Flip-Chip-Technik, TAB-Bonden; Thermoplastische Systemträger (Moulded Interconnect Devices „MID“) mit Spritzgießtechnik, Zweikomponentenspritzguss- MID-Technik, Laserbasierte MID-Technik; Chemische Metallbeschichtung von Kunststoffen; Chip- und SMD-Montage auf MID; Heißpräge-MID-Technik; Sensoren und Aktoren in MID-Technik; Füge- und Verbinden von Kunststoffbauteilen mit Kleben und Schweißen; Qualitätsmanagement in der Aufbau- und Verbindungstechnik. |

| 14. Literatur: | Vorlesungsmanuskript und Literaturangaben darin |
| 15. Lehrveranstaltungen und -formen: | 337601 Vorlesung (inkl. ÜB, Pr, Exkursion) Aufbau- und Verbindungstechnik II - Technologien |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
17. Prüfungsnummer/n und -name:	33761 Aufbau- und Verbindungstechnik II - Technologien (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :	
19. Medienform:	Beamerpräsentation, Overheadprojektor, Tafel, Demonstrationsobjekte
20. Angeboten von:	
Modul: 32250 Design und Fertigung mikro- und nanoelektronischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052110003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Joachim Burghartz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Burghartz</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Elektronikfertigung
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Elektronikfertigung
 - Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Feinwerktechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Mikrosystemtechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mikrotechnik, Geräte- und Technische Optik
 - Technische Optik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: V/Ü Grundlagen der Mikroelektronikfertigung (Empfehlung)

12. Lernziele:

Vermittlung weiterführender Kenntnisse der wichtigsten Technologien und Techniken in der Elektronikfertigung

13. Inhalt:

Die Vorlesung bietet eine fundierte und praxisbezogene Einführung in die Herstellung von Mikrochips und die besonderen Aspekte beim Test mikroelektronischer Schaltungen sowie dem Verpacken der Chips in IC-Gehäuse.

- Grundlagen der Mikroelektronik
- Lithografieverfahren
- Wafer-Prozesse
- CMOS-Gesamtprozesse
- Packaging und Test
- Qualität und Zuverlässigkeit

14. Literatur:

- D. Neamon: Semiconductor Physics and Devices; McGraw-Hill, 2002
15. Lehrveranstaltungen und -formen:

| 322501 | Vorlesung und Übung Design und Fertigung mikro- und nanoelektronischer Systeme (Blockveranstaltung) |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 42 Stunden |
| Selbststudium: 138 Stunden |
| Summe: 180 Stunden |

17. Prüfungsnummer/n und -name:

| 32251 | Design und Fertigung mikro- und nanoelektronischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, oder bei geringer Anzahl Studierender:mündlich, 40 min. |

18. Grundlage für ... :

19. Medienform:

| PowerPoint |

20. Angeboten von:
Modul: 32220 Grundlagen der Biomedizinischen Technik

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Joachim Nagel
9. Dozenten: • Johannes Port • Joachim Nagel

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Biomedizinische Technik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Biomedizinische Technik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmoduls
→ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: keine
12. Lernziele:
Die Studierenden
• besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
• kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren
• haben wesentliche Kenntnisse gängiger bildgebender Verfahren
• besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen
• können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen
• verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe
• besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse

13. Inhalt:
In dem Modul werden folgende Inhalte vermittelt:
• die besonderen Probleme bei der Messung physiologischer Kenngrößen
• die grundlegenden Eigenschaften biologischer Gewebe
• die Besonderheiten der Elektroden und damit die entsprechenden einzuhaltenenden Maßnahmen bei der Ableitung der Signale
• die physikalischen Grundlagen wichtiger mechanoelektrischer, photoelektrischer, elektrochemischer und thermoelektrischer Wandler
• die wesentlichen Prinzipien und die biomedizinisch spezifischen Besonderheiten der Signalerfassung, Signalverarbeitung, Signalverstärkung und Signalübertragung
• allgemeine Eigenschaften des kardiovaskulären und respiratorischen Systems
• Messverfahren kardiovaskulärer Kenngrößen, wie Elektrokardiogramm, Impedanzkardiogramm, Impedanzelektrocardiogramm, Impedanzelektroencephalogramm, Blutdruckmessung, Blutflussmessung, etc.
• Messverfahren respiratorischer Kenngrößen, wie Impedanzenhautographie, Pneumotachographie, Spirometrie, Ganzkörperplethysmographie, etc.
• Messverfahren biochemischer Kenngrößen, wie pH-Wert-Messung, Ionenkonzentrationsmessung, Sauerstoffmessung, etc.
• Messverfahren neurologischer Kenngrößen, wie das Elektroenzephalogramm, Elektroencephalogramm, Evozierte Potentiale, etc.
• Messverfahren visueller Kenngrößen, wie das Elektrookulogramm, das Elektrotretinogramm, etc., - wichtige physikalische, akustische Kenngrößen
• Messverfahren akusterischer Kenngrößen, wie das Audiogramm, otoakustisch evozierte Potentiale, Elektrococchleogramm, etc.
• Messverfahren weiterer wichtiger Kenngrößen, wie das Elektromyogramm, Elektronystagmogramm, etc.
• Bildgebende Verfahren, wie die Röntgentechnik, Ultraschall, Magnetresonanztomographie, Endoskopietechnik, Thermographie, etc.
• Beispiele für Implantate und Funktionsersatz, wie das Cochlea-Implantat, Mittelohrprothese, Hörgeräte, Herzschrittmacher, Herzklappenersatz, etc.
• Beispiele aktueller Forschung, wie das Brain-Computer Interface, biohybride Armprothese, etc.

14. Literatur:

• Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien
• Czichos, H., Hennecke, M., Hütte: Das Ingenieurwissen, 33. Auflage, Springer-Verlag Berlin
• Heidelberg, 2008 - Dössel, O.: Bildgebende Verfahren in der Medizin, Springer-Verlag Berlin
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>322201 Vorlesung Biomedizinische Technik I und II und 2-tägige Exkursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 58 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 122 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32221 Grundlagen der Biomedizinischen Technik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32230 Grundlagen der Mikrosystemtechnik

2. Modulkürzel: 072420002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Hermann Sandmaier

9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td></td>
<td>Mikrosystemtechnik</td>
</tr>
<tr>
<td></td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td></td>
<td>Mikrosystemtechnik</td>
</tr>
<tr>
<td></td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td></td>
<td>Wahlmöglichkeit Gruppe 2: Konstruktion</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Im Modul Mikrosystemtechnik

- haben die Studierenden einen Überblick über die bedeutendsten Märkte und Bauelemente bzw. Systeme der Mikrosystemtechnik (MST) kennen gelernt
- wissen die Studierenden, wie sich einzelne physikalische Größen bei einer Miniaturisierung verhalten bzw. ändern und wie diese Skalierung genutzt werden kann, um Mikrosensoren und mikroaktorische Antriebe zu realisieren
- können die Studierenden die bedeutendsten Sensoren und Systeme der Mikrosystemtechnik nach vorgegebene Spezifikationen entwerfen und auslegen.

Erworbene Kompetenzen:

Die Studierenden

- haben ein Gefühl für die Märkte der MST und können die wichtigsten Produkte der Mikrosystemtechnik benennen und beschreiben
- besitzen die Grundlagen, um Auswirkungen einer Miniaturisierung auf physikalische Größen, wie mechanische Spannungen, elektrische, piezoelektrische und magnetische Kräfte, Zeitkonstanten und Frequenzen, thermische Phänomene, Reibungseffekte und das Verhalten von Flüssigkeiten und Gasen beurteilen zu können
- kennen die physikalischen Grundlagen zu den bedeutendsten Wandlungsprinzipien bzw. Messeffekten der MST
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Realisierung von mikrosystemtechnischen Sensoren einschließlich der teilweise in den Sensoren erforderlichen mikroaktorischen Antriebe
• können anhand vorgegebener Spezifikationen einen Mikrosensor einschließlich der elektrischen Auswerteschaltung auslegen und entwerfen.

- HSU Tai-Ran, MEMS and Microsystems, Wiley, 2008
- Völklein, F., Zetterer T., Praxiswissen Mikrosystemtechnik,
- Mescheder U.; Mikrosystemtechnik, Teubner Stuttgart Leipzig , 2000
- Pagel L., Mikrosysteme, J. Schlembach Fachverlag, 2001
- Handouts, Skript und CD zur Vorlesung
- Übungen zur Mikrosystemtechnik

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen: 322301 Vorlesung Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32231 Grundlagen der Mikrosystemtechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... : Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

19. Medienform:

20. Angeboten von:
Modul: 13540 Grundlagen der Mikrotechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Heinz Kück</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Heinz Kück</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Feinwerkenotechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

- Eigenschaften der wichtigsten Werkstoffe der MST
- Silizium-Mikromechanik
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünner Schichten
• (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
• Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (Mikrospritzguss, Heißprägen)
• Mikrobearbeitung von Metallen (Funkenerosion, spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
• 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13541 Grundlagen der Mikrotechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation, Overhead-Projektor-Anschrift, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von:
Institut für Zeitmesstechnik, Fein- und Mikrotechnik
Modul: 33690 Mikrofluidik und Mikroaktorik

2. Modulkürzel: 072420003
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier

9. Dozenten:
• Hermann Sandmaier
• Joachim Sägebarth

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Im Modul Mikrofluidik und Mikroaktorik
• haben die Studierenden die physikalischen Grundlagen zu mikrofluidischen Phänomenen kennen gelernt,
• haben die Studierenden die physikalischen Grundlagen zu Aktorprinzipien kennen gelernt,
• können die Studierenden die Funktionsweise der wichtigsten mikrofluidischen Produkte und der wichtigsten Aktoren erläutern.

Erworbene Kompetenzen

Die Studierenden
• können die wichtigsten Bauelemente der Mikrofluidik und Mikroaktorik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens beim Entwurf und der Berechnung von mikrofluidischen Bauelementen und Mikroaktoren,
• haben ein Gefühl für den technischen Aufwand zur Herstellung einzelner Bauelemente entwickelt,
• sind mit den technischen Grenzen der Bauelemente vertraut und können diese bewerten,
• besitzen die Grundlagen, um Auswirkungen einer Miniaturisierung auf physikalische Größen, wie Kräfte, Zeitkonstanten, Wärmeverluste, fluidische Strömungen, etc. beurteilen zu können,
• sind in der Lage, auf der Basis gegebener technischer und wirtschaftlicher Randbedingungen, die optimalen Bauelemente auszuwählen und entsprechende mikrofluidische bzw. aktorische Systeme zu entwerfen.

13. Inhalt:
• Die Vorlesung ist in zwei Teile aufgeteilt, die weitgehend unabhängig voneinander sind. Während im Wintersemester die Mikrofluidik behandelt wird, wird im Sommersemester schwerpunktmäßig auf

- Im Vorlesungsteil mit dem Schwerpunkt Mikroaktorik werden die physikalischen Grundlagen zur Mikroaktorik vermittelt. Anhand von Übungen werden die vermittelten Kenntnisse vertieft. Es werden insbesondere die elektrostatischen, die piezoelektrischen, die magnetischen, magnetound elektrostriktiven sowie die thermischen Aktorprinzipien behandelt. Dabei werden auch die Auswirkungen einer Miniaturisierung auf das Aktorprinzip (Kraft, Weg, Geschwindigkeit bzw. Frequenz, Leistungsverbrauch, etc.) analysiert. Des Weiteren wird auf die Entwicklung und Funktionsweise bereits realisierter mikroaktorischer Bauelemente und Systeme eingegangen.

14. Literatur:
- Pagel L., Mikrosysteme, J. Schlembach Fachverlag, 2001
- Nam-Trung Nguyen, Mikrofluidik: Entwurf, Herstellung und Charakterisierung, Teubner, 2004
- Nam-Trung Nguyen, Steven T. Wereley, Fundamentals and applications of microfluidics, Artech House, 2006
- Patrick Tabeling, Introduction to microfluidics, Oxford University Press, 2006
- Oliver Geschke, Henning Klank, Pieter Tellemann, Microsystem engineering of lab on a chip devices, Wiley-VCH, 2008
- HSU Tai-Ran, MEMS and Microsystems, Wiley, 2008
- Schwesinger N., Dehne C., Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen: 336901 Vorlesung mit Übungen : Mikrofluidik und Mikroaktorik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33691 Mikrofluidik und Mikroaktorik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:
Modul: 33710 Optische Messtechnik und Messverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Elektronikfertigung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Feinwerktechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Mikrosystemtechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Die Studierenden
 - verstehen die Unterschiede zwischen wellenoptischer und geometrisch-optischer Beschreibung,
 - sind in der Lage, die in Wellenfeldern enthaltene, Information zu beschreiben,
 - können Messungen kritisch mittels Fehleranalyse bewerten,
 - kennen die Rolle und Wirkungsweise der wichtigsten Komponenten und sind in der Lage, optische Mess-Systeme aus einzelnen Komponenten zusammenzustellen und zu bewerten,
 - sind in der Lage, Methoden zur Vermessung von optischen und technischen Oberflächen sowie deren Oberflächenveränderungen zielgerichtet einzusetzen.

13. Inhalt:

Grundlagen der geometrischen Optik:
- optische Komponenten
- optische Systeme

Grundlagen der Wellenoptik:
- Wellentypen
- Interferenz und Kohärenz
- Beugung und Auflösungsvermögen

Holografie
Speckle
Messfehler
Grundprinzipien und Klassifikation optischer Messtechniken
Komponenten optischer Messsysteme:
- Lichtquellen
- Lichtmodulatoren
- Auge und Detektoren
Messmethoden auf Basis der geometrischen Optik:
- Strukturierte Beleuchtung
- Moiré
- Messmikroskope und Messfernrohre
Messmethoden auf Basis der Wellenoptik:
- interferometrische Messtechniken
- Interferenzmikroskopie
- holografische Interferometrie
- Speckle-Messtechniken
- Laufzeittechniken

14. Literatur:
Manuskript der Vorlesung;

15. Lehrveranstaltungen und -formen:
- 337101 Vorlesung Optische Messtechnik und Messverfahren
- 337102 Übung Optische Messtechnik und Messverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33711 Optische Messtechnik und Messverfahren (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

2. Modulkürzel: 072420001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Im Modul Technologien der Nano- und Mikrosystemtechnik I
 • haben die Studierenden die wichtigsten Technologien und Verfahren
 zur Herstellung von Bauelementen der Mikroelektronik als auch der
 Nano- und Mikrosystemtechnik kennen gelernt,
 • können die Studierenden einzelne technologische Prozesse bewerten
 und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

 Erworbene Kompetenzen:
Die Studierenden

- können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
- können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
- haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
- sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
- sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

13. Inhalt:

14. Literatur:

- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen:

135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

2. Modulkürzel: 072410003
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl
10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Bachelor: B.Sc. Technologiemanagement, PO 2008, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule und 5 mit Wahlmöglichkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor: B.Sc. Technologiemanagement, PO 2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor: M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik</td>
</tr>
<tr>
<td>→ Mikrosystemtechnik</td>
</tr>
<tr>
<td>→ Kern-/ Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor: M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fabrikbetrieb</td>
</tr>
<tr>
<td>→ Kern-/ Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor: M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
</tr>
<tr>
<td>→ Fabrikbetrieb</td>
</tr>
<tr>
<td>→ Kernfach mit 6 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor: M.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vertiefungsmodul</td>
</tr>
<tr>
<td>→ Wahlmöglichkeit Gruppe 3: Produktion</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen

13. Inhalt: Schwerpunkte der methodisch orientierten Vorlesung sind Grundlagen, Methoden und Werkzeuge des Wissensmanagements, Auftragsmanagements, Customer Relationship Managements, Supply Chain Managements, Produktdatenmanagements, Engineering Data
Managements, Facility Managements sowie der Digitalen und Virtuellen Fabrik.

14. Literatur:
 - Skript zur Vorlesung,
 - Wandlungsfähige Unternehmensstrukturen
 - Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007

15. Lehrveranstaltungen und -formen:
 - 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
 - 135802 Übung Wissens- und Informationsmanagement in der Produktion I
 - 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
 - 135804 Übung Wissens- und Informationsmanagement in der Produktion II

 Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name: 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Power-Point Präsentationen, Simulationen, Animationen und Filme

20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb
2341 Kernfächer mit 6 LP

Zugeordnete Module:
- 13540 Grundlagen der Mikrotechnik
- 13560 Technologien der Nano- und Mikrosystemtechnik I
- 32230 Grundlagen der Mikrosystemtechnik
- 32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau
- 33690 Mikrofluidik und Mikroaktorik
- 33760 Aufbau- und Verbindungstechnik II - Technologien
Modul: 32240 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau

2. Modulkürzel: 073400003
5. Moduldaurer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Heinz Kück

9. Dozenten:
• Heinz Kück
• Tobias Grözinger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodulc
→ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden sollen:

• die Vielfalt und Verschiedenheit der Aufbauten von Mikrosystemen und der Technologien der Aufbau- und Verbindungstechnik kennenlernen;
• erkennen, wie das Einsatzgebiet von Sensoren und Systemen die Anforderungen an die Aufbau- und Verbindungstechnik bestimmt und welche Anforderungen zu erfüllen sind;
• die Einflüsse insbesondere die parasitären Einflüsse der Aufbau- und Verbindungstechnik auf die Eigenschaften der Sensoren und Systeme erkennen;
• die Auswirkungen der Aufbau- und Verbindungstechniken auf Qualität, Zuverlässigkeit und Kosten kennenlernen;

13. Inhalt:
Einführung; Übersicht zu Aufbauten von Mikrosystemen; Einteilung der Sensoren und Mikrosysteme nach Anforderungen und Spezifikationen für

14. Literatur:	Vorlesungsmanuskript und Literaturangaben darin
15. Lehrveranstaltungen und -formen:	322401 Vorlesung (inkl. Übungen, praktischer Teil am Institut, und Exkursion) : Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau, Vorlesung (inkl. Übungen, praktischer Teil am Institut, und Exkursion),
17. Prüfungsnummer/n und -name:	32241 Aufbau- und Verbindungstechnik I - Sensor- und Systemaufbau (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :	
19. Medienform:	Beamerpräsentation, Overheadprojektor, Tafel, Demonstrationsobjekte
20. Angeboten von:	
Modul: 33760 Aufbau- und Verbindungstechnik II - Technologien

2. Modulkürzel: 073400002
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Heinz Kück

9. Dozenten: Bernhard Polzinger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden sollen:

• die wichtigsten Fertigungsverfahren der Aufbau- und Verbindungstechnik kennen und in Abhängigkeit der Systemerfordernisse zu bewerten lernen;
• die Eigenschaften der wichtigen Werkstoffe und deren Einfluss auf Qualität und Zuverlässigkeit der Mikrosysteme kennenlernen;
• die wesentlichen technologischen Einflussgrößen der Verfahren kennenlernen;
• die wichtigsten Merkmale der Fertigungsanlagen kennen und zu bewerten lernen;

13. Inhalt:
Einführung in die Aufbau- und Verbindungstechnik; Leiterplatten; Löten und Kleben in der SMDTechnik; Dickschichttechnik; Gehäusearten und Typen; Chipmontage mit Die-Bonden, Drahtbonden, Flip-Chip-Technik, TAB-Bonden; Thermoplastische Systemträger (Moulded Interconnect Devices „MID“) mit Spritzgießtechnik, Zweikomponentenspritzguss- MID-Technik, Laserbasierte MID-Technik; Chemische Metallbeschichtung von Kunststoffen; Chip- und SMD-Montage auf MID; Heißpräge-MID-Technik; Sensoren und Aktoren in MID-Technik; Fügen und Verbinden von Kunststoffbauteilen mit Kleben und Schweißn; Qualitätsmanagement in der Aufbau- und Verbindungstechnik.

14. Literatur:	Vorlesungsmanuskript und Literaturangaben darin
15. Lehrveranstaltungen und -formen:	337601 Vorlesung inkl. ÜB, Pr, Exkursion Aufbau- und Verbindungstechnik II - Technologien
17. Prüfungsnummer/n und -name:	337601 Aufbau- und Verbindungstechnik II - Technologien (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ...:	
19. Medienform:	Beamerpräsentation, Overheadprojektor, Tafel, Demonstrationsobjekte
20. Angeboten von:	
Modul: 32230 Grundlagen der Mikrosystemtechnik

2. Modulkürzel: 072420002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodulle
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Im Modul Mikrosystemtechnik
 • haben die Studierenden einen Überblick über die bedeutendsten Märkte und Bauelemente bzw. Systeme der Mikrosystemtechnik (MST) kennen gelernt
 • wissen die Studierenden, wie sich einzelne physikalische Größen bei einer Miniaturisierung verhalten bzw. ändern und wie diese Skalierung genutzt werden kann, um Mikrosensoren und mikroaktorische Antriebe zu realisieren
 • können die Studierenden die bedeutendsten Sensoren und Systeme der Mikrosystemtechnik nach vorgegebene Spezifikationen entwerfen und auslegen.

 Erworbene Kompetenzen:

 Die Studierenden
 • haben ein Gefühl für die Märkte der MST und können die wichtigsten Produkte der Mikrosystemtechnik benennen und beschreiben
 • besitzen die Grundlagen, um Auswirkungen einer Miniaturisierung auf physikalische Größen, wie mechanische Spannungen, elektrische, piezoelektrische und magnetische Kräfte, Zeitkonstanten und Frequenzen, thermische Phänomene, Reibungseffekte und das Verhalten von Flüssigkeiten und Gasen beurteilen zu können
 • kennen die physikalischen Grundlagen zu den bedeutendsten Wandlungsprinzipien bzw. Messeffekten der MST
 • beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Realisierung von mikrosystemtechnischen Sensoren einschließlich der teilweise in den Sensoren erforderlichen mikroaktorischen Antriebe
können anhand vorgegebener Spezifikationen einen Mikrosensor einschließlich der elektrischen Auswerteschaltung auslegen und entwerfen.

13. Inhalt:

14. Literatur:

- Schwesinger N., Dehne C., Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- HSU Tai-Ran, MEMS and Microsystems, Wiley, 2008
- Pagel L., Mikrosysteme, J. Schlembach Fachverlag, 2001
- Handouts, Skript und CD zur Vorlesung
- Übungen zur Mikrosystemtechnik

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen: 322301 Vorlesung Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32231 Grundlagen der Mikrosystemtechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:
Modul: 13540 Grundlagen der Mikrotechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Heinz Kück</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Heinz Kück</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Elektronikfertigung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Feinwerktechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | Eigenschaften der wichtigsten Werkstoffe der MST
Silizium-Mikromechanik |
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünner Schichten
• (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
• Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (Mikrospritzguss, Heiβprägen)
• Mikrobearbeitung von Metallen (Funkenerosion, spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
• 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13541 Grundlagen der Mikrotechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von:
Institut für Zeitmesstechnik, Fein- und Mikrotechnik
Modul: 33690 Mikrofluidik und Mikroaktorik

2. Modulkürzel: 072420003
5. Moduldaurer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hermann Sandmaier

9. Dozenten: • Hermann Sandmaier
 • Joachim Sägebarth

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Mikrosystemtechnik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Im Modul Mikrofluidik und Mikroaktorik

• haben die Studierenden die physikalischen Grundlagen zu mikrofluidischen Phänomenen kennen gelernt,
• haben die Studierenden die physikalischen Grundlagen zu Aktorprinzipien kennen gelernt,
• können die Studierenden die Funktionsweise der wichtigsten mikrofluidischen Produkte und der wichtigsten Akten erläutern.

Erworbene Kompetenzen

Die Studierenden

• können die wichtigsten Bauelemente der Mikrofluidik und Mikroaktorik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens beim Entwurf und der Berechnung von mikrofluidischen Bauelementen und Mikroaktoren,
• haben ein Gefühl für den technischen Aufwand zur Herstellung einzelner Bauelemente entwickelt,
• sind mit den technischen Grenzen der Bauelemente vertraut und können diese bewerten,
• besitzen die Grundlagen, um Auswirkungen einer Miniaturisierung auf physikalische Größen, wie Kräfte, Zeitkonstanten, Wärmetransport, fluidische Strömungen, etc. beurteilen zu können,
• sind in der Lage, auf der Basis gegebener technischer und wirtschaftlicher Randbedingungen, die optimalen Bauelemente auszuwählen und entsprechende mikrofluidische bzw. aktorische Systeme zu entwerfen.

13. Inhalt: • Die Vorlesung ist in zwei Teile aufgeteilt, die weitgehend unabhängig voneinander sind. Während im Wintersemester die Mikrofluidik behandelt wird, wird im Sommersemester schwerpunktmäßig auf

- Im Vorlesungsteil mit dem Schwerpunkt Mikroaktorik werden die physikalischen Grundlagen zur Mikroaktorik vermittelt. Anhand von Übungen werden die vermittelten Kenntnisse vertieft. Es werden insbesondere die elektrostatischen, die piezoelektrischen, die magnetischen, magnetound elektrostriktiven sowie die thermischen Aktorprinzipien behandelt. Dabei werden auch die Auswirkungen einer Miniaturisierung auf das Aktorprinzip (Kraft, Weg, Geschwindigkeit bzw. Frequenz, Leistungsverbrauch, etc.) analysiert. Des Weiteren wird auf die Entwicklung und Funktionsweise bereits realisierter mikroaktorischer Bauelemente und Systeme eingegangen.

14. Literatur:
- Pagel L., Mikrosysteme, J. Schlembach Fachverlag, 2001
- Nam-Trung Nguyen, Mikrofluidik: Entwurf, Herstellung und Charakterisierung, Teubner, 2004
- Nam-Trung Nguyen, Steven T. Wereley, Fundamentals and applications of microfluidics, Artech House, 2006
- Patrick Tabeling, Introduction to microfluidics, Oxford University Press, 2006
- Oliver Geschke, Henning Klank, Pieter Telleman, Microsystem engineering of lab on a chip devices, Wiley-VCH, 2008
- HSU Tai-Ran, MEMS and Microsystems, Wiley, 2008
- Schwesinger N., Dehne C., Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:
- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen: 336901 Vorlesung mit Übungen : Mikrofluidik und Mikroaktorik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33691 Mikrofluidik und Mikroaktorik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072420001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Sandmaier</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hermann Sandmaier</td>
</tr>
</tbody>
</table>
 → Ergänzungsmodul
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Mikrosystemtechnik
 → Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Kern-/Ergänzungsfächer mit 6 LP |

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

- haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Bauelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik gelernt,
- können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:
Die Studierenden

- können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
- können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
- beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
- haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
- sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
- sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

13. Inhalt:

14. Literatur:

- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schubiger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009
- Handouts, Skript und CD zur Vorlesung

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

15. Lehrveranstaltungen und -formen:

135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
Modul: 33810 Praktikum Mikrosystemtechnik

2. Modulkürzel: 073400201 5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP 6. Turnus: jedes Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Joachim Sägebarth

9. Dozenten: • Rainer Mohr • Joachim Sägebarth

 M.Sc. Technologiemanagement, PO 2011 → Spezialisierungsfächer A (ING)
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Mikrosystemtechnik

11. Empfohlene Voraussetzungen:

Praktikum am IFF: Durchführung eines Projektes zum Aufbau eines Versuchsstandes zur Charakterisierung eines Beschleunigungssensors.

Praktikum am IZFM: Praktische Beispiele für Herstellung, Aufbau und Test mikromechanischer Komponenten und Systeme, insbesondere in MID-Technologie.

14. Literatur: Präsentationen, Moderation, Praktikumsunterlagen

15. Lehrveranstaltungen und -formen: • 338101 Spezialisierungsfachversuch 1
 • 338102 Spezialisierungsfachversuch 2
 • 338103 Spezialisierungsfachversuch 3
 • 338104 Spezialisierungsfachversuch 4
 • 338105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 338106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 338107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
 • 338108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 30 Stunden
 Selbststudium: 60 Stunden
 Gesamt: 90 Stunden
17. Prüfungsnummer/n und -name: 33811 Praktikum Mikrosystemtechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

IFF: Umdrucke, elektronische Medien (Powerpoint, Excel, Mindmapping, Eagle, Speq, …)

IZFM: Umdrucke, Demonstrationen und Bedienung von Geräten

20. Angeboten von:
235 Technische Optik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>2351 Kernfächer mit 6 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2352 Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
<td>2353 Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td></td>
<td>33460 Praktikum Technische Optik</td>
</tr>
</tbody>
</table>
2353 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 29960 Grundlagen der Farbmetrik und Digitale Fotografie
- 29970 Optik dünner und nanostrukturierter Schichten
- 29980 Einführung in das Optik-Design
- 31870 Bildverarbeitungssysteme in der industriellen Anwendung
- 32760 Diodenlaser
- 33400 Optische Phänomene in Natur und Alltag
Modul: 31870 Bildverarbeitungssysteme in der industriellen Anwendung

2. Modulkürzel: 073100008
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Tobias Haist
9. Dozenten: • Tobias Haist
 • Christian Kohler
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Technische Optik
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Keine
12. Lernziele:
 Die Studierenden sollen
 • typische industrielle BV-Systeme spezifizieren,
 • auslegen und
 • beurteilen können,
 • die relevanten Grundlagen der optischen Abbildung kennen
 • Parameter zur Beurteilung und Beschreibung von Abbildungs- und
 Beleuchtungsoptiken kennen,
 • gezielt Teilkomponenten aufgabengerecht auswählen können,
 • Grundlagen der linearen und nichtlinearen Filterung verstehen,
 • Standardverfahren der optischen 2D und 3D Erfassung kennen und in
 Ihren aufgabenspezifischen Vor- und Nachteilen beurteilen können
13. Inhalt:
 • Abbildungen, Perspektive, Telezentrie, Hyperzentrie, Auflösung
 Tiefenschärfe, Beugung
 • Sensoren, Kamerainterfaces, Beurteilungsparamter, Rauschen
 • Lineare Systemtheorie, Fourier, Lineare Filter, Rangordnungsfiltger,
 morphologische Filter (Grundprinzip), Punkoperationen
 • Typische Bibliotheken
 • 2D Erfassungsgeometrien, 3D Messprinzipien
 • Spezifikation von Abbildungs- und Beleuchtungsoptiken
 • MTF, OTF
 • Abbildungsqualität/Bildfehler
 • Komponenten / Katalogarbeit
 • Grundlagen Photometrie/Radiometrie und Beleuchtungsquellen
 • Beleuchtungsgeometrien
 • Farbe, BRDF
 • 3D Bildverarbeitung
 • Einführung in Zemax
14. Literatur:
 Hornberg: Handbook of Machine Vision
 Fiete: Modeling the imaging chain of digital camera
15. Lehrveranstaltungen und -formen:
 318701 Vorlesung Bildverarbeitungssysteme in der industriellen
 Anwendung
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden

Stand: 23. Oktober 2012
Summe: 90 Stunden

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>31871 Bildverarbeitungssysteme in der industriellen Anwendung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Powerpoint, Laptops</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Technische Optik</td>
</tr>
</tbody>
</table>
Modul: 32760 Diodenlaser

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000008</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr. Thomas Graf

9. Dozenten: • Uwe Brauch • Andreas Voß

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011 ➞ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik ➞ Technische Optik ➞ Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Werkstoff- und Produktionstechnik ➞ Laser in der Materialbearbeitung ➞ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

14. Literatur: Skript und Folien der Vorlesung

15. Lehrveranstaltungen und -formen: 327601 Vorlesung Diodenlaser

17. Prüfungsnummer/n und -name: 32761 Diodenlaser (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Strahlwerkzeuge
Modul: 29980 Einführung in das Optik-Design

2. Modulkürzel: 073100007 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Christoph Menke
9. Dozenten:
• Christoph Menke
• Alois Herkommer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Werkstoff- und Produktionstechnik
→ Laser in der Materialbearbeitung
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: empfohlen: Grundlagen der Technischen Optik

12. Lernziele:
Die Studierenden
- kennen die physikalischen Grundlagen der optischen Abbildung und sind mit den
 Konventionen und Bezeichnungen der geometrischen Optik vertraut
- können die Bildgüte von optischen Systemen bewerten
- kennen die Entstehung und die Auswirkung einzelner Abbildungsfehler
- können geeignete Korrektionsmittel zu den einzelnen Abbildungsfehler benennen und anwenden
- sind in der Lage mit Hilfe des Optik-Design Programms ZEMAX (auf bereitgestellten Rechnern) einfache Optiksysteme zu optimieren

13. Inhalt:
- Grundlagen der geometrischen Optik
- Geometrische und chromatische Aberrationen (Entstehung, Systematik, Auswirkung, Gegenmaßnahmen)
- Bewertung der Abbildungsgüte optischer Systeme
- Verschiedene Typen optischer Systeme (Fotoobjektive, Teleskope, Okulare, Mikroskope, Spiegelsysteme, Zoomsysteme)
- Systementwicklung (Ansatzfindung, Optimierung, Tolerierung, Konstruktion)

14. Literatur:
- Manuskript der Vorlesung
- Gross: Handbook of optical systems Vol. 1-4
- Kingslake: Lens Design Fundamentals
- Smith: Modern Optical Engineering
- Fischer/Tadic-Galeb: Optical System Design
- Shannon: The Art and Science of Optical Design

15. Lehrveranstaltungen und -formen: 299801 Vorlesung Einführung in das Optik-Design

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>29981 Einführung in das Optik-Design (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Powerpoint-Vortrag für Studenten bereitgestellte Notebooks mit Zemax-Optik-Design Programm</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Technische Optik</td>
</tr>
</tbody>
</table>
Modul: 29960 Grundlagen der Farbmetrik und Digitale Fotografie

2. Modulkürzel: 073100006

5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Karl Lenhardt

9. Dozenten: Karl Lenhardt

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 → Technische Optik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden
 - kennen die physikalischen Grundlagen der optoelektronischen Bildaufnahme und die Anforderungen an die Bildqualität
 - können grundsätzlich die Physiologie der menschlichen Farbwahrnehmung erklären
 - verstehen die Systematik verschiedener Farbsysteme
 - können Farbmesssysteme beurteilen
 - kennen verschieden Methoden der Farbdarstellung bei Farbdisplays und Farbausdrucken

13. Inhalt:

 - Physiologie der Farbwahrnehmung
 - Dreidimensioneller Farbraum
 - Normvalenzsystem und Spektralfarbenzug
 - Heringsches Gegenfarbenmodell
 - Farbabstandsbewertung und Farbsysteme
 - Informationstheoretische Betrachtungen
 - HL-Bildwandler in der Stehbildfotografie
 - Farbmanagement in der digitalen Fotografie

14. Literatur:

 • Manuskript der Vorlesung;
 • Lang, H.: Farbmetrik und Farbfernsehen

15. Lehrveranstaltungen und -formen: 299601 Vorlesung Grundlagen der Farbmetrik und Digitale Fotografie

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 29961 Grundlagen der Farbmetrik und Digitale Fotografie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 29970 Optik dünner und nanostrukturierter Schichten

2. Modulkürzel: 073100004 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Karsten Frenner
9. Dozenten: Karsten Frenner

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➔ Technische Optik
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden
 - verstehen die Grundlagen der Polarisationsoptik
 - beherrschen das Rechnen im Jones-/Müller-Formalismus
 - können das Verhalten von polarisationsoptischen Bauteilen und Messverfahren erklären
 - beschreiben die Grundlagen der Wechselwirkung von Licht mit Nanostrukturen
 - können Simulationsprogramme zur Darstellung der wellenoptischen Wechselwirkung nutzen

13. Inhalt:
 - Polarisation des Lichtes
 - Interferenz und Kohärenz
 - Licht an Grenzflächen
 - Wellenoptik am Computer
 - Dünne Schichten - Herstellung und Anwendung
 - Ellipsometrie dünner Schichten
 - Strukturierte Schichten - Herstellung und Anwendung
 - Mikroskopie und Ellipsometrie strukturierter Schichten
 - Kristalloptik und elektrooptische Komponenten

14. Literatur:
 Manuskript der Vorlesung;
 Übungsblätter;
 Hecht: Optik, 3.Aufl., 2001;

15. Lehrveranstaltungen und -formen: 299701 Vorlesung Optik dünner und nanostrukturierter Schichten

16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 29971 Optik dünner und nanostrukturierter Schichten (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33400 Optische Phänomene in Natur und Alltag

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Tobias Haist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Tobias Haist</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2011 |
| Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| Gruppe Mikrotechnik, Gerätetechnik und Technische Optik |
| Technische Optik |
| Ergänzungsfächer mit 3 LP |

11. Empfohlene Voraussetzungen:

- Die Studierenden
 - verstehen die optischen Grundgesetze
 - erlangen einen Einblick in die Problematik der Frage „Was ist Licht“ und lernen übliche Lichtmodelle und die Beschreibung von „Licht“ kennen
 - können die klassischen, mit unbewaffnetem Auge erfassbaren optischen Phänomene erkennen und erklären
 - verstehen die Grundzüge des menschlichen Sehvorgangs
 - kennen die Möglichkeiten der Lichtentstehung
 - erkennen die Bedeutung des Lichts im Rahmen des physikalischen Weltbils

13. Inhalt:

- Wechselwirkungsmodelle von Licht mit Materie (insbesondere: Streuung, Brechung, Absorption, Reflexion, Beugung)
- Physiologie (Mensch und Tier) des Sehsystems
- Optische Täuschungen
- Atmosphärische Optik (Regenbogen, Halos, Luftspiegelungen, Himmelsfärbungen, Glorien, Korona, Irisierung)
- Schattenphänomene
- Farbe (u.a. Farbmischung, Farbentstehung, Physiologie)
- Optische Phänomene an Alltagsgegenständen (viele verschiedene)
- Polarisation
- Kurzüberblick: Photonen (Quanteneffekte, Quantenkryptographie, Quantencomputer)
- Kurzüberblick: Licht in der Relativitätstheorie (u.a. Lichtuhr, Dopplereffekt, Gravitationslinsen, schwarze Löcher)

14. Literatur:

- www.optipina.de dort ausführliches eBook mit vielen weiteren Literaturhinweisen

16. Abschätzung Arbeitsaufwand:

- Präsenzzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33401 Optische Phänomene in Natur und Alltag (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Powerpoint-Vorlesung mit zahlreichen Demonstrationsversuchen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
2352 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>29950</td>
<td>Optische Informationsverarbeitung</td>
</tr>
<tr>
<td>32250</td>
<td>Design und Fertigung mikro- und nanoelektronischer Systeme</td>
</tr>
<tr>
<td>32730</td>
<td>Aktorik in der Geräte-technik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten</td>
</tr>
<tr>
<td>33710</td>
<td>Optische Messtechnik und Messverfahren</td>
</tr>
</tbody>
</table>
Modul: 32730 Aktorik in der Gerätetechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072510003</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Wolfgang Schinköthe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Schinköthe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011	Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011	Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	Elektronikfertigung
	Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011	Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	Feinwerktechnik
	Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011	Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	Feinwerktechnik
	Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011	Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	Mikrosystemtechnik
	Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011	Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
	Technische Optik
	Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

Abgeschlossene Grundlagenausbildung in einem Bachelor

12. Lernziele:

13. Inhalt:

Behandelt werden feinwerktechnische Antriebe unterschiedlicher Wirkprinzip mit den Schwerpunkten:

- Magnettechnik/-technologie (Werkstoffe, Verfahren, konstruktive Auslegung, Magnetisierung)
- Elektromagnetische Antriebe (rotatorische und lineare Schrittmotoren; Berechnung, Gestaltung, Anwendung)
- Elektrodynamische Antriebe (rotatorische und lineare Gleichstromkleinstmotoren; Berechnung, Gestaltung, Anwendung)
- Piezoelektrische, magnetostriktive und andere unkonventionelle Aktorik (neue Werkstoffe in mechatronischen Komponenten, Berechnung, Gestaltung, Anwendung)
• Beispiele zur Realisierung mechatronischer Lösungen in der Geräteotechnik. Beispielhafte Vertiefung in zugehörigen Übungen und Praktika (Spezialisierungsfachpraktika und APMB).

14. Literatur:

15. Lehrveranstaltungen und -formen: 327301 Vorlesung + Übung Aktorik in der Geräteotechnik; Konstruktion, Berechnung und Anwendung mechatronischer Komponenten

17. Prüfungsnummer/n und -name: 32731 Aktorik in der Geräteotechnik: Konstruktion, Berechnung und Anwendung mechatronischer Komponenten (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... : Tafel, Overhead-Projektor, Beamer-Präsentation

20. Angeboten von: Konstruktion und Fertigung in der Feinwerktechnik
Modul: 32250 Design und Fertigung mikro- und nanoelektronischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052110003</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof.Dr.-Ing. Joachim Burghartz

9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
- Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
- Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
- Elektronikfertigung
- Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
- Elektronikfertigung
- Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
- Feinwerktechnik
- Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
- Mikrosystemtechnik
- Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
- Technische Optik
- Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Vertiefungsmodul
- Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: V/Ü Grundlagen der Mikroelektronikfertigung (Empfehlung)

12. Lernziele: Vermittlung weiterführender Kenntnisse der wichtigsten Technologien und Techniken in der Elektronikfertigung

- Grundlagen der Mikroelektronik
- Lithografieverfahren
- Wafer-Prozesse
- CMOS-Gesamtprozesse
- Packaging und Test
- Qualität und Zuverlässigkeit

14. Literatur:
- D. Neammon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
- L.E. Glasser and D.W. Dobberpuhl: The Design and Analysis of VLSI Circuits, Addison Wesley.

15. Lehrveranstaltungen und -formen: 322501 Vorlesung und Übung Design und Fertigung mikro- und nanoelektronischer Systeme (Blockveranstaltung)

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 32251 Design und Fertigung mikro- und nanoelektronischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, oder bei geringer Anzahl Studierender: mündlich, 40 min.

18. Grundlage für...:

19. Medienform:
 PowerPoint

20. Angeboten von:
Modul: 13540 Grundlagen der Mikrotechnik

2. Modulkürzel: 073400001 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Heinz Kück
9. Dozenten: Heinz Kück

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➞ Elektronikfertigung
 ➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➞ Feinwerktechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➞ Mikrosystemtechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➞ Mikrosystemtechnik
 ➞ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
 ➞ Technische Optik
 ➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
 • Eigenschaften der wichtigsten Werkstoffe der MST
 • Silizium-Mikromechanik
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünnener Schichten
• (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
• Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (Mikrospritzguss, Heißprägen)
• Mikrobearbeitung von Metallen (Funkenerosion, spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen: • 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13541 Grundlagen der Mikrotechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von: Institut für Zeitmesstechnik, Fein- und Mikrotechnik
Modul: 14060 Grundlagen der Technischen Optik

2. Modulkürzel: 073100001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulverantwortlicher: Prof. Dr. Wolfgang Osten
7. Sprache: Deutsch
9. Dozenten: Wolfgang Osten, Erich Steinbeißer
10. Empfohlene Voraussetzungen: HM 1 - HM 3, Experimentalphysik

11. Lernziele:
Die Studierenden
- erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollination
- sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen
- verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
- können die Grenzen der optischen Auflösung definieren
- können grundlegend optische Systeme (wie z.B. Mikroskop, Messferrohr und Interferometer) einsetzen und bewerten

12. Inhalt:
- optische Grundgesetze der Reflexion, Refraktion und Dispersion;
- Kollineare (Gaußsche) Optik;
- optische Bauelemente und Instrumente;
- Wellenoptik: Grundlagen der Beugung und Auflösung;
- Abbildungsfehler;
• Strahlung und Lichttechnik

Lust auf Praktikum?

14. Literatur:

Manuskript aus Powerpointfolien der Vorlesung; Übungsblätter; Formelsammlung; Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:

• Haferkorn: Optik, Wiley, 2002
• Hecht: Optik, Oldenbourg, 2009
• Kühlke: Optik, Harri Deutsch, 2011
• Pedrotti: Optik für Ingenieure, Springer, 2007
• Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:

• 140601 Vorlesung Grundlagen der Technischen Optik
• 140602 Übung Grundlagen der Technischen Optik
• 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180

17. Prüfungsnummer/n und -name:

14061 Grundlagen der Technischen Optik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ...

19. Medienform:

Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:

Institut für Technische Optik
Modul: 29950 Optische Informationsverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100003</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Osten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Osten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
 → Technische Optik
 → Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Die Studierenden
 - erkennen die physikalischen Grundlagen der Propagation und Beugung von Licht mittels (skalarer) Wellenoptik
 - verstehen die Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
 - kennen die Grundlagen der Fourieroptischen Beschreibung optischer Systeme sowie die mathematischen Grundlagen der Fouriertransformation und wichtiger, sich daraus ergebender Resultate (z.B. Sampling Theorem).
 - verstehen kohärente und inkohärente Abbildungen und ihre moderne Beschreibung mittels der optischen Transferfunktion
 - kennen typische Aufbauten der optischen Informationsverarbeitung (insbesondere Filterung, Korrelation, Holografie) und sind in der Lage, diese mathematisch zu beschreiben.
 - kennen die Grundlagen der Kohärenz
 - verstehen den Zusammenhang zwischen digitaler und analog-optischer Bildverarbeitung
 - kennen die grundsätzlich eingesetzten Bauelemente für informationsverarbeitende optische Systeme. |
| 12. Lernziele: | Fourier-Theorie der optischen Abbildung
 • Fouriertransformation
 • Eigenschaften linearer physikalischer Systeme
 • Grundlagen der Beugungstheorie
 • Kohärenz
 • Fouriertransformationseigenschaften einer Linse
 • Frequenzanalyse optischer Systeme
 Holografie und Speckle |
| 13. Inhalt: |
Spektrumanalyse und optische Filterung

- Lichtquellen, Lichtmodulatoren, Detektoren, computergenerierte Hologramme, Optische Prozessoren/Computer, Optische Mustererkennung, Optische Korrelation

Digitale Bildverarbeitung

- Grundbegriffe
- Bildverbesserung
- Bildrestauration, Bildsegmentierung, Bildanalyse
- Anwendungen

14. Literatur:
- Manuskript der Vorlesung
- Lauterborn: Kohärente Optik
- Goodman: Introduction to Fourier Optics

15. Lehrveranstaltungen und -formen:
- 299501 Vorlesung Optische Informationsverarbeitung
- 299502 Übung Optische Informationsverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29951 Optische Informationsverarbeitung (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 33710 Optische Messtechnik und Messverfahren

2. Modulkürzel: 073100002
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Wolfgang Osten

9. Dozenten: Wolfgang Osten

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Elektronikfertigung
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Feinwerkenhkenken
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Mikrosystemtechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Technische Optik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Geräteotechnik und Technische Optik
→ Technische Optik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden

- verstehen die Unterschiede zwischen wellenoptischer und geometrisch-optischer Beschreibung,
- sind in der Lage, die in Wellenfeldern enthaltene, Information zu beschreiben,
- können Messungen kritisch mittels Fehleranalyse bewerten,
- kennen die Rolle und Wirkungsweise der wichtigsten Komponenten und sind in der Lage, optische Mess-Systeme aus einzelnen Komponenten zusammenzustellen und zu bewerten,
- sind in der Lage, Methoden zur Vermessung von optischen und technischen Oberflächen sowie deren Oberflächenveränderungen zielgerichtet einzusetzen.

13. Inhalt:

Grundlagen der geometrischen Optik:

- optische Komponenten
- optische Systeme

Grundlagen der Wellenoptik:

- Wellentypen
- Interferenz und Kohärenz
- Beugung und Auflösungsvermögen

Holografie
Speckle
Messfehler
Grundprinzipien und Klassifikation optischer Messtechniken
Komponenten optischer Messsysteme:
- Lichtquellen
- Lichtmodulatoren
- Auge und Detektoren
Messmethoden auf Basis der geometrischen Optik:
- Strukturierte Beleuchtung
- Moiré
- Messmikroskope und Messfernrohre
Messmethoden auf Basis der Wellenoptik:
- interferometrische Messtechniken
- Interferenzmikroskopie
- holografische Interferometrie
- Speckle-Messtechniken
- Laufzeittechniken

14. Literatur:
Manuskript der Vorlesung;

15. Lehrveranstaltungen und -formen:
• 337101 Vorlesung Optische Messtechnik und Messverfahren
• 337102 Übung Optische Messtechnik und Messverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33711 Optische Messtechnik und Messverfahren (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
2351 Kernfächer mit 6 LP

Zugeordnete Module:

14060 Grundlagen der Technischen Optik
29950 Optische Informationsverarbeitung
33710 Optische Messtechnik und Messverfahren
Modul: 14060 Grundlagen der Technischen Optik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduländer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Osten</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Osten
• Erich Steinbeißer |
→ Ergänzungsmodule
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mikrotechnik, Gerätetechnik und Technische Optik
→ Technische Optik
→ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 3: Produktion |

| 11. Empfohlene Voraussetzungen: | HM 1 - HM 3, Experimentalphysik |

| 12. Lernziele: | Die Studierenden
• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollineation
• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen
• verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
• können die Grenzen der optischen Auflösung definieren
• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernrohr und Interferometer) einsetzen und bewerten |

| 13. Inhalt: | • optische Grundgesetze der Reflexion, Refraktion und Dispersion;
• Kollineare (Gaußsche) Optik;
• optische Bauelemente und Instrumente;
• Wellenoptik: Grundlagen der Beugung und Auflösung;
• Abbildungsfehler; |
• Strahlung und Lichttechnik

Lust auf Praktikum?

14. Literatur:
Manuskript aus Powerpointfolien der Vorlesung; Übungsblätter; Formelsammlung; Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:
• Haferkorn: Optik, Wiley, 2002
• Hecht: Optik, Oldenbourg, 2009
• Kühlke: Optik, Harri Deutsch, 2011
• Pedrotti: Optik für Ingenieure, Springer, 2007
• Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:
• 140601 Vorlesung Grundlagen der Technischen Optik
• 140602 Übung Grundlagen der Technischen Optik
• 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:
14061 Grundlagen der Technischen Optik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ... :

19. Medienform:
Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:
Institut für Technische Optik
Modul: 29950 Optische Informationsverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100003</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mikrotechnik, Gerätechnik und Technische Optik
 ➔ Technische Optik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mikrotechnik, Gerätechnik und Technische Optik
 ➔ Technische Optik
 ➔ Kernfächer mit 6 LP |

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden
- erkennen die physikalischen Grundlagen der Propagation und Beugung von Licht mittels (skalarer) Wellenoptik
- verstehen die Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
- kennen die grundlegenden Fourieroptischen Konzepte sowie die mathematischen Grundlagen der Fouriertransformation und wichtiger, sich daraus ergebender Resultate (z.B. Sampling Theorem).
- verstehen kohärente und inkohärente Abbildungen und ihre moderne Beschreibung mittels der optischen Transferfunktion
- kennen typische Aufbauten der optischen Informationsverarbeitung (insbesondere Filterung, Korrelation, Holografie) und sind in der Lage, diese mathematisch zu beschreiben.
- kennen die Grundlagen der Kohärenz
- verstehen den Zusammenhang zwischen digitaler und analog-optischer Bildverarbeitung
- kennen die grundsätzlich eingesetzten Bauelemente für informationsverarbeitende optische Systeme.

13. Inhalt:

Fourier-Theorie der optischen Abbildung
- Fouriertransformation
- Eigenschaften linearer physikalischer Systeme
- Grundlagen der Beugungstheorie
- Kohärenz
- Fouriertransformationseigenschaften einer Linse
- Frequenzanalyse optischer Systeme

Holografie und Speckle
Spektrumanalyse und optische Filterung
- Lichtquellen, Lichtmodulatoren, Detektoren, computergenerierte Hologramme, Optische Prozessoren/Computer, Optische Mustererkennung, Optische Korrelation

Digitale Bildverarbeitung
- Grundbegriffe
- Bildverbesserung
- Bildrestauration, Bildsegmentierung, Bildanalyse
- Anwendungen

14. Literatur:
- Manuskript der Vorlesung
- Lauterborn: Kohärente Optik
- Goodman: Introduction to Fourier Optics

15. Lehrveranstaltungen und -formen:
- 299501 Vorlesung Optische Informationsverarbeitung
- 299502 Übung Optische Informationsverarbeitung

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 29951 Optische Informationsverarbeitung (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 33710 Optische Messtechnik und Messverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr. Wolfgang Osten
9. Dozenten: Wolfgang Osten

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2011**
 → Vorgezogene Master-Module
- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Mikrotechnik, Geräte-, und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Mikrotechnik, Geräte-, und Technische Optik
 → Feinwerktechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Mikrotechnik, Geräte-, und Technische Optik
 → Mikrosystemtechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Mikrotechnik, Geräte-, und Technische Optik
 → Technische Optik
 → Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 → Gruppe Mikrotechnik, Geräte-, und Technische Optik
 → Technische Optik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden

- verstehen die Unterschiede zwischen wellenoptischer und geometrisch-optischer Beschreibung,
- sind in der Lage, die in Wellenfeldern enthaltene, Information zu beschreiben,
- können Messungen kritisch mittels Fehleranalyse bewerten,
- kennen die Rolle und Wirkungsweise der wichtigsten Komponenten und sind in der Lage, optische Mess-Systeme aus einzelnen Komponenten zusammenzustellen und zu bewerten,
- sind in der Lage, Methoden zur Vermessung von optischen und technischen Oberflächen sowie deren Oberflächenveränderungen zielgerichtet einzusetzen.

13. Inhalt:

Grundlagen der geometrischen Optik:
- optische Komponenten
- optische Systeme

Grundlagen der Wellenoptik:
- Wellentypen
- Interferenz und Kohärenz
- Beugung und Auflösungsvermögen

Holografie
Speckle
Messefehler
Grundprinzipien und Klassifikation optischer Messtechniken
Komponenten optischer Messsysteme:
- Lichtquellen
- Lichtmodulatoren
- Auge und Detektoren
Messmethoden auf Basis der geometrischen Optik:
- Strukturierte Beleuchtung
- Moiré
- Messmikroskope und Messfernrohre
Messmethoden auf Basis der Wellenoptik:
- interferometrische Messtechniken
- Interferenzmikroskopie
- holografische Interferometrie
- Speckle-Messtechniken
- Laufzeittechniken

14. Literatur: Manuskript der Vorlesung;

15. Lehrveranstaltungen und -formen:
• 337101 Vorlesung Optische Messtechnik und Messverfahren
• 337102 Übung Optische Messtechnik und Messverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33711 Optische Messtechnik und Messverfahren (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33460 Praktikum Technische Optik

2. Modulkürzel: 073100009
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Wolfgang Osten
9. Dozenten: Wolfgang Osten
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Mikrotechnik, Geräte-technik und Technische Optik
 ➔ Technische Optik
11. Empfohlene Voraussetzungen:
12. Lernziele:
 Die Studierenden
 • sind in der Lage Kenntnisse aus den Vorlesungen des Spezialisierungsfachs vielfältig anzuwenden sowie in Versuchsaufbauten umzusetzen.
 • besprechen die Versuchsergebnisse und stellen diese in einer Praktikumsausarbeitung nachvollziehbar dar
13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 Zwei Beispiele aus den insg. 10 verschiedenen, angebotenen Spezialisierungsfach-Praktika:
 1) Flächenhafte Interferometrie und Messtechnik
 In diesem Praktikumsversuch lernen die Studierenden das Interferometer als Messmittel für die nanometergenaue Formprüfung kennen. Durch praktische Experimente an Interferometern werden die Grundlagen der Interferometrie vertieft sowie Anwendungsaspekte diskutiert. Die Experimente umfassen die Kohärenzlängenbestimmung von Lichtquellen, die hochpräzise Krümmungsradienbestimmung von Kugelspiegeln sowie die Formprüfung von optischen Komponenten.
 2) Rechnerunterstütztes Design optischer Systeme:
14. Literatur:
 Praktikumsunterlagen werden ca. 1 Woche vor den Praktikumsterminen als pdf-Datei zu gesandt.
15. Lehrveranstaltungen und -formen:
 • 334601 Spezialisierungsfachversuch 1
 • 334602 Spezialisierungsfachversuch 2
 • 334603 Spezialisierungsfachversuch 3
 • 334604 Spezialisierungsfachversuch 4
 • 334605 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 334606 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 334607 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
 • 334608 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33461 Praktikum Technische Optik (USL), Sonstiges, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Technische Optik
240 Gruppe Energietechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Übersicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>Elektrische Maschinen und Antriebe</td>
</tr>
<tr>
<td>242</td>
<td>Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>243</td>
<td>Feuerungs- und Kraftwerkstechnik</td>
</tr>
<tr>
<td>244</td>
<td>Gebäudeenergetik</td>
</tr>
<tr>
<td>245</td>
<td>Kernenergietechnik</td>
</tr>
<tr>
<td>246</td>
<td>Methoden der Modellierung und Simulation</td>
</tr>
<tr>
<td>247</td>
<td>Rationelle Energienutzung</td>
</tr>
<tr>
<td>248</td>
<td>Strömungsmechanik und Wasserkraft</td>
</tr>
<tr>
<td>249</td>
<td>Thermische Turbomaschinen</td>
</tr>
</tbody>
</table>
241 Elektrische Maschinen und Antriebe

Zugeordnete Module:

2411 Kernfächer mit 6 LP
2412 Kern-/Ergänzungsfächer mit 6 LP
2413 Ergänzungsfächer mit 3 LP
30960 Praktikum Elektrische Maschinen und Antriebe
2413 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 30930 EMV in der Automobiltechnik
- 30940 Industriegetriebe
- 30950 Mobile Energiespeicher
Modul: 30930 EMV in der Automobiltechnik

2. Modulkürzel: 050310027
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Sergey Kochetov
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Elektrische Maschinen und Antriebe
 ➔ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Grundkenntnisse zur elektromagnetischen Verträglichkeit
 Hochfrequenztechnik
12. Lernziele:
 Der Studierende kann eine EMV-Analyse von Komponenten des Automobils durchführen. Er kann typische Maßnahmen zur Beherrschung der EMV-Problematik benennen und kennt die EMV-Prüfverfahren in der Automobiltechnik.
13. Inhalt:
 - Grundlagen der elektromagnetischen Verträglichkeit in der Automobiltechnik
 - EMV Analyse und Design für komplexe Systeme
 - EMV Integration
 - EMV Prüfverfahren in der Automobiltechnik
 - EMV Simulation
 Am Produktbeispiel „Elektrische Servolenkung“ werden die verschiedenen Verfahren zur EMV-Analyse, -Design und - Prüfung dargestellt.
14. Literatur:
 - Schwab, Adolf J.: Elektromagnetische Verträglichkeit, Springer Verlag, 1996
 - Habiger, Ernst: Elektromagnetische Verträglichkeit, Hüthig Verlag, 3. Aufl., 1998
 - Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren, Springer Verlag, 2005
15. Lehrveranstaltungen und -formen: 309301 Vorlesung EMV in der Automobiltechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 Stunden
 Selbststudium: 62 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 30931 EMV in der Automobiltechnik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform: PowerPoint, Tafelanschrieb
20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 30940 Industriegetriebe

2. Modulkürzel: 072710070 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Matthias Bachmann
9. Dozenten: Matthias Bachmann

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Elektrische Maschinen und Antriebe
→ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV

12. Lernziele:
Im Modul Industriegetriebe
- haben die Studierenden Anwendungen und Besonderheiten von Industriegetrieben kennen gelernt,
- können die Studierenden in Konstruktionslehre erworbenen Grundlagen vertiefen und gezielt einsetzen.

Erworbene Kompetenzen: Die Studierenden
- können Industriegetriebe einordnen,
- können im Industriegetriebebauer übliche Werkstoffe und Maschinenelemente benennen und auswählen,
- können Verzahnungen für industrielle Anwendungen geometrisch und hinsichtlich Tragfähigkeit auslegen,
- können die Ansätze zur Systematik der Übersetzungs- und Drehmomentgerüste zur Baukastengetriebekonzeption nutzen,
- können Übersetzungen, Drehzahlen und Drehmomente von Umlaufgetrieben bestimmen.

13. Inhalt:

14. Literatur:
- Bachmann, M.: Industriegetriebe. Skript zur Vorlesung
- Schlecht, B.: Maschinenelemente 2. 1. Auflage, Pearson Studium München, 2010

15. Lehrveranstaltungen und -formen: 309401 Vorlesung mit integrierten Übungen : Industriegetriebe

17. Prüfungsnummer/n und -name: 30941 Industriegetriebe (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0, bei weniger als 10 Kandidaten: mündlich, 20 min

18. Grundlage für ...:

19. Medienform: Beamer-Präsentation, Tafel

20. Angeboten von:
Modul: 30950 Mobile Energiespeicher

2. Modulkürzel: 051001025
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Elektrische Maschinen und Antriebe
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden lernen die Speichertechniken elektrischer Energie kennen.

13. Inhalt:
 • Aufbau und Funktionsweise Li-Ionen-Speichern
 • Aufbau von Akku-packs aus Einzelzellen
 • Batteriemanagementsysteme
 • Sicherheitsaspekte
 • Brennstoffzelle

14. Literatur:
 • Ludwig Retzbach, Akkus und Ladetechniken, Franzis 2008

15. Lehrveranstaltungen und -formen: 309501 Vorlesung Mobile Energiespeicher

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 Stunden
 Selbststudium: 62 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 30951 Mobile Energiespeicher (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer, Tafel, ILIAS

20. Angeboten von: Institut für Elektrische Energiewandlung
2412 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>LPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>11550 Leistungselektronik I</td>
<td>5</td>
</tr>
<tr>
<td>11580 Elektrische Maschinen I</td>
<td>5</td>
</tr>
<tr>
<td>11740 Elektromagnetische Verträglichkeit</td>
<td>5</td>
</tr>
<tr>
<td>21690 Elektrische Maschinen II</td>
<td>5</td>
</tr>
<tr>
<td>21710 Leistungselektronik II</td>
<td>5</td>
</tr>
<tr>
<td>30920 Elektronikmotor</td>
<td>5</td>
</tr>
</tbody>
</table>
Modul: 11580 Elektrische Maschinen I

2. Modulkürzel: 051001011
5. Modulsdauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour

9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011, 5. Semester</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
<td>Gruppe Energietechnik</td>
</tr>
<tr>
<td></td>
<td>Elektrische Maschinen und Antriebe</td>
</tr>
<tr>
<td></td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

M.Sc. Technologiemanagement, PO 2011, 5. Semester	Gruppe Energietechnik
	Elektrische Maschinen und Antriebe
	Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

| Studierende kennen den Aufbau und die Funktionsweise von Gleichstrom-, Synchron und Asynchronmaschine. Sie kennen die Berechnung magnetischer Kreise. |

13. Inhalt:

- Magnetismus und Grundlagen der magnetischen Kreise
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Behandelte Maschinentypen:

 1) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Einführung in das rotorflussorientierte dynamische Modell, Bauformen und Einsatzgebiete

 2) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Gleichstrommaschine**: Aufbau und Funktion, Ersatzschaltbilder, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

- Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
15. Lehrveranstaltungen und -formen:
- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudium/Nacharbeitszeit: | 124 h |
| Summe: | 180 h |

17. Prüfungsnummer/n und -name:
- 11581 Elektrische Maschinen I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
- 21690 Elektrische Maschinen II

19. Medienform:
- Beamer, Tafel, ILIAS

20. Angeboten von:
- Institut für Elektrische Energiewandlung
Modul: 21690 Elektrische Maschinen II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051001021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Energietechnik
➤ Elektrische Maschinen und Antriebe
➤ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | • Grundlagen der Elektrotechnik
• Elektrische Energietechnik
• Elektrische Maschinen I |
| 13. Inhalt: | Drehfeld: Raumzeigertheorie, Stator- und Rotorfestes Koordinatensystem
Synchronmaschine: Vollständiges dynamisches Ersatzschaltbild, Rotorflussorientiertes Modell
Asynchronmaschine: vollständiges dynamisches Ersatzschaltbild, Rotorflussorientiertes Modell
Reluktanzmaschine: Aufbau und Funktion, mathematische Zusammenhänge, Bauformen und Einsatzgebiete |
• Kleinrath, Hans: Grundlagen Elektrischer Maschinen; Akad. Verlagsgesellschaft, Wien, 1975
• Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
• Bödefeld/Sequenz: Elektrische Maschinen; Springer, Wien, 1962
• Richter, Rudolf: Elektrische Maschinen; Verlag von Julius Springer, Berlin, 1936 |
| 15. Lehrveranstaltungen und -formen: | • 216901 Vorlesung Elektrische Maschinen II
• 216902 Übung Elektrische Maschinen II |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>21691 Elektrische Maschinen II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Smart Board</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11740 Elektromagnetische Verträglichkeit

2. Modulkürzel: 050310006
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: • Wolfgang Köhler
 • Stefan Tenbohlen
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Energietechnik
 ➞ Elektrische Maschinen und Antriebe
 ➞ Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik
12. Lernziele: Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetsischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV
13. Inhalt:
 • Einführung
 • Begriffsbestimmungen
 • EMV-Umgebung
 • Allgemeine Maßnahmen zur Sicherstellung der EMV
 • Aktive Schutzmaßnahmen
 • Nachweis der EMV (Messverfahren, Messumgebung)
 • Einwirkung elektromagnetischer Felder auf biologische Systeme
 • EMV im Automobilbereich
14. Literatur:
 • Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
 • Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
 • Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
 • Köhling, A.: EMV von Gebäuden, Anlagen und Geräten VDE-Verlag, Dezember 1998
 • Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004
15. Lehrveranstaltungen und -formen:
 • 117401 Vorlesung Elektromagnetische Verträglichkeit
 • 117402 Übung Elektromagnetische Verträglichkeit
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbstdstudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 11741 Elektromagnetische Verträglichkeit (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>PowerPoint, Tafelanschrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 30920 Elektronikmotor

2. Modulkürzel: 051001024
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour

9. Dozenten: • wiss. MA
• Enzo Cardillo

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Energietechnik
➞ Elektrische Maschinen und Antriebe
➞ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Fahrzeug- und Motorentechnik
➞ Kraftfahrzeugmechatronik
➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

14. Literatur:
• T.J. E. Miller: Brushless Permanent-Magnet and Reluctance Motor Drives, oxford science publications 1989
• N. Parspour: Bürstenlose Gleichstrommaschine mit Fuzzy Regelung für ein Herzunterstützungssystem, Shaker Verlag, Aachen, 1996

15. Lehrveranstaltungen und -formen: 309201 Vorlesung Elektronikmotor

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 30921 Elektronikmotor (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Beamer, Tafel, ILIAS

20. Angeboten von: Institut für Elektrische Energiewandlung
Modul: 11550 Leistungselektronik I

2. Modulkürzel: 051010011
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Elektrische Maschinen und Antriebe
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Elektrische Maschinen und Antriebe
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Studierende...
 • ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
 • ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
 • ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

13. Inhalt:

 • Abschaltbare Leistungshalbleiter
 • Schaltungstopologien potentialverbindender Stellglieder
 • Schaltungstopologien potentialtrennender Gleichstromsteller
 • Modulationsverfahren
 • Strommessfach in der Leistungselektronik

14. Literatur:

 • Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989
 • Mohan, Ned: Power Electronics, John Wiley & Sons, Inc., 2003

15. Lehrveranstaltungen und -formen:

 • 115501 Vorlesung Leistungselektronik I
 • 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11551 Leistungselektronik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

 Tafel, Folien, Beamer

20. Angeboten von:

 Institut für Leistungselektronik und Elektrische Antriebe
Modul: 21710 Leistungselektronik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010021</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr.-Ing. Jörg Roth-Stielow</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Elektrische Maschinen und Antriebe
→ Kern-/Ergänzungsfächer mit 6 LP |

| 11. Empfohlene Voraussetzungen: | Empfohlen werden Kenntnisse vergleichbar Leistungselektronik I |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
<th>Studierende...</th>
</tr>
</thead>
</table>
| | ...kennen die wichtigsten Schaltungen und die Betriebsweisen fremdgeführter Stromrichter und Resonanzkonverter.
 | ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen. |

| 13. Inhalt: | • Fremdgeführte Stromrichter
 | • Die Kommutierung und ihre Berechnung
 | • Netzrückwirkungen und Leistungsbetrachtung
 | • Blindstromsparende Schaltungen
 | • Resonant schaltentlastete Wandler |

| 14. Literatur: | • Heumann, K.: Grundlagen der Leistungselektronik
 B. G. Teubner, Stuttgart, 1989

| 15. Lehrveranstaltungen und -formen: | • 217101 Vorlesung Leistungselektronik II
 | • 217102 Übung Leistungselektronik II |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |

| 17. Prüfungsnummer/n und -name: | 21711 Leistungselektronik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

<table>
<thead>
<tr>
<th>18. Grundlage für ...:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Leistungselektronik und Elektrische Antriebe</td>
</tr>
</tbody>
</table>
2411 Kernfächer mit 6 LP

Zugeordnete Module:

11550 Leistungselektronik I
11580 Elektrische Maschinen I
Modul: 11580 Elektrische Maschinen I

2. Modulkürzel: 051001011
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulldauer: 1 Semester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.-Dr.-Ing. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Gruppe Energietechnik
 → Elektrische Maschinen und Antriebe
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Gruppe Energietechnik
 → Elektrische Maschinen und Antriebe
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

13. Inhalt:

 • Magnetismus und Grundlagen der magnetischen Kreise
 • Antriebstechnische Zusammenhänge
 • Verluste in elektrischen Maschinen
 • Behandelte Maschinentypen:

 1) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbild, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Einführung in das rotorflussorientierte dynamische Model, Bauformen und Einsatzgebiete

 2) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbild, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Gleichstrommaschine**: Aufbau und Funktion, Ersatzschaltbild, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

 • Kleinrath, Hans: Grundlagen Elektrischer Maschinen; Akad. Verlagsgesellschaft, Wien, 1975
 • Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
 • Bödefeld/Sequenz: Elektrische Maschinen; Springer, Wien, 1962
15. Lehrveranstaltungen und -formen:
• 115801 Vorlesung Elektrische Maschinen I
• 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudium/Nacharbeitszeit: | 124 h |
| Summe: | 180 h |

17. Prüfungsnummer/n und -name:
11581 Elektrische Maschinen I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
21690 Elektrische Maschinen II

19. Medienform:
Beamer, Tafel, ILIAS

20. Angeboten von:
Institut für Elektrische Energiewandlung
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulbeteiligung:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>
| | → Vorgezogene Master-Module
| | M.Sc. Technologiemanagement, PO 2011
| | → Gruppe Energietechnik
| | → Elektrische Maschinen und Antriebe
| | → Kern-/Ergänzungsfächer mit 6 LP
| | M.Sc. Technologiemanagement, PO 2011
| | → Gruppe Energietechnik
| | → Elektrische Maschinen und Antriebe
| | → Kernfächer mit 6 LP |

11. Empfohlene Voraussetzungen:

12. Lernziele:
- ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
- ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
- ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

13. Inhalt:
- Abschaltbare Leistungshalbleiter
- Schaltungstopologien potentialverbindender Stellglieder
- Schaltungstopologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommeßtechnik in der Leistungselektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungnummer/n und -name:
- 11551 Leistungselektronik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
- Tafel, Folien, Beamer

20. Angeboten von:
- Institut für Leistungselektronik und Elektrische Antriebe
Modul: 30960 Praktikum Elektrische Maschinen und Antriebe

2. Modulkürzel: 051001026
5. Modul dauer: 2 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour

9. Dozenten: Enzo Cardillo

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer A (ING)
→ Gruppe Energietechnik
→ Elektrische Maschinen und Antriebe

Beispiele:

elektrischer Energie (Drehstrom) in elektrische Energie (Gleichstrom) aufgezeigt. Eine Wirkungsgradbetrachtung des rotierenden Umformersatzes im Nennbetriebspunkt wird durchgeführt.

14. Literatur:
Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:
• 309601 Spezialisierungsfachversuch 1
• 309602 Spezialisierungsfachversuch 2
• 309603 Spezialisierungsfachversuch 3
• 309604 Spezialisierungsfachversuch 4
• 309605 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1
• 309606 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2
• 309607 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3
• 309608 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudiumszeit/Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
30961 Praktikum Elektrische Maschinen und Antriebe (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
242 Energiesysteme und Energiewirtschaft

Zugeordnete Module:

- 2421 Kernfächer mit 6 LP
- 2422 Kern-/Ergänzungsfächer mit 6 LP
- 2423 Ergänzungsfächer mit 3 LP
- 32040 Praktikum Energiesysteme
2423 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>32030</td>
<td>Strategische Unternehmensplanung in der Energiewirtschaft</td>
</tr>
<tr>
<td>36350</td>
<td>Kraftwerksabfälle</td>
</tr>
<tr>
<td>36820</td>
<td>Energie und Umwelt</td>
</tr>
<tr>
<td>36840</td>
<td>Energiewirtschaft in Verbundsystemen</td>
</tr>
<tr>
<td>36850</td>
<td>Elektrochemische Energiespeicherung in Batterien</td>
</tr>
<tr>
<td>45710</td>
<td>Energieeffizienz in der Industrie</td>
</tr>
</tbody>
</table>
Modul: 36850 Elektrochemische Energiespeicherung in Batterien

2. Modulkürzel: 042411045 5. Moduldaurer: 1 Semester

4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr. Andreas Friedrich

9. Dozenten: • Wolfgang Bessler
• Birger Horstmann

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Energietechnik
➞ Energiesysteme und Energiewirtschaft
➞ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Energietechnik
➞ Rationelle Energiennutzung
➞ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
- Grundlagen: Elektrochemische Thermodynamik, Elektrolyte, Grenzflächen, elektrochemische Kinetik
- Primärzellen: Alkali-Mangan
- Sekundärzellen: Blei-Säure, Nickel-Metallhydrid, Lithium-Ionen
- Anwendungen: Systemtechnik, Hybridisierung, portable Geräte, Fahrzeugtechnik, regenerative Energien
- Herstellung, Sicherheitstechnik und Entsorgung

14. Literatur:
Skript zur Vorlesung;

15. Lehrveranstaltungen und -formen: 368501 Vorlesung Elektrochemische Energiespeicherung in Batterien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Vor- / Nachbereitung: 62 h
Gesamtaufwand: 90 h

17. Prüfungsnummer/n und -name: 36851 Elektrochemische Energiespeicherung in Batterien (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafelanschrieb und Powerpoint-Präsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 36820 Energie und Umwelt

4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr. Rainer Friedrich
9. Dozenten: Rainer Friedrich
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Kenntnisse in Thermodynamik, Chemie, Physik
13. Inhalt: Auswirkungen von Energiewandlung in allen Umwandlungs- und Verbrauchersektoren auf Umwelt und menschliche Gesundheit:

Luftschadstoffbelastung:

- SO2, NOx, CO, Feinstaub VOC, Ozon, Aerosole, saure Deposition, Stickstoffeintrag
- Treibhauseffekt
- radioaktive Strahlung
- Flächenverbrauch
- Lärm
- Abwärme
- elektromagnetische Strahlung.

Empfehlung (fakultativ):

IER-Exkursion „Energiewirtschaft / Energietechnik“

14. Literatur:
- Online-Manuskript
- Borsch, P., Wagner, H.-J. 1997: Energie und Umweltbelastung; Berlin: Springer-Verlag
- Möller, D. 2003: Luft - Chemie, Physik, Biologie, Reinhaltung, Recht; Berlin: de Gruyter
- Roth, E. 1994: Mensch, Umwelt und Energie: die zukünftigen Erfordernisse und Möglichkeiten der Energieversorgung; Düsseldorf: etv
- Climate Change 2007 The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Online: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.htm

15. Lehrveranstaltungen und -formen: 368201 Vorlesung und OnlineÜbungen Energie und Umwelt
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
| | Online-Übung: 10 h
| | Selbststudium: 52 h
| | **Gesamt: 90 h** |
| 17. Prüfungsnummer/n und -name: | 36821 Energie und Umwelt (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... | |
| 19. Medienform: | Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript |
| 20. Angeboten von: | Institut für Energiewirtschaft und Rationelle Energieanwendung |
Modul: 45710 Energieeffizienz in der Industrie

2. Modulkürzel: 041210026
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Alfred Voß
9. Dozenten: • Alois Kessler
• Markus Blesl
M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Energietechnik
➢ Energiesysteme und Energiewirtschaft
➢ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul „Energiewirtschaft und Energieversorgung“)
• Kenntnisse der Methoden mit Anwendungsbeispielen
• Kenntnisse der Einflussfaktoren auf den Energieverbrauch
• Kenntnisse der Potenziale & Hemmnisse für Energieeinsparmaßnahmen in der Industrie
• Kenntnisse zur Implementierung eines Energiemanagementsystems und Fähigkeit zur Durchführung von Energieaudits nach DIN EN ISO 50001
• Fähigkeit zur Übertragung auf andere Branchen oder Prozesse
13. Inhalt: Definition, Begriffe und Methoden im Zusammenhang mit Energieeffizienz. Überblick energieintensive und nicht energieintensive Branchen. Technologische Optionen zur Optimierung von Querschnittstechnologien. Verfahrenstechnische Prozesse in energieintensiven Industriebranchen:
• Metallerzeugung und -verarbeitung
• Chemische Industrie
• Steine und Erden
• Lebensmittelindustrie
Potentiale, Hemmnisse und Möglichkeiten für die Industrie in Deutschland
14. Literatur:
15. Lehrveranstaltungen und -formen: 457101 Vorlesung Energieeffizienz in der Industrie
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamtzeit: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>45711 Energieeffizienz in der Industrie (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 36840 Energiewirtschaft in Verbundsystemen

2. Modulkürzel: 050310025
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Ulrich Scherer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 - Elektrische Energietechnik
 - Elektrische Energienetze 1.

12. Lernziele:

13. Inhalt:
 - Verbundbetrieb großer Netze
 - Besonderheiten bei der Kupplung von Netzen
 - Netzführung, Energie-Dispatching und Netzleitechnik
 - Netzregelung in Verbundsystemen
 - Elektrizitätswirtschaftliche Verfahren und Kostenfragen
 - Stromhandel und Marktliberalisierung
 - Energiewirtschaft bei Erdgas

14. Literatur:
 Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004

15. Lehrveranstaltungen und -formen: 368401 Vorlesung Energiewirtschaft in Verbundsystemen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 Stunden
 Selbststudium: 52 Stunden
 Summe: 90 Stunden

17. Prüfungsnr/n und -name: 36841 Energiewirtschaft in Verbundsystemen (BSL), schriftliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 36350 Kraftwerksabfälle

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>041210020</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Alfred Voß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Roland Stützle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
- Gruppe Energietechnik
- Energiesysteme und Energiewirtschaft
- Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
- Gruppe Energietechnik
- Feuerungs- und Kraftwerkstechnik
- Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse der Abfallwirtschaft, Chemie, Verbrennung |
| 13. Inhalt: | • Kraftwerksprozesse
• Kraftwerksreinigungsprozesse
• Reststoffanfall
• Verwertungsmöglichkeiten
• Qualitätsanforderungen
• Qualitätstests
• Beseitigung und rechtliche Aspekte
• Exkursion zu einer Kraftwerksanlage |
| 14. Literatur: | Vorlesungsmanuskript |
| 15. Lehrveranstaltungen und -formen: | • 363501 Vorlesung Entsorgung von Stoffen aus energietechnischen Anlagen
• 363502 Exkursion Entsorgung von Stoffen aus energietechnischen Anlagen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 36351 Kraftwerksabfälle (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Tafelanschrieb, PPT-Präsentationen, Vorlesungsskript, Exkursion |
20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 32030 Strategische Unternehmensplanung in der Energiewirtschaft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210017</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Alfred Voß
9. Dozenten: Marcus Mattis
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 - M.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung, z.B. Modul "Energiewirtschaft und Energieversorgung"
12. Lernziele: Die Teilnehmer/-innen kennen die Praxis der strategischen Unternehmensplanung und verstehen deren Komplexität. Sie können die Einwirkungen der technischen, volkswirtschaftlichen sowie politischen Parameter auf die Unternehmen der Energiewirtschaft und auf Investitions- und Standortentscheidungen identifizieren und darstellen. Die Teilnehmer/-innen verstehen die grundlegenden Veränderungen des Energiemarkts, die mit der Entwicklung der Unternehmen zu multi-utility Anbietern verbunden sind.
13. Inhalt:
 - Definition und Aufgaben der strategischen Unternehmensplanung
 - Besonderheiten der Energiewirtschaft
 - Organisation eines Energieversorgungsunternehmens (EVU)
 - Unternehmerisches Handeln eines EVU
 - Unternehmensziele eines EVU
 - Weiterentwicklung der Ziele eines EVU
 - Strategische Planung im Energieunternehmen
 Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik
14. Literatur: Manuskript
15. Lehrveranstaltungen und -formen: Vorlesung Strategische Unternehmensplanung in der leitungsgebundenen Energiewirtschaft
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
 Selbststudium und Prüfungsvorbereitung: 62 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name: 32031 Strategische Unternehmensplanung in der Energiewirtschaft (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript
20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung

Stand: 23. Oktober 2012
2422 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 16000 Erneuerbare Energien
- 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme
- 17500 Energiemärkte und Energiepolitik
- 29190 Planungsmethoden in der Energiewirtschaft
- 29200 Energiesysteme und effiziente Energieanwendung
- 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte
Modul: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

2. Modulkürzel: 042410042
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr. Andreas Friedrich
9. Dozenten: Andreas Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energieeinutzung
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Abgeschlossenes Grundstudium und Grundkenntnisse Ingenieurwesen

12. Lernziele:

13. Inhalt:
- **Einführung in die Energietechnik**, Entwicklung nachhaltiger Energietechnologien, Erscheinungsformen der Energie; Energieumwandlungsketten, Elektrochemische Energieerzeugung: - Systematik -
- **Thermodynamische Grundlagen** der elektrochemischen Energiewandlung, Chemische Thermodynamik: Grundlagen und Zusammenhänge, Elektrochemische Potentiale und die freie Enthalpie ΔT,G, Wirkungsgrad der elektrochemischen Stromerzeugung, Druckabhängigkeit der elektrochemischen Potentiale / Zellspannungen, Temperaturabhängigkeit der elektrochemischen Potentiale
• **Technischer Wirkungsgrad**, Strom-Spannungskennlinien von Brennstoffzellen; U(i)-Kennlinien, Transporthemmungen und Grenzströme, zweidimensionale Betrachtung der Transporthemmungen, Ohmscher Bereich der Kennlinie, Elektrochemische Überspannungen: Reaktionskinetik und Katalyse, experimentelle Bestimmung einzelner Verlustanteile

Technik und Systeme (SS):

- **Überblick:** Einsatzgebiete von Brennstoffzellensystemen, stationär, mobil, portabel
- **Brennstoffzellensysteme**, Niedertemperaturbrennstoffzellen, Alkalische Brennstoffzellen, Phosphorsaure Brennstoffzellen-, Polymerelektrolyt-Brennstoffzellen, Direktmethanol-Brennstoffzellen, Hochtemperaturbrennstoffzellen, Schmelzkarbonat-Brennstoffzellen, Oxidkeramische Brennstoffzellen
- **Einsatzbereiche von Brennstoffzellensystemen**, Verkehr: Automobilisystem, Auxiliary Power Unit (APU), Luftfahrt, stationäre Anwendung: Dezentrale Blockheizkraftwerke, Hausenergieversorgung, Portable Anwendung: Elektronik, Tragbare Stromversorgung, Netzunabhängige Stromversorgung
- **Brenngasbereitstellung und Systemtechnik**, Wasserstoffherstellung: Methoden, Reformierung, Systemtechnik und Wärmebilanzen,
- **Ganzheitliche Bilanzierung**, Umwelt, Wirtschaftlichkeit, Perspektiven der Brennstoffzellentechnologien

14. Literatur:

- Vorlesungszusammenfassungen,

empfohlene Literatur:

15. Lehrveranstaltungen und -formen:

- 160201 Vorlesung Grundlagen Brennstoffzellentechnik
- 160202 Vorlesung Brennstoffzellentechnik, Technik und Systeme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

- 16021 Brennstoffzellentechnik - Grundlagen, Technik und Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Kombination aus Multimediapräsentation, Tafelanschrieb und Übungen.

20. Angeboten von:

- Institut für Thermodynamik und Wärmetechnik
Modul: 17500 Energiemärkte und Energiepolitik

2. Modulkürzel: 041210006 5. Modulsdauer: 1 Semester

4. SWS: 5.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Alfred Voß

9. Dozente: • Alfred Voß
• Joachim Pfeiffer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Energietechnik
➞ Energiesysteme und Energiewirtschaft
➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Grundkenntnisse der Energiewirtschaft (z.B. Modul "Energiewirtschaft und Energieversorgung")

12. Lernziele:

13. Inhalt:
• Aufbau und Funktion von Energiemärkten
• Produkte auf Energiemärkten
• Regulierung von Märkten
• Marktmacht von Unternehmen
• Preisprognosen bei Energieprodukten
• Handelsentscheidungen
• Handel mit Emissionsrechten
• Risikomanagement im Handel
• Organisation des Energiehandels
• Investitionsentscheidungen in der Energiewirtschaft
• Grundlagen der Energiepolitik
• Entwicklung der Stromerzeugung in Deutschland und Europa
• EU-Energiepolitik
• Preisbildung in Energiemärkten - vom Monopol zum Wettbewerb
• Klimapolitik - Grundlagen, internationale Dimension und internationale Umsetzung
• Zusammensetzung und Entwicklung des deutschen Strommixes
• Der Wärmemarkt
• Verkehrspolitik als Energiepolitik
• Geopolitische Aspekte der Energieversorgung
14. Literatur:

<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Verlag</th>
</tr>
</thead>
</table>

15. Lehrveranstaltungen und -formen:

- 175001 Vorlesung Energiemärkte und -handel
- 175002 Vorlesung Energiepolitik im Spannungsfeld von Wettbewerbsfähigkeit, Versorgungssicherheit und Umweltschutz
- 175003 Seminar Energiemodelle

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 70 h
- Selbststudiumszeit / Nacharbeitszeit: 110 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:

Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme

20. Angeboten von:

Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 29200 Energiesysteme und effiziente Energieanwendung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Alfred Voß
9. Dozenten: Alfred Voß

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Kernfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Thermodynamik, Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

13. Inhalt:
 • Analysemethoden des energetischen Zustandes von Anlagen
 • Exergie-, Pinch-Point-, Prozesskettenanalyse
 • Systemvergleiche von Energieanlagen
 • Systeme mit Kraft-Wärme-Kopplung
 • Abwärmenumsetzungssysteme
 • Wärmerrückgewinnung
 • neue Energiewandlungstechniken und Sekundärenergieträger

14. Literatur: Online-Manuskript, Daten- und Arbeitsblätter

15. Lehrveranstaltungen und -formen:
 • 292001 Vorlesung Techniken der rationellen Energieanwendung
 • 292002 Übung Techniken der rationellen Energieanwendung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium und Prüfungsvorbereitung: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 29201 Energiesysteme und effiziente Energieanwendung (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 • Beamergestützte Vorlesung
 • teilweise Tafelanschrieb
 • Lehrfilme
• begleitendes Manuskript

<table>
<thead>
<tr>
<th>20. Angebot von:</th>
<th>Institut für Energiewirtschaft und Rationelle Energieanwendung</th>
</tr>
</thead>
</table>

Modul: 16000 Erneuerbare Energien

2. Modulkürzel: 041210008 5. Moduldaurer: 2 Semester
4. SWS: 5.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr.-Ing. Alfred Voß
9. Dozenten: • Alfred Voß
 • Ludger Eltrop
 • Christoph Kruck
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Grundkenntnisse der Energiewirtschaft
 Ingenieurwissenschaftliche Grundlagen
12. Lernziele: Die Studierenden beherrschen die physikalisch-technischen
 Möglichkeiten der Energienutzung aus erneuerbaren Energieträgern. Sie
 wissen alle Formen der erneuerbaren Energien und die Technologien
 zu ihrer Nutzung. Die Teilnehmer/-innen können Anlagen zur Nutzung
 regenerativer Energien analysieren und beurteilen. Dies umfasst die
 technischen, wirtschaftlichen und umweltrelevanten Aspekte.
13. Inhalt: • Die physikalischen und meteorologische Zusammenhänge der
 Sonnenenergie und ihre technischen Nutzungsmöglichkeiten
 • Wasserangebot und Nutzungstechniken
 • Windangebot (räumlich und zeitlich) und technische Nutzung
 • Geothermie
 • Speichertechnologien
 • energetische Nutzung von Biomasse
 • Potentiale, Möglichkeiten und Grenzen des Einsatzes erneuerbarer
 Energieträger in Deutschland.
 Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik
14. Literatur: • Online-Manuskript
 • Boyle, G.: Renewable Energy - Power for a sustainable future, Oxford

15. Lehrveranstaltungen und -formen:
• 160001 Vorlesung Grundlagen der Nutzung erneuerbarer Energien I
• 160002 Vorlesung Grundlagen der Nutzung erneuerbarer Energien II
• 160003 Seminar Erneuerbare Energien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudium: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:
Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript
Primär Powerpoint-Präsentation

20. Angeboten von:
Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte

2. Modulkürzel: 041210009
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alfred Voß

9. Dozenten:
 • Heiko Gittinger
 • Markus Blesl

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
 Thermodynamik, Ingenieurwissenschaftliche und betriebswirtschaftliche Grundlagen

12. Lernziele:

13. Inhalt:
 • Begriffe und Begriffsdefinitionen
 • Thermodynamische Grundlagen und Prozesse der Kraft-Wärme-Kopplung (KWK)
 • Konfiguration und Systemintegration von KWK-Anlagen anhand praktischer Beispiele
 • Wirtschaftlichkeitsrechnungen bei KWK-Anlagen
 • Kraft-Wärme-Kopplung in Deutschland
 • Bedeutung der Fern- und Nahwärme im Energiesystem von Deutschland
 • Erstellung von Wärmeversorgungskonzepten
 • Wärmebedarfsermittlung
 • Wärmeerzeugungsanlagen, Wärmetransport, -verteilung und -übergabe
 • Kosten und Wirtschaftlichkeit von Wärmeversorgungssystemen
 • Umweltaspekte

14. Literatur:
 Online-Manuskript

15. Lehrveranstaltungen und -formen:
 • 308001 Vorlesung Kraft-Wärme-Kopplung: Anlagen und Systeme
 • 308002 Vorlesung Wärmeversorgungskonzepte

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30801 Kraft-Wärme-Kopplung und Versorgungskonzepte (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamergestützte Vorlesung, begleitendes Manuskript</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energiewirtschaft und Rationelle Energieanwendung</td>
</tr>
</tbody>
</table>
Modul: 29190 Planungsmethoden in der Energiewirtschaft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210014</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Alfred Voß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Ulrich Fahl</td>
<td>• Alfred Voß</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Energiesysteme und Energiewirtschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Energiesysteme und Energiewirtschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Einführung in die Systemforschung und Systemtechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sinn und Zweck von Energieplanung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zeitreihen- und Regressionsanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input-Output-Analyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• lineare und nichtlineare Optimierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• System Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kosten-Nutzen-Analyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modellbildung: Energiebedarfsmodelle; Planungsmodelle in der Elektrizitäts- und Mineralölwirtschaft;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Energiesystemmodelle; Energiewirtschaftsmodelle örtliche und regionale Energieplanungsmethoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eigenständige Bearbeitung eines der folgenden Themen in Hinblick auf den zukünftigen Energiebedarf und die daraus resultierenden Umweltauswirkungen: Elektrizitäts-, Fernwärme- und Mineralölwirtschaft, fossile Energieträger, Uran, regenerative Energieträger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Ergebnisse der Recherche werden in einem Vortrag präsentiert, um darauf aufbauend im zweiten Teil des Workshops denkbare Szenarien zur zukünftige Entwicklung der Energieversorgung in Deutschland zu entwerfen und diese mit Hilfe des am IER entwickelten Computertools ENERGIER in einem Energiemodell darzustellen und zu analysieren.
Empfehlung (fakultativ): Seminar Energiemodelle (1 SWS), IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur: Online-Manuskript;
Schiffer, Hans-Wilhelm: Energiemarkt Deutschland, Praxiswissen Energie und Umwelt, TÜV Media, 11. überarbeitete Auflage 2010

15. Lehrveranstaltungen und -formen:
• 291901 Vorlesung mit Übung Systemtechnische Planungsmethoden in der Energiewirtschaft
• 291902 Workshop Derzeitige und zukünftige Energieversorgung und Umweltbelastung in Deutschland

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudium 110 h
Gesamt: 180

17. Prüfungsnummer/n und -name: 29191 Planungsmethoden in der Energiewirtschaft (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0. Zur erfolgreichen Absolvierung des Moduls gehört neben der bestandenen Modulprüfung ein Nachweis über die regelmäßige Teilnahme am Workshop "Derzeitige und zukünftige Energieversorgung und Umweltbelastung in Deutschland" sowie das Halten eines Vortrags im Rahmen dieses Workshops.

18. Grundlage für ...

19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript, PC - Übungen

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
2421 Kernfächer mit 6 LP

Zugeordnete Module:
29190 Planungsmethoden in der Energiewirtschaft
29200 Energiesysteme und effiziente Energieanwendung
Modul: 29200 Energiesysteme und effiziente Energieanwendung

2. Modulkürzel: 041210010
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Alfred Voß
9. Dozenten: Alfred Voß

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Energiesysteme und Energiewirtschaft
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Energiesysteme und Energiewirtschaft
→ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodu1e
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

Thermodynamik, Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

12. Lernziele:

Die Studierenden kennen die Grundlagen der rationellen Energieanwendung und können die wichtigsten Methoden zur quantitativen Bilanzierung und Analyse von Energiesystemen anwenden und sind damit in der Lage, Energiesysteme zu bewerten.

13. Inhalt:

• Analysemethoden des energetischen Zustandes von Anlagen
• Exergie-, Pinch-Point-, Prozesskettenanalyse
• Systemvergleiche von Energieanlagen
• Systeme mit Kraft-Wärme-Kopplung
• Abwärmenutzungssysteme
• Wärmerückgewinnung
• neue Energiewandlungstechniken und Sekundärenergieträger

14. Literatur:

Online-Manuskript,
Daten- und Arbeitsblätter

15. Lehrveranstaltungen und -formen:

• 292001 Vorlesung Techniken der rationellen Energieanwendung
• 292002 Übung Techniken der rationellen Energieanwendung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudium und Prüfungsvorbereitung: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

29201 Energiesysteme und effiziente Energieanwendung (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

• Beamergestützte Vorlesung
• teilweise Tafelanschrieb
• Lehrfilme

Stand: 23. Oktober 2012
• begleitendes Manuskript

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 29190 Planungsmethoden in der Energiewirtschaft

2. Modulkürzel: 041210014
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Alfred Voß

9. Dozenten: • Ulrich Fahl
 • Alfred Voß

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Energiesysteme und Energiewirtschaft
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

13. Inhalt:
 • Einführung in die Systemforschung und Systemtechnik
 • Sinn und Zweck von Energieplanung
 • Zeitreihen- und Regressionsanalyse
 • Input-Output-Analyse
 • lineare und nichtlineare Optimierung
 • System Dynamics
 • Kosten-Nutzen-Analyse
 • Modellbildung: Energiebedarfsmodelle; Planungsmodelle in der Elektrizitäts- und Mineralölwirtschaft;
 • Energiesystemmodelle; Energiewirtschaftsmodelle örtliche und regionale Energieplanungsmethoden
 • Eigenständige Bearbeitung eines der folgenden Themen in Hinblick auf den zukünftigen Energiebedarf und die daraus resultierenden Umweltauswirkungen: Elektrizitäts-, Fernwärme- und Mineralölwirtschaft, fossile Energieträger, Uran, regenerative Energieträger

Die Ergebnisse der Recherche werden in einem Vortrag präsentiert, um darauf aufbauend im zweiten Teil des Workshops denkbare Szenarien zur zukünftige Entwicklung der Energieversorgung in Deutschland zu entwerfen und diese mit Hilfe des am IER entwickelten Computertools ENERGIER in einem Energiemodell darzustellen und zu analysieren.
Empfehlung (fakultativ): Seminar Energiemodelle (1 SWS), IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur:
Online-Manuskript;
Schiffer, Hans-Wilhelm: Energiemarkt Deutschland, Praxiswissen Energie und Umwelt, TÜV Media, 11. überarbeitete Auflage 2010

15. Lehrveranstaltungen und -formen:
- 291901 Vorlesung mit Übung Systemtechnische Planungsmethoden in der Energiewirtschaft
- 291902 Workshop Derzeitige und zukünftige Energieversorgung und Umweltbelastung in Deutschland

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudium 110 h
Gesamt: 180

17. Prüfungsnummer/n und -name:
29191 Planungsmethoden in der Energiewirtschaft (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, Zur erfolgreichen Absolvierung des Moduls gehört neben der bestandenen Modulprüfung ein Nachweis über die regelmäßige Teilnahme am Workshop "Derzeitige und zukünftige Energieversorgung und Umweltbelastung in Deutschland" sowie das Halten eines Vortrags im Rahmen dieses Workshops.

18. Grundlage für ... :

19. Medienform:
Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript, PC - Übungen

20. Angeboten von:
Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 32040 Praktikum Energiesysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210021</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Alfred Voß

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011	Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011	Spezialisierungsfächer A (ING)
	Gruppe Energietechnik
	Energiesysteme und Energiewirtschaft

11. Empfohlene Voraussetzungen: Kenntnisse in der Energietechnik

13. Inhalt:

Nähere Informationen zu den Praktikumsversuchen (APMB, SF, HF) erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Es sind insgesamt 8 Versuche zu belegen. Aus den folgenden Spezialisierungsfachversuchen (SFV) sind 4 auszuwählen, für die jeweils ein Praktikumsbericht von mindestens ausreichender Qualität angefertigt werden muss:

- Brennstoffzellentechnik
- Energieeffizienzvergleich
- Kraft-Wärme-Kopplung (BHKW)
- Messen elektrischer Arbeit und Leistung
- Stirlingmotor
- Online-Praktikum: Stromverbrauchsanalyse und elektrisches Lastmanagement

Allgemeines Praktikum Maschinenbau (APMB):

- APMB 1
- APMB 2
- APMB 3
- APMB 4

Beispiele:

Stirlingmotor: In diesem Versuch wird die Wirkungsweise eines Stirlingmotors anhand eines Wärmekraftprozesses sowie eines Kältemaschinenprozesses demonstriert. Über Leistungs- und Verbrauchsmessungen werden verschiedene Wirkungsgrade eingeführt und berechnet.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Praktikumsunterlagen (online verfügbar)</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | • 320401 Praktikum Spezialisierungsfachversuch 1
• 320402 Praktikum Spezialisierungsfachversuch 2
• 320403 Praktikum Spezialisierungsfachversuch 3
• 320404 Praktikum Spezialisierungsfachversuch 4 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
Selbststudium und Prüfungsvorbereitung: 62 h
Gesamt: 90 h |
| 18. Grundlage für ... : | |
| 19. Medienform: | Beamergestützte Einführung in das Thema; Praktische Übung an Exponaten und Maschinen im Labor |
| 20. Angeboten von: | Institut für Energiewirtschaft und Rationelle Energieanwendung |
243 Feuerungs- und Kraftwerkstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2431</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>2432</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2433</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>30620</td>
<td>Praktikum Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
2433 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30530</td>
<td>Verbrennung und Verbrennungsschadstoffe</td>
</tr>
<tr>
<td>30540</td>
<td>Dampfturbinentechnologie</td>
</tr>
<tr>
<td>30600</td>
<td>Basics of Air Quality Control</td>
</tr>
<tr>
<td>30610</td>
<td>Regelungstechnik für Kraftwerke</td>
</tr>
<tr>
<td>36350</td>
<td>Kraftwerksabfälle</td>
</tr>
<tr>
<td>36790</td>
<td>Thermal Waste Treatment</td>
</tr>
<tr>
<td>36860</td>
<td>Konstruktion von Wärmeübertragern</td>
</tr>
<tr>
<td>36880</td>
<td>Solartechnik II</td>
</tr>
</tbody>
</table>
Modul: 30600 Basics of Air Quality Control

2. Modulkürzel: 042500026
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Englisch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Günter Baumbach

9. Dozenten:
• Günter Baumbach
• Ulrich Vogt

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Feuerungs- und Kraftwerkstechnik
→ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
The graduates of the module have understood pollutants formation, their sources and dependencies as well the air pollutants behavior in the atmosphere. Thus the student has acquired the basis for further understanding and application of air pollution control studies and measures.

12. Lernziele:
I. Lecture Basics of Air Quality Control, 2 SWh
• Clean air and air pollution, definitions
• Natural sources of air pollutants
• History of air pollution and air quality control
• Pollutant formation during combustion and industrial processes
• Dispersion of air pollutants in the atmosphere: Meteorological influences, inversions
• Atmospheric chemical transformations
• Ambient air quality

II. Excursion to an industrial plant with abatement technologies, 8 h

13. Inhalt:

14. Literatur:
Text book „Air Quality Control“ (Günter Baumbach, Springer Verlag);
Scripts of the lectures, News on topics from internet (e.g. UBA, LUBW)

15. Lehrveranstaltungen und -formen:
• 306001 Vorlesung Einführung in die Luftreinhaltung
• 306002 Excursion Einführung in die Luftreinhaltung

16. Abschätzung Arbeitsaufwand:
Time of Attendance: 28 h Lecture + 8 h Excursion = 36 h
Self study: 54 h

17. Prüfungsnummer/n und -name:
30601 Basics of Air Quality Control (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Black board, PowerPoint Presentations

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 30540 Dampfturbinentechnologie

2. Modulkürzel: 042310016
5. Modul dauert: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenten:
 • Norbert Sürken

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Thermische Turboschmachers
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II,
 Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
 Der Studierende
 • verfügt über vertiefte Kenntnisse und Verständnis der physikalischen
 und technischen Vorgänge in Dampfkraftwerken und Dampfturbinen
 • beherrscht die Thermodynamik des zugrundeliegenden Clausius-
 Rankine-Prozesses
 • ist in der Lage, die Funktionsprinzipien der wesentlichen Dampfturbinen-
 Komponenten und deren Zusammenwirken zu erkennen und zu
 analysieren
 • erkennt die technischen Grenzen der verschiedenen Turbinen-Bauarten
 und kann diese begründen

13. Inhalt:
 • Energieressourcen
 • Marktentwicklungen für Kraftwerke
 • Historische Entwicklung der Dampfturbine
 • Dampfturbinenhersteller
 • Einsatzspektrum
 • Thermodynamischer Arbeitsprozess
 • Arbeitsverfahren und Bauarten
 • Leistungsregelung
 • Beschauflungen
 • Betriebszustände
 • Turbinenläufer und Turbinengehäuse
14. Literatur:

- Bell, R., Dampfturbinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
- Traupel, W., Thermische Turbomaschinen, 4. Aufl., Bd. 1 u. 2, Springer 2001
- Dietzel, F., Dampfturbinen; 3. Aufl.; Hanser 1980

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung und -formen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Dampfturbinentechnologie</td>
<td>305401</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 21 Stunden</td>
<td></td>
</tr>
<tr>
<td>Selbststudium: 69 Stunden</td>
<td></td>
</tr>
<tr>
<td>Gesamt: 90 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer und -name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30541 Dampfturbinentechnologie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript

20. Angeboten von:

Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 36860 Konstruktion von Wärmeübertragern

2. Modulkürzel: 042410035
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler

9. Dozenten: • Klaus Spindler
• Wolfgang Heidemann

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Rationelle Energienutzung
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Grundkenntnisse in Wärme- und Stoffübertragung

12. Lernziele: Erworbene Kompetenzen:

 • Kenntnis der verschiedenen Bauformen von Wärmeübertragern und deren Einsatzmöglichkeiten
 • Kenntnis der Werkstoffe Kupfer, Stähle, Aluminium, Glas, Kunststoffe, Graphit hinsichtlich Verarbeitbarkeit, Korrosion, Temperatur- und Druckbereich, Verschmutzung
 • Konstruktive Detaillösungen für Rohrverbindungen, Mantel, Stutzen, Dichtungen, Dehnungsausgleich, etc.
 • Kenntnis der Fertigungsverfahren
 • Vorgehensweise für Auslegungen
 • Kenntnis einschlägiger Normen und Standards

13. Inhalt:

 - Glatt- und Rippenrohre für Wärmeübertrager
 - Rohrbündelwärmeübertrager
 - Kupfer als Werkstoff im Apparatebau
 - Technologie und Einsatzbereiche von Plattenwärmeübertrager
 - Aussen- und innenberippte Aluminiumrohre für Wärmeübertrager
 - Spezialwärmeübertrager für hochkorrosive Anwendungen
 - Wärmeübertrager aus Kunststoff
 - Graphit-Wärmeübertrager
 - Auslegung und Anwendung von Lamellenrohrverdampfern
 - Regenerative Wärmerückgewinnung
 - Wärmeübertrager in Fahrzeugen
 - Auslegung und Wirtschaftlichkeit von Kühltrümmern
 - Fertigung von Wärmeübertragern
 - Verschmutzung und Reinigung von Wärmeübertragern

14. Literatur: Vorlesungsunterlagen,

 VDI-Wärmeatlas, Springer Verlag, Berlin Heidelberg, New York

15. Lehrveranstaltungen und -formen: 368601 Vorlesung Konstruktion von Wärmeübertragern

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 28 h
 Selbststudium/Nacharbeitung 62 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>36861</th>
<th>Konstruktion von Wärmeübertragern (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td>Powerpoint-Präsentation ergänzt um Tafelskizzen und Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 36350 Kraftwerksabfälle

2. Modulkürzel: 041210020
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alfred Voß
9. Dozenten: Roland Stützle

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Feuerungs- und Kraftwerkstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Grundkenntnisse der Abfallwirtschaft, Chemie, Verbrennung

12. Lernziele:

13. Inhalt:
 • Kraftwerksprozesse
 • Kraftwerksreinigungsprozesse
 • Reststoffanfall
 • Verwertungsmöglichkeiten
 • Qualitätsanforderungen
 • Qualitätstests
 • Beseitigung und rechtliche Aspekte
 • Exkursion zu einer Kraftwerksanlage

14. Literatur: Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
 • 363501 Vorlesung Entsorgung von Stoffen aus energietechnischen Anlagen
 • 363502 Exkursion Entsorgung von Stoffen aus energietechnischen Anlagen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium: 62 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 36351 Kraftwerksabfälle (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Vorlesungsskript, Exkursion
20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 30610 Regelungstechnik für Kraftwerke

2. Modulkürzel: 042500043
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Joachim Lehner
9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Feuerungs- und Kraftwerkstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
 Grundlagen der Thermodynamik, Grundlagen der Regelungstechnik, Mathematik

12. Lernziele:

13. Inhalt:
 I: Grundlagen der Prozessautomatisierung
 - Mess- und Stellglieder
 - Anbindung an das Automatisierungssystem
 - BUS-Konzepte
 II: Blockführungsgrößenbildung
 - Hierarchische Strukturierung der Kraftwerksautomatisierung
 - Betrachtung unterlagter und überlagter Regelkreise
 - Vorsteuerungen und Regelungen
 III: Moderne Blockführungs konzepte
 - Klassische Blockregelung
 - Modellgestützte Blockführungskonzepte
 - Einbindung von Zustandsreglern
 - Optimierungsansätze
 IV: Block-An- und Abfahrsteuerung
 - Klassische Block-An- und Abfahrsteuerung
 - Modellgestütztes Blockanfahren
 V: Technische und wirtschaftliche Bewertung des Blockregelverhaltens
 - Regelgüteindikatoren
 - Benchmarking von Kraftwerksanlagen
 - Ist-Regelverhalten konkreter Kraftwerksanlagen
 VI: Sicherheitsleittechnik
 - Bewertung von Gefährdungspotentialen
 - Schutzsysteme
 - Redundanzkonzepte

14. Literatur:
 Vorlesungsskript, VDI/VDE-Richtlinienreihe 35xx, einschlägige Veröffentlichungen und Konferenzbeiträge,

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>306101 Vorlesung Regelungstechnik für Kraftwerke</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
Selbststudium: 62 h
Summe: 90 h |
| 17. Prüfungsnummer/n und -name: | 30611 Regelungstechnik für Kraftwerke (BSL), schriftliche Prüfung,
60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafelanschrieb, PPT-Präsentationen, Besuch des Heizkraftwerks |
| 20. Angeboten von: | Institut für Feuerungs- und Kraftwerktechnik |
Modul: 36880 Solartechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410025</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr.-Ing. Klaus Spindler</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Eck</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Feuerungs- und Kraftwerkstechnik ➔ Ergänzungsfächer mit 3 LP |
| 12. Lernziele: | Einführung und allgemeine Technikübersicht
• Potential und Markt solarthermischer Kraftwerke
• Grundlagen der Umwandlung konzentrierter Solarstrahlung
• Übersicht zur Parabol-Rinnen Kraftwerkstechnik
• Übersicht zur Solar Turm Kraftwerkstechnik
• Auslegungskonzepte für Rinnenkollektoren und Absorber
• Auslegungskonzepte für Receiver
• Grundlagen von Hochtemperatur-Wärmespeicher
• Auslegungskonzepte ausgewählter Speichertechniken
• Übersicht zu aktuellen Kraftwerksprojekten |
| 13. Inhalt: | Kopie der Powerpoint-Präsentation |
| 14. Literatur: | • 368801 Vorlesung Solartechnik II
• 368802 Seminar Solarkraftwerke |
| 15. Lehrveranstaltungen und -formen: | Präsenzzeit: 28 h
Selbststudium: Nacharbeitszeit: 62 h
Gesamt: 90h |
| 16. Abschätzung Arbeitsaufwand: | 36881 Solartechnik II (BSL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 17. Prüfungsnummer/n und -name: | Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb |

Stand: 23. Oktober 2012
Seite 658 von 1220
Modul: 36790 Thermal Waste Treatment

2. Modulkürzel: 042500031
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldaurer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Englisch
8. Modulverantwortlicher: Prof. Dr.-Ing. Helmut Seifert
9. Dozenten: Helmut Seifert
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Knowledge of chemical and mechanical engineering, combustion and waste economics
12. Lernziele: The students know about the different technologies for thermal waste treatment which are used in plants worldwide: The functions of the facilities of thermal treatment plan and the combination for an efficient planning are present. They are able to select the appropriate treatment system according to the given frame conditions. They have the competence for the first calculation and design of a thermal treatment plant including the decision regarding firing system and flue gas cleaning.
13. Inhalt: In addition to an overview about the waste treatment possibilities, the students get a detailed insight to the different kinds of thermal waste treatment. The legal aspects for thermal treatment plants regarding operation of the plants and emission limits are part of the lecture as well as the basic combustion processes and calculations.
 I: Thermal Waste Treatment:
 • Legal and statistical aspects of thermal waste treatment
 • Development and state of the art of the different technologies for thermal waste treatment
 • Firing system for thermal waste treatment
 • Technologies for flue gas treatment and observation of emission limits
 • Flue gas cleaning systems
 • Calculations of waste combustion
 • Calculations for thermal waste treatment
 • Calculations for design of a plant
 II: Excursion:
 • Thermal Waste Treatment Plant
14. Literatur:
 • Lecture Script
15. Lehrveranstaltungen und -formen:
 • 367901 Vorlesung Thermal Waste Treatment
 • 367902 Exkursion Thermal Waste Treatment Plant
16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 36 h (=28 h V + 8 h E)
 Selbststudium / Nacharbeitszeit: 54 h
 Gesamt: 90h
17. Prüfungsnummer/n und -name: 36791 Thermal Waste Treatment (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Black board, PowerPoint Presentations, Excursion</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 30530 Verbrennung und Verbrennungsschadstoffe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042200003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Ph.D. Andreas Kronenburg</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kronenburg</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche Grundlagen, Grundlagen in Thermodynamik |
| 13. Inhalt: | **Verbrennung und Verbrennungsschadstoffe:**
• Die chemischen und physikalische Grundlagen der Verbrennung
• Laminare vorgemischte und nicht-vorgemischte Flammen:
• Flammenstruktur und -geschwindigkeit
• Erhaltungsgleichungen für Masse, Energie und Geschwindigkeit
• Turbulente vorgemischte und nicht-vorgemischte Flammen:
• Gleichungssysteme
• Modellierungsstrategien
• Entstehung von Schadstoffen |
| 14. Literatur: | • Vorlesungsmanuskript
| 15. Lehrveranstaltungen und -formen: | 305301 Vorlesung Verbrennung und Verbrennungsschadstoffe |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudiumzeit/Nachbearbeitungszeit: 69 h
Summe: 90 h |
| 17. Prüfungsnummer/n und -name: | 30531 Verbrennung und Verbrennungsschadstoffe (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen |

Stand: 23. Oktober 2012
20. Angeboten von:
2432 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Einführung in die energetische Nutzung von Biomasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Firing Systems and Flue Gas Cleaning</td>
</tr>
<tr>
<td></td>
<td>Kraftwerksanlagen</td>
</tr>
<tr>
<td></td>
<td>Modellierung und Simulation von Technischen Feuerungsanlagen</td>
</tr>
<tr>
<td></td>
<td>Berechnung von Wärmeübertragern</td>
</tr>
<tr>
<td></td>
<td>Regelung von Kraftwerken und Netzen</td>
</tr>
<tr>
<td></td>
<td>Dampferzeugung</td>
</tr>
<tr>
<td></td>
<td>Einführung in die numerische Simulation von Verbrennungsprozessen</td>
</tr>
<tr>
<td></td>
<td>Modellierung und Simulation turbulenter reaktiver Strömungen</td>
</tr>
</tbody>
</table>
Modul: 18160 Berechnung von Wärmeübertragern

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>042410030</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Dr. Wolfgang Heidemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Heidemann</td>
</tr>
</tbody>
</table>

→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Feuerungs- und Kraftwerkstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik |

| 11. Empfohlene Voraussetzungen: | Grundkenntnisse in Wärme- und Stoffübertragung |

| 12. Lernziele: | Erworbene Kompetenzen: |

Die Studierenden

- kennen die Grundgesetze der Wärmeübertragung und der Strömungen
- sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsaussagen und Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden
- kennen unterschiedliche Methoden zur Berechnung von Wärmeübertragern
- kennen die Vor- und Nachteile verschiedener Wärmeübertrageraufbauformen

Die Lehrveranstaltung

- zeigt unterschiedliche Wärmeübertragerarten und Strömungsformen der Praxis,
- vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert, Kennzahlen, NTU-Diagramm, Zellenmethode
- behandelt Sonderbauformen und Spezialprobleme(Wärmeverluste),
- vermittelt Grundlagen zur Wärmeübertragung in Kanälen und im Mantelraum (einphasige Rohrströmung, Plattenströmung, Kondensation, Verdampfung),
14. Literatur:
- Vorlesungsmanuskript,

15. Lehrveranstaltungen und -formen:
- 181601 Vorlesung Berechnung von Wärmeübertragern
- 181602 Übung Berechnung von Wärmeübertragern

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
- 18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0

19. Medienform:
- Vorlesung: Beamerpräsentation
- Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware
Modul: 30570 Dampferzeugung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Günter Scheffknecht</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Günter Scheffknecht</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Feuerungs- und Kraftwerkstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Feuerungs- und Kraftwerkstechnik
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche Grundlagen, Grundlagen in Maschinenbau bzw. Energietechnik, Grundlagen der Wärmeübertragung |
• Übersicht Dampferzeugerbauarten: Rauchrohr- und Wasserrohr-Dampferzeuger, Verdampferprinzipien (Umlauf- und Zwangdurchlaufverdampfer, Einsatzgebiet), Ausführungsbeispiele, Abhitzedampferzeuger, Sonderbauarten
• Feuerungen für Dampferzeuger: Übersicht über Brennstoffe und Feuerungssysteme einschließlich Nebensysteme, elementare Verbrennungsrechnung, Stoffwerte von Rauchgasen
• Wärme- und Strömungstechnik: Energiebilanz und Wirkungsgrad, Wärmebilanz des Wasser/Dampfsystems und der Brennkammer, Luftvorwärzung, Brennkammerdimensionierung (Belastungskennzahlen, Wärmeübertragung durch Strahlung). Bilanzierung eines Heizflächenabschnitts, Heizflächenanordnung und -gestaltung, Verdampfungsvorgang (Wärmeübergang, Siedekrisen, Druckverlust, Stabilität, Strömungsverteilung, Komponentenauslegung), Wärmeübergang durch Konvektion, Druckverlust, Möglichkeiten der Dampftemperaturregelung, rauchgasseitige Schwingungen
• Komponenten und Nebenanlagen: Druckteile, Tragkonstruktion, Luft- und Rauchgassystem, Komponenten zur Brennstoffzerkleinerung und -zuteilung, Komponenten der Feuerungsanlage, Systeme zur Rauchgasreinigung, Wärmeverschiebesysteme
• Werkstoffe und Festigkeit: Berechnung der maximalen Drücke und Temperaturen, Spannungskategorien, Spannungshypothesen |
und Kesselformel, Spannungsbegrenzung, Werkstoffe, Erschöpfungsrechnung
• Betriebsweisen, Anfahren und Dynamik: Schaltungsvarianten (für Dampfkraftwerke), Belastungsweise, dynamische Merkmale eines Kraftwerksblocks, Blockregelung und Betriebsweisen, Laständerungsvermögen, Einzelregelungen, Anlagenschutz
• Speisewasserchemie und Korrosion: Chemie des Arbeitsmittels Wasser/Dampf, Korrosionen an von Wasser bzw. Dampf berührten Bauteilen, Korrosionen auf der Rauchgasseite
• Neuere Entwicklungen: senkrechte Verdampferberohrung für Zwangdurchlaufdampferzeuger, Kohlevortrocknung, höhere Dampfzustände und Werkstoffentwicklungen, alternative Dampferzeugerkonzepte, Abwärmenutzung, Konzepte mit CO2-Abscheidung

14. Literatur:
• Vorlesungsmanuskript „Dampferzeugung"
• Übungsunterlagen „Dampferzeugung"

15. Lehrveranstaltungen und -formen:
• 305701 Vorlesung Dampferzeugung
• 305702 Übung Dampferzeugung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
30571 Dampferzeugung (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Übungen

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 12440 Einführung in die energetische Nutzung von Biomasse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr. Günter Scheffknecht

9. Dozenten: • Günter Scheffknecht
• Ludger Eltrop
• Uwe Schnell

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe Energietechnik</td>
<td>Feuerungs- und Kraftwerkstechnik</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

I: Bereitstellung von biogenen Energieträgern

- Biologische und verfahrenstechnische Grundlagen zur Produktion und Bereitstellung von Biomasse als Brennstoff zur energetischen Nutzung,
- technisch-wirtschaftliche Entwicklungsperspektiven und ökologische Auswirkungen
- Einordnung der systemanalytischen und energiewirtschaftlichen Zusammenhänge
- Rahmenbedingungen einer Nutzung in Energiesystem
- Einführung in physikalisch-chemische und biochemische Umwandlungsverfahren

II: Energetische Nutzung von Biomasse

- Brennstofftechnische Charakterisierung von Biomasse
- Einführung in Verbrennungs- und Vergasungstechnologien sowie die Fermentation
- Emissionsverhalten und Einführung in die Abgasreinigung
- Einführung in die Umwandlungsverfahren zur Erzeugung von Strom und/oder Wärme

14. Literatur:

- Vorlesungsmanuskript

| 15. Lehrveranstaltungen und -formen: | 124401 Vorlesung Einführung in die energetische Nutzung von Biomasse
| | 124402 Übung Einführung in die energetische Nutzung von Biomasse |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
| | Selbststudiumszeit / Nacharbeitszeit: 124 h
| | Gesamt: 180 h |

| 17. Prüfungsnummer/n und -name: | 12441 Einführung in die energetische Nutzung von Biomasse (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | Tafelanschrieb
| | PPT-Präsentationen
| | Skripte zu den Vorlesungen |

| 20. Angeboten von: | Institut für Feuerungs- und Kraftwerkstechnik |
Modul: 30580 Einführung in die numerische Simulation von Verbrennungsprozessen

2. Modulkürzel: 042200102 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Nach Ankündigung

8. Modulverantwortlicher: Prof. Ph.D. Andreas Kronenburg
9. Dozenten: • Andreas Kronenburg • Oliver Thomas Stein

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Feuerungs- und Kraftwerkstechnik ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Fundierte Grundlagen in Mathematik, Physik, Informatik
Vertiefungsmodul: Grundlagen technischer Verbrennungsvorgänge I + II (begleitend)

12. Lernziele:

13. Inhalt:
• Wiederholung der Grundlagen der Verbrennung: Thermodynamik, Gasgemische, Chemische Reaktionen/Gleichgewicht, Stöchiometrie, Flammentypen, Mathematische Beschreibung von Massen- / Impulserhaltung, Wärme-/Stofftransport
• Vereinfachte Reaktorbeschreibungen: Rührreaktoren (0D), Plug Flow Reaktor (1D), einfache laminare Vormisch- und Diffusionsflammen (1D)
• Grundlagen der numerischen Simulation: Grundgleichungen, Modellbildung, Diskretisierung, Implementierung
• Orts-/Zeitdiskretisierung, Anfangs-/Randbedingungen, explizite/implizite Lösungsverfahren

Übung: Implementierung und Simulation einfacher Probleme mit Matlab

14. Literatur:
• Vorlesungsfolien

15. Lehrveranstaltungen und -formen:
• 305801 Vorlesung Einführung in die numerische Simulation von Verbrennungsprozessen
• 305802 Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen

16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 42 h
Selbststudiumszeit/Nachbearbeitungszeit: 138 h
Summe: 180 h

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30581 Einführung in die numerische Simulation von Verbrennungsprozessen (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsleistung: schriftliche Hausaufgaben/Tests</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel: 042500003 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Prof. Dr. Günter Scheffknecht
9. Dozenten: • Günter Scheffknecht
• Günter Baumbach
• Helmut Seifert

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Kernfächer mit 6 LP

12. Lernziele:
The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and for different capacity ranges are best suited, and how furnaces and flames need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollutant emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants’ manufactures, operators and supervisory authorities.

13. Inhalt:
I: Combustion and Firing Systems I (Scheffknecht):
• Fuels, combustion process, science of flames, burners and furnaces, heat transfer in combustion chambers, pollutant formation and reduction in technical combustion processes, gasification, renewable energy fuels.

II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):
• Methods for dust removal, nitrogen oxide reduction (catalytic/ non-catalytic), flue gas desulphurisation (dry and wet), processes for the separation of specific pollutants. Energy use and flue gas cleaning; residues from thermal waste treatment.

III: Excursion to an industrial firing plant

14. Literatur:
I:
• Lecture notes „Combustion and Firing Systems“
• Skript

II:

• Text book „Air Quality Control“ (Günter Baumbach, Springer publishers)
• News on topics from internet (for example UBA, LUBW)

III:

• Lecture notes for practical work

15. Lehrveranstaltungen und -formen:
• 154401 Lecture Combustion and Firing Systems I
• 154402 Vorlesung Flue Gas Cleaning at Combustion Plants
• 154405 Excursion in Combustion and Firing Systems

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	66 h (= 56 h V + 8 h E)
Selbststudiumszeit / Nacharbeitszeit:	114 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:
• 15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
• Black board, PowerPoint Presentations, Practical measurements

20. Angeboten von:
• Institut für Feuerungs- und Kraftwerkenchnik
Modul: 15960 Kraftwerksanlagen

2. Modulkürzel: 042500011
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Uwe Schnell
9. Dozenten:
- Uwe Schnell
- Armin Wauschkuhn

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2011 |
| Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| Gruppe Energietechnik |
| Feuerungs- und Kraftwerkstechnik |
| Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| Gruppe Energietechnik |
| Feuerungs- und Kraftwerkstechnik |
| Kernfächer mit 6 LP |

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik

13. Inhalt:

Kraftwerksanlagen I (Schnell):

Kraftwerksanlagen II (Schnell):

Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik (Wauschkuhn):

14. Literatur:
- Vorlesungsmanuskript „Kraftwerksanlagen I“
- Vorlesungsmanuskript „Kraftwerksanlagen II“
- Vorlesungsmanuskript „Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik“
- Weiterführende Literaturhinweise in den Vorlesungen

| 15. Lehrveranstaltungen und -formen: | 159601 Vorlesung Kraftwerksanlagen I
| | 159602 Vorlesung Kraftwerksanlagen II
| | 159603 Vorlesung Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 70 h
| | Selbststudiumszeit / Nacharbeitszeit: 110 h
| | Gesamt: 180 h |

| 17. Prüfungsnummer/n und -name: | 15961 Kraftwerksanlagen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : | |

| 19. Medienform: | PPT-Präsentationen, Tafelanschrieb, Skripte zu den Vorlesungen |

| 20. Angeboten von: | Institut für Feuerungs- und Kraftwerkstechnik |
Modul: 30590 Modellierung und Simulation turbulenter reaktiver Strömungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042200103</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Ph.D. Andreas Kronenburg</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kronenburg, Oliver Thomas Stein</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Feuerungs- und Kraftwerkstechnik ➔ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Vertiefungsmodul: Grundlagen technischer Verbrennungsvorgänge I + II
Modul: Einführung in die numerische Simulation von Verbrennungsprozessen |
Grundlagen der Turbulenz und Turbulenzsimulation: Reynoldszahl, turbulente Skalen, Energiekaskade, Kolmogorov, RANS / LES / DNS
Ansätze zur Modellierung turbulenter Flammen, u.a. Mixedis- Burnt, Gleichgewichtsschemie, Flamelets, CMC, EBU, BML, FSD, G-Gleichung, PDF, LEM
Modellierung komplexer Geometrien von praktischer Relevanz
Schwerpunkt LES: gefilterte Gleichungen, Feinskalenmodellierung, Schließung
Beispiele: Verdrallte Gasflammen, Simulation von Kohle-Verbrennung
Übung: Implementierung und Simulation mit Matlab/OpenFOAM |
| 14. Literatur: | Vorlesungsmanuskript
| 15. Lehrveranstaltungen und -formen: | 305901 Vorlesung Modellierung und Simulation turbulenter reaktiver Strömungen
305902 Computerübungen in Kleingruppen Modellierung und Simulation turbulenter reaktiver Strömungen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h |

Stand: 23. Oktober 2012
Selbststudiumszeit/Nachbearbeitungszeit: 138 h
Summe: 180 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30591 Modellierung und Simulation turbulenter reaktiver Strömungen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen</th>
</tr>
</thead>
</table>

| 20. Angeboten von: | |
Modul: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

2. Modulkürzel: 042500012
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Uwe Schnell

9. Dozenten: • Uwe Schnell
• Benedetto Risio
• Oliver Thomas Stein

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik und Informatik

12. Lernziele:
Die Studierenden des Moduls haben die Prinzipien und Möglichkeiten der Modellierung und Simulation von Feuerungsanlagen sowie insbesondere der Turbulenzmodellierung verstanden. Sie können beurteilen für welchen Verwendungszweck, welche Simulationsmethode am besten geeignet ist. Sie können erste einfache Anwendungen der Verbrennungs- und Feuerungssimulation realisieren und verfügen über die Basis zur vertieften Anwendung der Methoden, z.B. in einer studentischen Arbeit.

13. Inhalt:
I: Verbrennung und Feuerungen II (Schnell) [159701]:
• Strömung, Strahlungswärmeaustausch, Brennstoffabbrand und Schadstoffentstehung in Flammen und Feuerräumen: Grundlagen, Berechnung und Modellierung.

II: Simulations- und Optimierungsmethoden für die Feuerungstechnik (Risio) [159702]:
• Einsatzfelder für technische Flammen in der Energie- und Verfahrenstechnik, Techniken zur Abbildung industrieller Feuerungssysteme, Aufbau und Funktion moderner Höchstleistungsrechner, Vorstellung des Stuttgarter Supercomputers NEC-SX8 am HLFS, Algorithmen und Programmiertechnik für die Beschreibung von technischen Flammen auf Höchstleistungsrechnern, Besuch des Virtual-Reality (VR)-Labors des HLRS und Demonstration der VR-Visualisierung für industrielle Feuerungen, Methoden zur Bestimmung der Verlässlichkeit feuerungstechnischer Vorhersagen (Validierung) an Praxis-Beispielen, Optimierung in der Feuerungstechnik: Gradientenverfahren, Evolutionäre Verfahren und Genetische Algorithmen

III: Grundlagen technischer Verbrennungsvorgänge III (Stein) [159703]:
• Lösung nicht-linearer Gleichungssysteme
• Verfahren zur Zeitdiskretisierung
• Homogene Reaktoren
• Eindimensionale Reaktoren/Flammen

IV: Praktikum „Numerische Simulation von Kraftwerksfeuerungen“ [159704]:

• 2 Versuche je 3 Stunden

14. Literatur:

• Vorlesungsmanuskript „Verbrennung & Feuerungen II“
• Vorlesungsmanuskript „Simulations- und Optimierungsmethoden für die Feuerungstechnik“
• Vorlesungsskript „Grundlagen technischer Verbrennungsvorgänge III“
• Skript zum Praktikum „Numerische Simulation einer Kraftwerksfeuerung“

15. Lehrveranstaltungen und -formen:

• 159701 Vorlesung Verbrennung und Feuerungen II
• 159702 Vorlesung Simulations- und Optimierungsmethoden für die Feuerungstechnik
• 159703 Vorlesung Grundlagen technischer Verbrennungsvorgänge III
• 159704 Praktikum Modellierung und Simulation von Technischen Feuerungsanlagen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	62 h
Selbststudium:	118 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

15971 Modellierung und Simulation von Technischen Feuerungsanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen

20. Angeboten von:
Modul: 28550 Regelung von Kraftwerken und Netzen

2. Modulkürzel: 042500042
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Joachim Lehner

9. Dozenten: Joachim Lehner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Gruppe Energietechnik
→ Feuerungs- und Kraftwerkstechnik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
Die Absolventen des Moduls kennen die klassischen kraftwerksund netzseitigen Automatisierungs- und Regelungsaufgaben im Bereich der Stromerzeugung. Sie sind mit den aktuellen nationalen und internationalen Spezifikationen und Richtlinien für die Standard-Regelaufgaben in der Stromerzeugung vertraut und können bestehende Regelungen und ihre Auswirkungen auf das Verbundsystem bewerten.

13. Inhalt:
I: Einführung: Aufbau elektrischer Energieversorgungssysteme
I.1: Verbundnetzgliederung
I.2: Netzpartner
I.3: Europäisches Verbundnetz und Verbundnetze weltweit
II: Dynamisches Verhalten der Netzpartner
II.1a: fossile Dampfkraftwerke
II.1b: Kernkraftwerke
II.1c: Solarthermische Kraftwerke
II.1d: Wasserkraftwerke
II.1e: Windkraftanlagen
II.1f: weitere dezentrale Erzeuger
II.2: Verbraucher
II.3: Netzbetreibsmittel/Leistungselektronik
III: Netzregelung und Systemführung
III.1: Frequenz-Wirkleistungs-Regelung
III.2: Spannungsregelung
III.3: Dynamisches Netzverhalten
III.4: Monitoring
IV: Aktuelle Herausforderungen
IV.1: Einbindung erneuerbarer Energien
IV.2: Ausweitungen des europäischen Stromhandels
IV.3: Erweiterungen des europäischen Verbundnetzes
IV.4: Möglichkeiten zur Minderung von CO2 Emissionen bei der el. Energieerzeugung mittels CCS (Carbon Capture and Storage)
V: Übung
V.1: Fossil befeuerte Kraftwerke
V.2: Kernkraftwerke und Wasserkraftwerke
V.3: Leistungs-Frequenzregelung
V.4: Lastflussrechnung
14. Literatur:

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Regelung von Kraftwerken und Netzen</td>
<td>285501</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Form</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>56 Stunden</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>124 Stunden</td>
</tr>
<tr>
<td>Summe</td>
<td>180 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnr. und -name:
<table>
<thead>
<tr>
<th>Prüfungsnr.</th>
<th>Prüfungsbetragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>28551</td>
<td>Regelung von Kraftwerken und Netzen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:
<table>
<thead>
<tr>
<th>Grundlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>28550</td>
</tr>
</tbody>
</table>

19. Medienform:
<table>
<thead>
<tr>
<th>Medienform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafelanschrieb, PPT-Präsentationen</td>
</tr>
</tbody>
</table>

20. Angeboten von:
<table>
<thead>
<tr>
<th>Angeboten von</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Feuerungs- und Kraftwerktechnik</td>
</tr>
</tbody>
</table>
2431 Kernfächer mit 6 LP

Zugeordnete Module:
15440 Firing Systems and Flue Gas Cleaning
15960 Kraftwerksanlagen
30570 Dampferzeugung
Modul: 30570 Dampferzeugung

2. Modulkürzel: 042500006 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Günter Scheffknecht
9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
➔ Feuerungs- und Kraftwerkstechnik
➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
➔ Feuerungs- und Kraftwerkstechnik
➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen, Grundlagen in Maschinenbau bzw. Energietechnik, Grundlagen der Wärmeübertragung

12. Lernziele:

13. Inhalt:

• Einführung: Historischer Überblick, Entwicklung des Wärmekraftwerks, Eigenschaften von Wasser bzw. Dampf, Kreisprozesse
• Übersicht Dampferzeugerbauarten: Rauchrohr- und Wasserrohr-Dampferzeuger, Verdampferprinzipien (Umlauf- und Zwangsdurchlaufverdampfer, Einsatzgebiet), Ausführungsbeispiele, Abhitzedampferzeuger, Sonderbauarten
• Feuerungen für Dampferzeuger: Übersicht über Brennstoffe und Feuerungssysteme einschließlich Nebensysteme, elementare Verbrennungsrechnung, Stoffwerte von Rauchgasen
• Wärme- und Strömungs technik: Energiebilanz und Wirkungsgrad, Wärmeeintrag des Wassers/Dampf systems und der Brennkammer, Luftvorwärmung, Brennkammerdimensionierung (Belastungskennzahlen, Wärmeübertragung durch Strahlung), Bilanzierung eines Heizflächenabschnittes, Heizflächenanordnung und -gestaltung, Verdampfungsvorgang (Wärmeübergang, Siedekrisen, Druckverlust, Stabilität, Strömungsverteilung, Komponentenauslegung), Wärmeübergang durch Konvektion, Druckverlust, Möglichkeiten der Dampftemperatureguregulation, rauchgasseitige Schwingungen
• Komponenten und Nebenanlagen: Druckteile, Tragkonstruktion, Luft- und Rauchgassystem, Komponenten zur Brennstoffzerkleinerung und -zuteilung, Komponenten der Feuerungsanlage, Systeme zur Rauchgasreinigung, Wärmeverschießesysteme
• Werkstoffe und Festigkeit: Berechnung der maximalen Drücke und Temperaturen, Spannungskategorien, Spannungshypothesen
und Kesselformel, Spannungsbegrenzung, Werkstoffe, Erschöpfungsrechnung

- Betriebsweisen, Anfahren und Dynamik: Schaltungsvarianten (für Dampfkraftwerke), Belastungsweise, dynamische Merkmale eines Kraftwerksblocks, Blockregelung und Betriebsweisen, Laständerungsvermögen, Einzelregelungen, Anlagenschutz
- Speisewasserchemie und Korrosion: Chemie des Arbeitsmittels Wasser/Dampf, Korrosionen an von Wasser bzw. Dampf berührten Bauteilen, Korrosionen auf der Rauchgasseite
- Neuere Entwicklungen: senkrechte Verdampferberohrung für Zwangsdurchlaufsämpferzeuger, Kohlevortrocknung, höhere Dampfzustände und Werkstoffentwicklungen, alternative Dampferzeugerkonzepte, Abwärmenutzung, Konzepte mit CO2-Abscheidung

14. Literatur:

- Vorlesungsmanuskript „Dampferzeugung"
- Übungsunterlagen „Dampferzeugung"

15. Lehrveranstaltungen und -formen:

- 305701 Vorlesung Dampferzeugung
- 305702 Übung Dampferzeugung

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 56 h |
| Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

- 30571 Dampferzeugung (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

- Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Übungen

20. Angeboten von:

- Institut für Feuerungs- und Kraftwerktechnik
Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel: 042500003 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Prof. Dr. Günter Scheffknecht
9. Dozenten: • Günter Scheffknecht • Günter Baumbach • Helmut Seifert

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Feuerungs- und Kraftwerkstechnik ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Feuerungs- und Kraftwerkstechnik ➔ Kernfächer mit 6 LP

12. Lernziele: The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and for different capacity ranges are best suited, and how furnaces and flames need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollutant emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants’ manufactures, operators and supervisory authorities.

13. Inhalt:
I: Combustion and Firing Systems I (Scheffknecht):
• Fuels, combustion process, science of flames, burners and furnaces, heat transfer in combustion chambers, pollutant formation and reduction in technical combustion processes, gasification, renewable energy fuels.

II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):
• Methods for dust removal, nitrogen oxide reduction (catalytic/ non-catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants. Energy use and flue gas cleaning; residues from thermal waste treatment.

III: Excursion to an industrial firing plant

14. Literatur:
I:
• Lecture notes „Combustion and Firing Systems“
• Skript

II:
• Text book „Air Quality Control“ (Günter Baumbach, Springer publishers)
• News on topics from internet (for example UBA, LUBW)

III:
• Lecture notes for practical work

15. Lehrveranstaltungen und -formen:	154401 Lecture Combustion and Firing Systems I
	154402 Vorlesung Flue Gas Cleaning at Combustion Plants
	154405 Excursion in Combustion and Firing Systems

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 66 h (= 56 h V + 8 h E)
	Selbststudiumszeit / Nacharbeitszeit: 114 h
	Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | Black board, PowerPoint Presentations, Practical measurements |

| 20. Angeboten von: | Institut für Feuerungs- und Kraftwerktechnik |
Modul: 15960 Kraftwerksanlagen

2. Modulkürzel: 042500011
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr. - Ing. Uwe Schnell
9. Dozenten: • Uwe Schnell
• Armin Wauschkuhn
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
➔ Feuerungs- und Kraftwerkstechnik
➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
➔ Feuerungs- und Kraftwerkstechnik
➔ Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik
12. Lernziele:
Die Studierenden des Moduls haben die Energierzeugung mit Kohle und/oder Erdgas in Kraftwerken verstanden. Sie kennen die verschiedenen Kraftwerks-, Kombiprozesse und CO₂-Abscheideprozesse. Sie sind in der Lage, die Klimawirksamkeit und die Wirtschaftlichkeit der einzelnen Kraftwerksprozesse zu beurteilen und für den jeweiligen Fall die optimierte Technik anzuwenden.
13. Inhalt:
Kraftwerksanlagen I (Schnell):
Kraftwerksanlagen II (Schnell):
Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik (Wauschkuhn):
• Grundlagen und Methoden der Investitionsrechnung, Investitions- und Betriebskosten von Kraftwerken, Bestimmung der Wirtschaftlichkeit von Kraftwerken und Beispiele zur Anwendung der Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik.
14. Literatur:
• Vorlesungsmanuskript „Kraftwerksanlagen I“
• Vorlesungsmanuskript „Kraftwerksanlagen II“
• Vorlesungsmanuskript „Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik“
15. Lehrveranstaltungen und -formen:

- 159601 Vorlesung Kraftwerksanlagen I
- 159602 Vorlesung Kraftwerksanlagen II
- 159603 Vorlesung Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 70 h
- Selbststudiumszeit / Nacharbeitszeit: 110 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

15961 Kraftwerksanlagen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

- PPT-Präsentationen, Tafelanschrieb, Skripte zu den Vorlesungen

20. Angeboten von:

- Institut für Feuerungs- und Kraftwerkstechnik
Modul: 30620 Praktikum Feuerungs- und Kraftwerkstechnik

2. Modulkürzel: 042500007
3. Leistungspunkte: 3.0 LP
4. SWS: 0.0

5. Modul dauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Günter Scheffknecht
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Energietechnik
 → Feuerungs- und Kraftwerkstechnik
11. Empfohlene Voraussetzungen: Spezialisierungsfach Feuerungs- und Kraftwerkstechnik
12. Lernziele: Praktische Vertiefung der in den Vorlesungen vermittelten Lehrinhalte
13. Inhalt:
 Es sind folgende **4 Spezialisierungsfachversuche** zu belegen, dazu ist jeweils eine Ausarbeitung anzufertigen:

 1) Bestimmung von Abgasemissionen aus Kleinfeuerungen (IFK)
 2) Numerische Simulation einer Kraftwerksfeuerung (IFK)
 3) Wirkungsgradberechnung des Heizkraftwerks der Universität Stuttgart (IFK)
 4) Charakterisierung von Staubpartikeln mittels Laserbeugungsverfahren (IFK)

 Versuchsbeispiel: Bestimmung von Abgasemissionen aus Kleinfeuerungslangen

 4 weitere Versuche sind aus dem Angebot des **Allgemeinen Praktikums Maschinenbau (APMB)** zu absolvieren:

 - APMB 1
 - APMB 2
 - APMB 3
 - APMB 4
<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Praktikumsunterlagen (online verfügbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 306201 Spezialisierungsfachversuch1</td>
</tr>
<tr>
<td></td>
<td>• 306202 Spezialisierungsfachversuch2</td>
</tr>
<tr>
<td></td>
<td>• 306203 Spezialisierungsfachversuch3</td>
</tr>
<tr>
<td></td>
<td>• 306204 Spezialisierungsfachversuch4</td>
</tr>
<tr>
<td></td>
<td>• 306205 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1</td>
</tr>
<tr>
<td></td>
<td>• 306206 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2</td>
</tr>
<tr>
<td></td>
<td>• 306207 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3</td>
</tr>
<tr>
<td></td>
<td>• 306208 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 30 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 60 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30621 Praktikum Feuerungs- und Kraftwerkstechnik (USL), Sonstiges, Gewichtung: 1.0, Schriftliche Ausarbeitung</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
244 Gebäudeenergetik

Zugeordnete Module:

- 2441 Kernfächer mit 6 LP
- 2442 Kern-/Ergänzungsfächer mit 6 LP
- 2443 Ergänzungsfächer mit 3 LP
- 30680 Praktikum Gebäudeenergetik
2443 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30520</td>
<td>Sonderprobleme der Gebäudeenergetik</td>
</tr>
<tr>
<td>30650</td>
<td>Ausgewählte Energiesysteme und Anlagen</td>
</tr>
<tr>
<td>30660</td>
<td>Luftreinhaltung am Arbeitsplatz</td>
</tr>
<tr>
<td>30670</td>
<td>Simulation in der Gebäudeenergetik</td>
</tr>
<tr>
<td>33160</td>
<td>Planung von Anlagen der Heiz- und Raumluftechnik</td>
</tr>
</tbody>
</table>
Modul: 30650 Ausgewählte Energiesysteme und Anlagen

2. Modulkürzel: 041310007
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Schmidt
9. Dozenten: Michael Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 Gruppe Energietechnik
 Gebäudeenergetik
 Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
12. Lernziele:
 Im Modul ausgewählte Energiesysteme und Anlagen haben die Studenten die Systematik energetischer Anlagen differenziert nach Ein- und Mehrwegeprozesse und die Methoden zu deren energetischer Bewertung kennengelernt.
 Erworbene Kompetenzen:
 Die Studenten
 • sind mit den Anlagen der Energiewandlung vertraut,
 • beherrschen die Methoden zur Bewertung
 • kennen die Einbettung in übergeordnete gekoppelte und entkoppelte Versorgungssysteme
13. Inhalt:
 • Energietechnische Begriffe
 • Energietechnische Bewertungsverfahren
 • Einwegprozess zur Wärme- und Stromerzeugung
 • Mehrwegprozesse zur gekoppelten Erzeugung und zur Nutzung von Umweltenergien
14. Literatur:
 • Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004
15. Lehrveranstaltungen und -formen:
 306501 Vorlesung Ausgewählte Energiesysteme und Anlagen
16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name:
 30651 Ausgewählte Energiesysteme und Anlagen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
 Vorlesungsskript
20. Angeboten von:
Modul: 30660 Luftreinhaltung am Arbeitsplatz

2. Modulkürzel: 041310004
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Michael Schmidt

9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>Gruppe Energietechnik</td>
</tr>
<tr>
<td></td>
<td>Gebäudeenergetik</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Im Modul Luftreinhaltung am Arbeitsplatz haben die Studenten die Systematik der Lösungen zur Luftreinhaltung am Arbeitsplatz sowie dazu erforderlichen Anlagen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundlagen erworben. Erworbene Kompetenzen:

Die Studenten
• sind mit den Methoden zur Luftreinhaltung am Arbeitsplatz vertraut,
• können für die jeweiligen Anforderungen die technischen Lösungen konzipieren,
• können die notwendigen Anlagen auslegen

13. Inhalt:

• Arten, Ausbreitung und Grenzwerte von Luftfremdstoffen
• Bewertung der Schadstofferkennung
• Luftströmung an Erfassungseinrichtungen
• Luftführung, Luftdurchlässe
• Auslegung nach Wärme- und Stofflasten
• Bewertung der Luftführung
• Abnahme von Leitungsmessungen

14. Literatur:

15. Lehrveranstaltungen und -formen:

| 306601 Vorlesung Luftreinhaltung am Arbeitsplatz |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 21 Stunden |
| Selbststudium: 69 Stunden |
| Summe: 90 Stunden |

17. Prüfungsnr/n und -name:

| 30661 Luftreinhaltung am Arbeitsplatz (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

| Vorlesungsskript |

20. Angeboten von:
Modul: 33160 Planung von Anlagen der Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310011</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Prof. Dr.-Ing. Michael Schmidt

9. Dozenten:
Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Energietechnik
 - Gebäudeenergetik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Grundlagen der Heiz- und Raumlufttechnik

12. Lernziele:

Erworbene **Kompetenzen**:
- Die Studenten
 - sind mit der praktischen Anwendung der Anlagenauslegung vertraut,
 - kennen die Grundzüge der Heizlastberechnung
 - können Heizflächen, Rohnetze, Wärmeerzeuger und Wärmespeicher dimensionieren und auswählen

13. Inhalt:
- Pflichtenhefterstellung
- Heizlastberechnung
- Heizflächendimensionierung
- Rohrnetzberechnung
- Wärmeerzeugerdimensionierung
- Wärmespeicherdimensionierung
- Auswahl geeigneter Komponenten auf Basis der Berechnungen
- Anfertigen von Skizzen und Zeichnungen der heiz- und raumlufttechnischen Anlagen

14. Literatur:
15. Lehrveranstaltungen und -formen:

- 331601 Vorlesung Planung von Anlagen der Heiz- und Raumlufttechnik
- 331602 Übung Planung von Anlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

33161 Planung von Anlagen der Heiz- und Raumlufttechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Tafelaufschrieb, Handout, Overheadfolien

20. Angeboten von:
<table>
<thead>
<tr>
<th>Modul: 30670 Simulation in der Gebäudeenergetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel: 041310006</td>
</tr>
<tr>
<td>4. SWS: 2.0</td>
</tr>
<tr>
<td>8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Schmidt</td>
</tr>
<tr>
<td>9. Dozenten: Michael Bauer</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen: Heiz- und Raumluftechnik</td>
</tr>
<tr>
<td>12. Lernziele:</td>
</tr>
<tr>
<td>Im Modul Simulation der Gebäudeenergetik haben die Studenten die Simulationsansätze der Gebäude- und Anlagensimulation - sowohl gekoppelt als auch entkoppelt - sowie die Simulation von Gebäudedurchströmung und von Raumströmung kennen gelernt und die dazu notwendigen Kenntnisse der Modellierungsmethoden erworben.</td>
</tr>
<tr>
<td>Erworbene Kompetenzen:</td>
</tr>
<tr>
<td>Die Studenten</td>
</tr>
<tr>
<td>• sind mit den Simulationsmethoden vertraut,</td>
</tr>
<tr>
<td>• können grundlegende Fragen zum Gebäude- und Anlagenverhalten sowie zur Gebäude- und Raumströmung per Simulation lösen.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
</tr>
<tr>
<td>• Simulationsmodelle</td>
</tr>
<tr>
<td>• notwendige Eingabedaten</td>
</tr>
<tr>
<td>• Anwendungsfälle</td>
</tr>
<tr>
<td>• thermisch-energetische Simulation von Gebäuden und Anlagen</td>
</tr>
<tr>
<td>• Strömungssimulation</td>
</tr>
<tr>
<td>14. Literatur:</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen: 306701 Vorlesung Simulation in der Gebäudeenergetik</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name: 30671 Simulation in der Gebäudeenergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für …:</td>
</tr>
<tr>
<td>19. Medienform: Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 30520 Sonderprobleme der Gebäudeenergetik

2. Modulkürzel:	041310005	5. Moduldauer:	1 Semester
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:	Prof. Dr.-Ing. Michael Schmidt		
9. Dozenten:	Michael Schmidt		
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik			
→ Gebäudeenergetik			
→ Ergänzungsfächer mit 3 LP			
11. Empfohlene Voraussetzungen:	Heiz- und Raumlufttechnik		
12. Lernziele:	Im Modul Sonderprobleme der Gebäudeenergetik haben die Studenten die Lösung Gebäudetechnischer Aufgaben speziell im Hinblick auf Sonder- und Spezialräume bzw. Gebäude kennen gelernt. Auf dieser Basis können sie Sonderlösungen konzipieren, eschreiben und grundlegend auslegen. Erworbene Kompetenzen:		
Die Studenten • sind mit Lösungen für Spezial- und Sonderfälle vertraut			
• können methodisch Lösungen für solche Fälle entwickeln und auslegen			
13. Inhalt:	• Sonderräume in der Heiz- und Raumlufttechnik		
• spezielle technische Lösungen in der Anlagentechnik			
• alternative und regenerative Energien			
• energieeinsparendes Bauen			
15. Lehrveranstaltungen und -formen:	305201 Vorlesung Sonderprobleme der Gebäudeenergetik		
Selbststudium: 69 Stunden			
Summe: 90 Stunden			
17. Prüfungsnummer/n und -name:	30521 Sonderprobleme der Gebäudeenergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0		

Stand: 23. Oktober 2012
20. Angeboten von:
2442 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
</tr>
<tr>
<td>30630</td>
<td>Heiz- und Raumlufttechnik</td>
</tr>
<tr>
<td>30640</td>
<td>Energetische Anlagenbewertung und Lüftungskonzepte</td>
</tr>
</tbody>
</table>
Modul: 30640 Energetische Anlagenbewertung und Lüftungskonzepte

2. Modulkürzel: 041310008
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Schmidt
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Gebäudeenergetik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Im Modul Energetische Anlagenbewertung und Lüftungskonzepte haben die Studenten im Teil 1 die Systematik energetischer Anlagen differenziert nach Ein- und Mehrwegeprozesse und die Methoden zu deren energetischer Bewertung kennen gelernt. Im Teil 2 die Systematik der Lösungen zur Luftreinhal tung am Arbeitsplatz sowie dazu erforderlichen Anlagen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundlagen erworben.

 Erworbbene Kompetenzen:
 Die Studenten
 • sind mit den Anlagen der Energiewandlung vertraut,
 • beherrschen die Methoden zur Bewertung
 • kennen die Einbettung in übergeordnete gekoppelte und entkoppelte Versorgungssysteme
 • sind mit den Methoden zur Luftreinhal tung am Arbeitsplatz vertraut,
 • können für die jeweiligen Anforderungen die technischen Lösungen konzipieren,
 • können die notwendigen Anlagen auslegene

13. Inhalt:
 • Energietechnische Begriffe
 • Energietechnische Bewertungsverfahren
 • Einwegprozess zur Wärme- und Stromerzeugung
 • Mehrwegeprozesse zur gekoppelten Erzeugung und zur Nutzung von Umweltenergien
 • Arten, Ausbreitung und Grenzwerte von Luftfremdstoffen
 • Bewertung der Schadstoffverfassung
 • Luftströmung an Erfassungseinrichtungen
 • Luftführung, Luftdurchlässe
 • Auslegung nach Wärme- und Stofflasten
 • Bewertung der Luftführung

14. Literatur:
 • Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004
15. Lehrveranstaltungen und -formen:

- 306401 Vorlesung Ausgewählte Energiesysteme und Anlagen
- 306402 Vorlesung Luftreinhaltung am Arbeitsplatz

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit: 42 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td>Summe: 180 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

30641 Energetische Anlagenbewertung und Lüftungskonzepte (PL), mündliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Vorlesungsskript

20. Angeboten von:
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

2. Modulkürzel: 041310001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Schmidt
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlfähigkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlfähigkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Gebäudeenergetik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Gebäudeenergetik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlfähigkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
 • Höhere Mathematik I + II
 • Technische Mechanik I + II

12. Lernziele:
 Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

 Erworbene Kompetenzen:
 Die Studenten
 • sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
 • kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
 • verstehen den Zusammenhang zwischen Anlagenauslegung und
 • funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:
 • Systematik der heiz- und rumlufttechnischen Anlagen
• Strömung in Kanälen und Räumen
• Wärmeübergang durch Konvektion und Temperaturstrahlung
• Wärmeleitung
• Thermodynamik feuchter Luft
• Verbrennung
• meteorologische Grundlagen
• Anlagenauslegung
• thermische und lufthygienische Behaglichkeit

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004

15. Lehrveranstaltungen und -formen: 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Vorlesungsskript

20. Angeboten von:
Modul: 30630 Heiz- und Raumlufttechnik

2. Modulkürzel: 041310003
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Michael Schmidt
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Gebäudeenergetik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Gebäudeenergetik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Grundlagen der Heiz- und Raumlufttechnik

12. Lernziele:
Im Modul Heiz- und Raumlufttechnik haben die Studenten alle Anlagenkomponenten der Heizund Raumlufttechnik kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf der Basis können sie die Komponenten und Apparate auswählen und auslegen.

Erworbene Kompetenzen:
Die Studenten
• Sind mit den Systemlösungen und Auslegungen der Komponenten vertraut
• Können für gegebene Anforderungen die Systemlösung konzipieren, die Anlagenkomponenten auswählen und auslegen

13. Inhalt:
• Berechnung, Konstruktion und Betriebsverhalten von Anlagenelementen
• Raumheiz- und -kühlflächen
• Luftdurchlässe, Luftkanäle
• Apparate zur Luftbehandlung
• Rohrnetz, Armaturen, Pumpen
• Kessel, Wärmepumpe, Kältemaschine
• Aufbau, Betriebsverhalten und Energiebedarf von Heiz- und RLT-Anlagen sowie Solarsystemen
• Abnahme von Leitungsmessungen

14. Literatur:
15. Lehrveranstaltungen und -formen:
- 306301 Vorlesung Heiz- und Raumlufttechnik
- 306302 Praktikum Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 30631 Heiz- und Raumlufttechnik schriftlich (PL), schriftliche Prüfung, Gewichtung: 1.0
- 30632 Heiz- und Raumlufttechnik mündlich (PL), mündliche Prüfung, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Vorlesungsskript

20. Angeboten von:
2441 Kernfächer mit 6 LP

Zugeordnete Module:
13060 Grundlagen der Heiz- und Raumlufttechnik
30630 Heiz- und Raumlufttechnik
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr.-Ing. Michael Schmidt</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Energietechnik</td>
</tr>
<tr>
<td>→ Gebäudeenergetik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Energietechnik</td>
</tr>
<tr>
<td>→ Gebäudeenergetik</td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodul</td>
</tr>
<tr>
<td>→ Wahrscheinlichkeit Gruppe 4: Energie- und Verfahrenstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Höhere Mathematik I + II</td>
</tr>
<tr>
<td>• Technische Mechanik I + II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.</td>
</tr>
</tbody>
</table>

Erworbene **Kompetenzen:**

Die Studenten

- sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
- kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransportes
- verstehen den Zusammenhang zwischen Anlagenauslegung und funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Systematik der heiz- und rumlufttechnischen Anlagen</td>
</tr>
</tbody>
</table>
• Strömung in Kanälen und Räumen
• Wärmeübergang durch Konvektion und Temperaturstrahlung
• Wärmeleitung
• Thermodynamik feuchter Luft
• Verbrennung
• meteorologische Grundlagen
• Anlagenauslegung
• thermische und lufthygienische Behaglichkeit

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004

15. Lehrveranstaltungen und -formen: 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Vorlesungsskript

20. Angeboten von:
Modul: 30630 Heiz- und Raumlufttechnik

2. Modulkürzel: 041310003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Schmidt
9. Dozenten: Michael Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Gebäudeenergetik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Gebäudeenergetik
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen: Grundlagen der Heiz- und Raumlufttechnik
12. Lernziele:
 Im Modul Heiz- und Raumlufttechnik haben die Studenten alle Anlagenkomponenten der Heizund Raumlufttechnik kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf der Basis können sie die Komponenten und Apparate auswählen und auslegen.
 Erworbene Kompetenzen:
 Die Studenten
 • Sind mit den Systemlösungen und Auslegungen der Komponenten vertraut
 • Können für gegebene Anforderungen die Systemlösung konzipieren, die Anlagenkomponenten auswählen und auslegen
13. Inhalt:
 • Berechnung, Konstruktion und Betriebsverhalten von Anlagenelementen
 • Raumheiz- und -kühlflächen
 • Luftdurchlässe, Luftkanäle
 • Apparate zur Luftbehandlung
 • Rohrnetz, Armaturen, Pumpen
 • Kessel, Wärmepumpe, Kältemaschine
 • Aufbau, Betriebsverhalten und Energiebedarf von Heiz- und RLT-Anlagen sowie Solarsystemen
 • Abnahme von Leistungsmessungen
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 306301 Vorlesung Heiz- und Raumlufttechnik
 • 306302 Praktikum Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 • 30631 Heiz- und Raumlufttechnik schriftlich (PL), schriftliche Prüfung, Gewichtung: 1.0
 • 30632 Heiz- und Raumlufttechnik mündlich (PL), mündliche Prüfung, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Vorlesungsskript

20. Angeboten von:
Modul: 30680 Praktikum Gebäudeenergetik

2. Modulkürzel: 041310009
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 0.0

6. Turnus: jedes Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Schmidt

9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Energietechnik
 ➔ Gebäudeenergetik

11. Empfohlene Voraussetzungen: Spezialisierungsfach Gebäudeenergetik

12. Lernziele:
Die Studierenden sind in der Lage theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter
http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen dazu ist jeweils eine Ausarbeitung anzufertigen:

- Wärmeerzeuger
- Simulation
- Thermostatventile
- Heizkörper
- Rohrhydraulik
- Thermokamera
- Maschinelle Lüftung
- Freie Lüftung

Beispiele:
1. Versuch "Wärmeerzeuger":

2. Versuch "Maschinelle Lüftung":
 Aufgabe der Lüftungstechnik ist es, Räume zu klimatisieren bzw. zu belüften. Die Raumluftströmung ist dabei so einzustellen, dass Anforderungen an die thermische Umgebung und / oder die Stoffgrenzwerte eingehalten werden. Dazu ist es notwendig, die sich einstellende Raumluftströmung abhängig vom Zuluftstrom und der Art der Luftführung zu kennen. Bei der Konzeption und Planung raumlufttechnischer Anlagen hilft man sich damit,

4 weitere Versuche

Sind aus dem Angebot des **Allgemeinen Praktikums Maschinenbau (APMB)** zu absolvieren:

- APMB 1
- APMB 2
- APMB 3
- APMB 4

Literatur:

- Praktikums - Unterlagen

Lehrveranstaltungen und -formen:

- 306801 Spezialisierungsfachversuch 1
- 306802 Spezialisierungsfachversuch 2
- 306803 Spezialisierungsfachversuch 3
- 306804 Spezialisierungsfachversuch 4
- 306805 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 306806 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 306808 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

Abschätzung Arbeitsaufwand:

- 30 Std. Präsenz
- Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
- Gesamt: 90 Stunden

Prüfungsnummer/n und -name:

- 30681 Praktikum Gebäudeenergetik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben

Medienform:

- Handout

Angeboten von:
245 Kernenergietechnik

Zugeordnete Module:
- 2451 Kernfächer mit 6 LP
- 2452 Kern-/Ergänzungsfächer mit 6 LP
- 2453 Ergänzungsfächer mit 3 LP
- 30730 Praktikum Kernenergietechnik
2453 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>30710</th>
<th>Strahlenschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30720</td>
<td>Simulation der Ausbreitung radioaktiver Schadstoffe</td>
</tr>
</tbody>
</table>
Modul: 30720 Simulation der Ausbreitung radioaktiver Schadstoffe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul dauert:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Starflinger</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Walter Scheuermann
• Jörg Starflinger |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Kernenergieotechnik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik, Informatik |
| 13. Inhalt: | • Einführung: Modelle als Ausschnitt aus der realen Welt und ihre Eigenschaften
• Bildung komplexer Modelle
• Methoden und Verfahren des Software-Engineering zu Beherrschung der Komplexität des Softwareentwicklungsprozesses
• Physikalischen Grundlagen der Ausbreitung radioaktiver Schadstoffe
• Numerische Methoden zur Beschreibung der physikalischen Prozesse |
| 14. Literatur: | Vorlesungsmanuskript |
| 15. Lehrveranstaltungen und -formen: | 307201 Vorlesung Simulation der Ausbreitung radioaktiver Schadstoffe |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudiumzeit: 69 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 30721 Simulation der Ausbreitung radioaktiver Schadstoffe (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen |
| 20. Angeboten von: | Institut für Kernenergetik und Energiesysteme |
Modul: 30710 Strahlenschutz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Jörg Starflinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>• Jörg Starflinger</td>
</tr>
<tr>
<td></td>
<td>• Talianna Schmidt</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Kernenergiotechnik
 → Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Biomedizinische Technik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

- Ingenieurwissenschaftliche Grundlagen, Grundlagen in Mathematik, Physik

12. Lernziele:

Im Rahmen der Vorlesung werden die Grundlagen der verschiedenen Strahlenarten, deren Erzeugung und physikalische und biologische Wechselwirkungen erarbeitet. Die gesetzlichen Regelungen im Strahlenschutz werden vorgestellt. Lernziel ist ein fundierter Überblick zu ionisierender Strahlung im Arbeits-, Umwelt- und Patientenschutz in Medizin und Technik.

13. Inhalt:

- Physikalische Grundlagen zu ionisierender Strahlung
- Strahlenmesstechnik
- Gesetzliche Grundlagen zu Strahlenschutz
- Natürliche und zivilisatorische Strahlenbelastung
- Ausbreitung radioaktiver Stoffe in die Umwelt
- Radiologische Auswirkung von Emissionen
- Biologische Strahlenwirkung

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 307101 Vorlesung Strahlenschutz

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 h
- Selbststudiumzeit: 69 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:

- 30711 Strahlenschutz (BSL), mündliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- PPT-Präsentationen, PPT-Skripte zu Vorlesungen

20. Angeboten von:

- Institut für Kernenergetik und Energiesysteme
2452 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 14110 Kerntechnische Anlagen zur Energieerzeugung
- 30690 Thermofluiddynamik kerntechnischer Anlagen
- 30700 Reaktorphysik und -sicherheit
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

2. Modulkürzel: 041610001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Starflinger
9. Dozenten: Jörg Starflinger

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energie-technik
 → Kernenergie-technik
 → Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energie-technik
 → Kernenergie-technik
 → Kernfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

 Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre

12. Lernziele:

 Mit den grundlegenden thermohydraulischen und kernphysikalischen Zusammenhängen im Reaktorkern-/kreislauf werden die Studierenden vertraut gemacht und die relevanten Reaktorsicherheitsfragestellungen und damit zusammenhängende Reaktorstörfallabläufe und Reaktorsicherheitskonzepte werden vermittelt. Über den nuklearen Brennstoffkreislauf wird ein Überblick gegeben und die Gründzüge atomrechtlicher Gesetzesregelungen dargestellt.

 Die erworbenen Erkenntnisse können ggf. in einer Studien- oder Masterarbeit Verwendung finden.
13. Inhalt:
- Bedeutung/Aspekte der Kernenergie in Deutschland
- Bauarten von Kernkraftwerken (z.B. SWR, DWR, HTR, Candu, RBMK, WWER, schnelle Reaktoren)
- Einführung in Thermohydraulik anhand ausgewählter Fallbeispiele
- Einführung in die Reaktorphysik inkl. Strahlenschutz und Strahlentechnik
- Einführung in die Reaktorsicherheit inkl. Darstellung Reaktorstörfall-Szenarien/Reaktorsich.-Konzepte
- Reaktorregelung mit Fallbeispielen mit Hilfe von Simulationsprogrammen der IAEA
- Darlegung nuklearer Brennstoffkreislauf (u.a. Brennstoffherstellung, Wiederaufbereitung, Endlagerung)
- Neue fortschrittliche Reaktorkonzepte (z.B. EPR, AP1000, ABWR, ESBWR, Reaktoren der Generation IV)
- Einführung in gesetzliche Grundlagen (z.B. Atomgesetz, meldepflichtige Störfälle, "Atomausstieg", etc.)

14. Literatur:
- W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:
- **141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung**

16. Abschätzung Arbeitsaufwand:
- 45 h Präsenzzeit
- 45 h Vor-/Nacharbeitungszeit
- 90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:
- **14111** Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
- 26000 Kernenergietechnik

19. Medienform:
- ppt-Präsentation
- Manuskripte online
- Tafel + Kreide

20. Angeboten von:
- Institut für Kernenergetik und Energiesysteme
Modul: 30700 Reaktorphysik und -sicherheit

2. Modulkürzel: 041610004
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Jörg Starflinger

9. Dozenten: • Michael Buck
• Jörg Starflinger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Kernenergietechnik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik, Informatik und aus Modul „Kerntechnische Anlagen zur Energieerzeugung“

12. Lernziele:

13. Inhalt:
I Vorlesungsteil Reaktorphysik
• Kernaufbau und Kernspaltung
• Kernreaktionen/Wirkungsschwingquerschnitte
• Neutronenbremsung
• Neutronenbremsung
• Neutronenthermalisierung
• Neutronendiffusion in elementarer Behandlung
• Neutronendiffusion nach der Transportscheorie
• Transiente Vorgänge, Wechselwirkung mit Thermohydraulik
• Langzeitverhalten/Abbrand/Xenon-dynamik

II Vorlesungsteil Reaktorsicherheit
• Einführung: Kernenergie in Deutschland, Reaktortypen, Grundlagen der Kerntechnik (Radioaktivität, Kernspaltung, stationärer und instationärer Reaktor)
• Sicherheitstechnik der Kernreaktoren: Sicherheit und Risiko, Sicherheitssysteme
• Störfälle und Unfälle in der Vergangenheit (Three-Mile-Island, Tschernobyl)
• Ablauf und physikalische Phänomene bei schweren Störfällen mit Kernschmelzen
• Sicherheitsanalysen: Probabilistische Sicherheitsanalysen, Deterministische Sicherheitsanalysen, Methoden und Rechenprogramme für Auslegungsstörfälle und für schwere Störfälle
• Sicherheitskonzepte bei weiterentwickelten und zukünftigen Reaktortypen: European Pressurized Water Reactor (EPR), Advanced Passive Plant (AP1000), gasgekühlter Hochtemperaturreaktor
• Sicherheitsaspekte bei der Entsorgung
• Human Factor und Sicherheitskultur

III Demonstrationsversuche am SUR Nullleistungssaugreaktor

14. Literatur: Skript der verwendeten PPT-Materialien zur Vorlesung Reaktorphysik und Reaktorsicherheit

Literatur:
• Emendörfer, Höcker: Theorie der Kernreaktoren. Band 1 der stationären Reaktor. BI Wissenschaftsverlag
• Emendörfer, Höcker: Theorie der Kernreaktoren. Band 2 der instationären Reaktor. BI Wissenschaftsverlag
• Smidt: Reaktortechnik. Band 1+2. Verlag Wissenschaft + Technik
• Lederer/Wildberg: Reaktorhandbuch. Hanser-Verlag München Wien
• Ziegler: Lehrbuch der Reaktortechnik Bd 1+2. Springer Verlag
• Henry: Nuclear Reactor Analysis
• Lamarsh: Introduction to Nuclear Engineering. Addison Wesley

15. Lehrveranstaltungen und -formen: 307001 Vorlesung Reaktorphysik und -sicherheit

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumzeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 30701 Reaktorphysik und -sicherheit (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen mit MATLAB

20. Angeboten von: Institut für Kernenergetik und Energiesysteme
Modul: 30690 Thermofluiddynamik kerntechnischer Anlagen

2. Modulkürzel: 041610003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0

5. Moduldauer: 1 Semester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Eckart Laurien
9. Dozenten: • Eckart Laurien
 • Rudi Kulenovic

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Kernenergieotechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Kernenergieotechnik
 → Kernfächer mit 6 LP

13. Inhalt: Vorlesungsteil Thermohydraulik der Kernreaktoren

 1. Einführung
 1.1 Der Europäische Druckwasserreaktor EPR
 1.2 Aufgaben
 1.3 Modellierung eines Druckwasserreaktors
 1.4 Siedewasserreaktoren
 1.5 Simulation eines Siedewasserreaktors
 2. Primärkreislauf
 2.1 Berechnung ein es Kühkreislaufs
 2.2 Systemcodes zur Simulation kerntechnischer Anlagen
 2.3 Anwendungsbeispiel: Station Blackout
 2.4 Versuchsanlagen: PKL, UPTF, Frecon
 2.5 Berechnung von Vorgängen im Kühkreislauf mit CFD
 2.6 Gegengerichtete Schichtenströmung im heißen Strang
 2.7 Thermische Ermüdung: Theorie und Experiment
 3. Reaktorkern
 3.1 Modellierung als poröses Medium
 3.2 Strömungssiedien: LFD und DNB
 3.3 Unterkanalanalyse
 3.4 CFD der Strömungsvorgänge im Kern
 3.5 Modellierung der Kühlbarkeit eines fragmentierten Kerns
3.6 Debris-Bed Experiment

4. Sicherheitsbehälter
 4.1 Thermohydraulische Phänomene im Sicherheitsbehälter
 4.2 Versuchsanlagen: Thal, Panda
 4.3 CFD-Anwendung im Sicherheitsbehälter
 4.4 Ähnlichkeit und Dimensionsanalyse

II Vorlesungsteil Modellierung von Zweiphasenströmung

1. Einführung
 1.1 Charakterisierung von Zweiphasenströmungen
 1.2 Mehrdimensionale Modellierung einer Blasenfahne
 1.3 Modellierung aufwärts gerichtete Rohrströmung

2. Strömungen mit Wärme- und Stoffübergang
 2.1 Beispiele
 2.2 Direktkontaktwärme- und -stoffübergang
 2.3 Anwendungen

3. Strömungen mit freier Oberfläche
 3.1 Mikroskopische Vorgänge in Zweiphasenströmungen
 3.2 Schichtenströmungen

4. Theorie
 4.1 Modellgleichungen
 4.2 Zweiphasen-Turbulenzmodellierung

14. Literatur:

 - Alle Vorlesungsfolien online verfügbar:
 - http://www.ike.uni-stuttgart.de/lehre/TKRindex.html
 - http://www.ike.unistuttgart.de/lehre/M2P-index.html
 - E. Laurien und H. Oertel jr.: Numerische Strömungsmechanik, 3.
 Auflage, Vieweg+Teubner, 2010

15. Lehrveranstaltungen und -formen:

 306901 Vorlesung Thermofluiddynamik kerntechnischer Anlagen

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 h
 Selbststudiumzeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:

 30691 Thermofluiddynamik kerntechnischer Anlagen (PL), mündliche
 Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

 Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und
 Praktikum, Computeranwendungen

20. Angeboten von:
2451 Kernfächer mit 6 LP

Zugeordnete Module:

14110 Kerntechnische Anlagen zur Energieerzeugung
30690 Thermofluiddynamik kerntechnischer Anlagen
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

2. Modulkürzel: 041610001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Starflinger

9. Dozenten: Jörg Starflinger

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2008, 5. Semester | → Ergänzungsmodul
| Kernmodule
| Pflichtmodule 4 und 5 mit Wahlmöglichkeit
| B.Sc. Technologiemanagement, PO 2011, 5. Semester | → Ergänzungsmodul
| Kernenergie
| Kernenergie mit 6 LP
| M.Sc. Technologiemanagement, PO 2011 | → Kernenergie
| Kernenergie mit 6 LP
| M.Sc. Technologiemanagement, PO 2011 | → Vertiefungsmodul
| Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre

12. Lernziele:

Mit den grundlegenden thermohydraulischen und kernphysikalischen Zusammenhängen im Reaktorkern/-kreislauf werden die Studierenden vertraut gemacht und die relevanten Reaktorsicherheitsfragestellungen und damit zusammenhängende Reaktorstörfallabläufe und Reaktorsicherheitskonzepte werden vermittelt. Über den nuklearen Brennstoffkreislauf wird ein Überblick gegeben und die Grundzüge atomrechtlicher Gesetzesregelungen dargestellt.

Die erworbenen Erkenntnisse können ggf. in einer Studien- oder Masterarbeit Verwendung finden.
13. Inhalt:

- Bedeutung/Aspekte der Kernenergie in Deutschland
- Bauarten von Kernkraftwerken (z.B. SWR, DWR, HTR, Candu, RBMK, WWER, schnelle Reaktoren)
- Einführung in Thermohydraulik anhand ausgewählter Fallbeispiele
- Einführung in die Reaktorphysik inkl. Strahlenschutz und Strahlentechnik
- Einführung in die Reaktorsicherheit inkl. Darstellung Reaktorstörfall-Szenarien/Reaktorsich.-Konzepte
- Reaktorregelung mit Fallbeispielen mit Hilfe von Simulationsprogrammen der IAEA
- Darlegung nukleärer Brennstoffkreislauf (u.a. Brennstoffherstellung, Wiederaufbereitung, Endlagerung)
- Neue fortschrittliche Reaktorkonzepte (z.B. EPR, AP1000, ABWR, ESBWR, Reaktoren der Generation IV)
- Einführung in gesetzliche Grundlagen (z.B. Atomgesetz, meldepflichtige Störfälle, "Atomausstieg", etc.)

14. Literatur:

- W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:

- 141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:

45 h Präsenzzeit
45 h Vor-/Nacharbeitungszeit
90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:

- 14111 Kerntechnische Anlagen zur Energieerzeugung (PL)
 schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

- 26000 Kernenergietechnik

19. Medienform:

- ppt-Präsentation
- Manuskripte online
- Tafel + Kreide

20. Angeboten von:

- Institut für Kernenergetik und Energiesysteme
Modul: 30690 Thermofluiddynamik kerntechnischer Anlagen

2. Modulkürzel: 041610003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Eckart Laurien
9. Dozenten: • Eckart Laurien • Rudi Kulenovic
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Kernenergietechnik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen aus Modulen „Kerntechnische Anlagen zur Energieerzeugung“ und „Numerischer Strömungssimulation“

12. Lernziele:

13. Inhalt:
I Vorlesungsteil Thermohydraulik der Kernreaktoren

1. Einführung
 1.1 Der Europäische Druckwasserreaktor EPR
 1.2 Aufgaben
 1.3 Modellierung eines Druckwasserreaktors
 1.4 Siedewasserreaktoren
 1.5 Simulation eines Siedewasserreaktors

2. Primärkreislauf
 2.1 Berechnung ein es Kühlkreislaufs
 2.2 Systemcodes zur Simulation kerntechnischer Anlagen
 2.3 Anwendungsbispiel: Station Blackout
 2.4 Versuchsforlagen: PKL, UPTF, Frecon
 2.5 Berechnung von Vorgängen im Kühlkreislauf mit CFD
 2.6 Gefügeveränderte Schichtenströmung im heißen Strang
 2.7 Thermische Ermüdung: Theorie und Experiment

3. Reaktorkern
 3.1 Modellierung als poröses Medium
 3.2 Strömungssieden: LFD und DNB
 3.3 Unterkanalanalyse
 3.4 CFD der Strömungsvorgänge im Kern
 3.5 Modellierung der Kühlbarkeit eines fragmentierten Kerns

Stand: 23. Oktober 2012
3.6 Debris-Bed Experiment
4. Sicherheitsbehälter
 4.1 Thermohydraulische Phänomene im Sicherheitsbehälter
 4.2 Versuchsanlagen: Thal, Panda
 4.3 CFD-Anwendung im Sicherheitsbehälter
 4.4 Ähnlichkeit und Dimensionsanalyse

II Vorlesungsteil Modellierung von Zweiphasenströmung
1. Einführung
 1.1 Charakterisierung von Zweiphasenströmungen
 1.2 Mehrdimensionale Modellierung einer Blasenfahne
 1.3 Modellierung aufwärts gerichtete Rohrströmung
2. Strömungen mit Wärme- und Stoffübergang
 2.1 Beispiele
 2.2 Direktkontaktwärme- und -stoffübergang
 2.3 Anwendungen
3. Strömungen mit freier Oberfläche
 3.1 Mikroskopische Vorgänge in Zweiphasenströmungen
 3.2 Schichtenströmungen
4. Theorie
 4.1 Modellgleichungen
 4.2 Zweiphasen-Turbulenzmodellierung

14. Literatur: Alle Vorlesungsfolien online verfügbar:
 - http://www.ike.uni-stuttgart.de/lehre/TKRindex.html
 - http://www.ike.unistuttgart.de/lehre/M2P-index.html

15. Lehrveranstaltungen und -formen: 306901 Vorlesung Thermofluiddynamik kerntechnischer Anlagen

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
 Selbststudiumzeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 30691 Thermofluiddynamik kerntechnischer Anlagen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen

20. Angeboten von:
Modul: 30730 Praktikum Kernenergiotechnik

2. Modulkürzel: 041610007
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 0.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Eckart Laurien

9. Dozenten: • Eckart Laurien
• Gerhard Pfister
• Walter Scheuermann
• Rudi Kulenovic

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Energietechnik
 ➔ Kernenergiotechnik

11. Empfohlene Voraussetzungen:

Beispiele:

• Kernreaktor SUR100: Im Rahmen des theoretischen Teils des Praktikums werden zunächst der Aufbau des Siemens-Unterrichtsreaktors der Universität Stuttgart und dessen Betriebsweisen erläutert, z. B. Erreichen der Kritikalität, Leistungsänderungen, Notabschaltung. Im praktischen Teil wird der Reaktor in Betrieb genommen und u. a. die Aktivierung nicht-radioaktiver Stoffe (z. B. Messung der Halbwertszeit von aktiviertem Aluminium) oder der Einfluss eines Absorbers oder Streukörpers auf den Neutronenfluss im Reaktorkern demonstriert.

• Ultraschnelle 3D-Röntgentomographie zur Untersuchung von Zweiphasenströmungen: Im Theorieteil des Praktikums wird die Funktionsweise und Methodik der ultraschnellen Computertomographie erläutert. Dies beinhaltet die Elektronenstrahlsteuerung, die Detektortechnik, sowie die digitale Bildrekonstruktion. Anschließend besteht die Möglichkeit, ein Strömungsphantom unter Anleitung zu scannen und zu rekonstruieren.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 307301 Spezialisierungsfachversuch 1
• 307302 Spezialisierungsfachversuch 2
• 307303 Spezialisierungsfachversuch 3
• 307304 Spezialisierungsfachversuch 4
• 307305 Allgemeinen Praktikums Maschinenbau (APMB) 1
• 307306 Allgemeinen Praktikums Maschinenbau (APMB) 2
• 307307 Allgemeinen Praktikums Maschinenbau (APMB) 3
• 307308 Allgemeinen Praktikums Maschinenbau (APMB) 4

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 h
Selbststudiumzeit/Nachbearbeitungszeit: 60 h
Gesamt: 90 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30731 Praktikum Kernenergietechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
246 Methoden der Modellierung und Simulation

Zugeordnete Module:
- 2461 Kernfächer mit 6 LP
- 2462 Kern-/Ergänzungsfächer mit 6 LP
- 2463 Ergänzungsfächer mit 3 LP
- 32190 Praktikum Methoden der Modellierung und Simulation
2463 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>32140</td>
<td>Simulation im technischen Entwicklungsprozess</td>
</tr>
<tr>
<td>32150</td>
<td>Parallelrechner - Architektur und Anwendung</td>
</tr>
<tr>
<td>32160</td>
<td>Virtuelle und erweiterte Realität in der technisch-wissenschaftlichen</td>
</tr>
<tr>
<td></td>
<td>Visualisierung</td>
</tr>
<tr>
<td>32170</td>
<td>Numerik für Höchstleistungsrechner</td>
</tr>
<tr>
<td>32180</td>
<td>Computer unterstützte Simulationsmethoden (MCAE) im modernen Entwicklungsprozess</td>
</tr>
</tbody>
</table>
Modul 32180 Computerunterstützte Simulationsmethoden (MCAE) im modernen Entwicklungsprozess

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041500012</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Dr.-Ing. Erich Schelkle

9. Dozenten:
Erich Schelkle

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche Grundlagen, fundierte Grundkenntnisse in der technischen Mechanik, numerischen Mathematik und Informatik

12. Lernziele:
Die Studierenden des Moduls haben die Prinzipien und Möglichkeiten der Modellierung und Simulation (MCAE) verstanden sowie deren Eingliederung in einen modernen virtuell-basierten Entwicklungsprozess kennengelernt. Sie können beurteilen, für welchen Verwendungszweck welche Simulationsmethoden am besten geeignet sind. Sie können erste einfache Anwendungen der FEM-Simulation auf strukturmechanische Fragestellungen realisieren und verfügen über die Basis zur vertieften Anwendung dieser Methoden, z.B. in einer Studien- oder in der Masterarbeit.

13. Inhalt:

I. Vorlesung (Schelkle)

- Eingliederung von CAE-Methoden in den Entwicklungsprozess, virtuelle Produktentwicklung, Soft- und Hardwareumgebung, MCAEProzesskette, Innovative MCAEKonzeptwerkzeuge, Optimierung, Simulationsdatenmanagement
- Grundbegriffe ingenieurwissenschaftlicher Berechnungen
- Die Finite Element Methode - lineare und nichtlineare Berechnungen, Formulierung und Berechnung von Finite Element Matrizen, Lösungsverfahren
- Einführung in das FEM-Programm ABAQUS, Übungsbeispiele
- zukünftige Entwicklungen, Ausblick.

II. Praktikum: „Finite Elemente-Analyse mit ABAQUS“ (Schelkle)

Durchführung von 2 Simulationen in 4 Stunden

- Linear statische Berechnung einer ebenen Stab-Balken-Konstruktion
- Nichtlineare statische Berechnung eines ebenen Balkentragwerkes

14. Literatur:
- Vorlesungsmanuskript „Computerunterstützte Simulationsmethoden (MCAE) im modernen Entwicklungsprozess“
- Skript zum Praktikum „Finite Elemente-Analyse mit ABAQUS“
- CD mit „ABAQUS Student Edition“ zur Installation auf Privat-PC/Laptop

15. Lehrveranstaltungen und -formen:
- 321801 Vorlesung Computerunterstützte Simulationsmethoden (MCAE) im modernen Entwicklungsprozess
- 321802 Übungen, praktische Simulationen, 4 Std.
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 25 h
Selbststudium: ca. 65 h
Summe: 90 h

17. Prüfungsnummer/n und -name:
32181 Computerunterstützte Simulationsmethoden (MCAE) im modernen Entwicklungsprozess (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafelanschrieb, PPT-Präsentation, Videos, Skripte zu Vorlesung und Praktikum, CD mit ABAQUSSoftware

20. Angeboten von:
Modul: 32170 Numerik für Höchstleistungsrechner

2. Modulkürzel: 04150011

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Moduldauer: 1 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Resch

9. Dozenten: Uwe Küster

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

 Mathematisches Grundverständnis, Programmierkenntnisse, Interesse an Algorithmen

12. Lernziele:

13. Inhalt:

 Hardware: Prozessoren, Pipelining, Parallelität, Multi-Core, Vector_Units, Caches, Bandbreite, Latenz, Performance, Vektorisierung.

 Implementierung: Vektoren, Datenstrukturen für schwachbesetzte Matrizen, Diüferenzenalgorithmen, Finite-Elemente.

 Numerische Mathematik: Partielle Differentialgleichungen, Diskretisierung, Lösungsverfahren für lineare Gleichungssysteme.

 Parallelisierung: Grundlegende Ansätze, Programmiermodelle, Effizienz.

14. Literatur:

 Eigene Unterlagen

15. Lehrveranstaltungen und -formen:

 321701 Vorlesung Numerik für Höchstleistungsrechner

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

 32171 Numerik für Höchstleistungsrechner (BSL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für...

19. Medienform:

 PPT-Präsentation, Tafelanschrieb

20. Angeboten von:
Modul: 32150 Parallelrechner - Architektur und Anwendung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041500009</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr. Alfred-Erich Geiger

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Energietechnik
 - Methoden der Modellierung und Simulation
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Kenntnisse in numerischer Mathematik und Programmierung

12. Lernziele: Ziel der Vorlesung ist die Vermittlung der notwendigen Grundkenntnisse, um die Studenten in die Lage zu versetzen, Lösungen zu folgenden Fragestellungen zu erarbeiten:
 - Wie sind parallele und verteilte Systeme aufgebaut?
 - Wie finde ich das passende Rechnersystem für mein Problem?
 - Wie entwerfe ich parallele Software?
 - Wie konzipiere ich einen IT-Service für die technisch-wissenschaftliche Simulation?

13. Inhalt:
 - Motivation des parallelen Rechnens
 - Rechnerarchitekturen
 - Betriebsweisen und Betriebssysteme
 - Programmiermodelle
 - Entwicklung paralleler Software
 - Parallelisierungsstrategien
 - Grid-Technologie und Verteiltes Rechnen

14. Literatur: Skript

15. Lehrveranstaltungen und -formen: 321501 Vorlesung Parallelrechner - Architektur und Anwendung

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32151 Parallelrechner - Architektur und Anwendung (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PowerPoint-Praesentation, Tafelaufschrift

20. Angeboten von:
Modul: 32140 Simulation im technischen Entwicklungsprozess

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041500007</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Lina Longhitano</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Lina Longhitano</td>
</tr>
</tbody>
</table>

→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Methoden der Modellierung und Simulation
→ Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Ergänzungsfächer mit 3 LP |

| 11. Empfohlene Voraussetzungen: | keine |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
<th>Erworbene Kompetenzen: Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• kennen die methodische Einbindung von Simulationen im Entwicklungsprozess am Beispiel der Fahrzeugentwicklung</td>
<td></td>
</tr>
</tbody>
</table>
• haben Kenntnisse der wesentlichen Herausforderungen der Simulationen im technischen Entwicklungsprozess |
• sind mit den geläufigen Begriffen der Simulationen vertraut |
• kennen die typischen Methoden und Systeme zur: Produktgestaltung, Produktsimulation, Datenverwaltung |
• haben Einblick in die zeitlichen Rahmenbedingungen und Engpässe im Entwicklungsprozess für die Planung der Simulation |
• verstehen das Zusammenspiel zwischen Simulation und Versuch |
• sind vertraut mit der Basis des Wissensmanagement und dessen Wirkung im Entwicklungsprozess |
• kennen die Grundlage des Toleranzmanagements, Voraussetzung für die Toleranzsimulation |

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>Im Rahmen der Vorlesung sollen folgende Wissensinhalte vermittelt werden:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Beschreibung der methodischen Einbindung von Simulationen im Entwicklungsprozess am Beispiel der Fahrzeugentwicklung</td>
<td></td>
</tr>
</tbody>
</table>
• Darstellung der wesentlichen Herausforderungen der Simulationen im technischen Entwicklungsprozess |
• Erläuterung der geläufigen Begriffe der Simulationen |
• Einführung in die typischen Methoden und Systeme zur: Produktgestaltung, Produktsimulation, Datenverwaltung |
• Einblick in die zeitlichen Rahmenbedingungen und Engpässe im Entwicklungsprozess für die Planung der Simulation |
• das Zusammenspiel zwischen Simulation und Versuch |
• die Basis des Wissensmanagement und dessen Wirkung im Entwicklungsprozess |
• die Grundlage des Toleranzmanagements, Voraussetzung für die Toleranzsimulation |
<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Lina Longhitano: Simulation im technischen Entwicklungsprozess, Vorlesungsunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>321401 Vorlesung Simulation im technischen Entwicklungsprozess</td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | 21 Std. Präsenz
69 Std. Prüfungsvorbereitung und Prüfung
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32141 Simulation im technischen Entwicklungsprozess (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PPT-Präsentation |
| 20. Angeboten von: | |
Modul: 32160 Virtuelle und erweiterte Realität in der technisch-wissenschaftlichen Visualisierung

2. Modulkürzel: 041500010
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Uwe Wössner
9. Dozenten: Uwe Wössner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Methoden der Modellierung und Simulation
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Grundlagen der Informatik und Mathematik

12. Lernziele:
Die Studierenden können technischwissenschaftliche Daten visualisieren. Die Studierenden verstehen die Grundlagen der menschlichen Wahrnehmung und können diese auf die Visualisierung und Darstellung von Berechnungsergebnissen anwenden. Die Studierenden sind in der Lage, die erworbenen Kenntnisse über aktuelle Hard- und Software zur Erstellung komplexer interaktiver virtueller Welten anzuwenden

13. Inhalt:
Wie funktioniert die menschliche Wahrnehmung?
Grundlagen der Computergrafik.
Hard- und Software für immersive virtuelle Umgebungen.
Konkrete Anwendungen von Augmented Reality-Techniken.
Modellierung für VR- und AR Anwendungen.

14. Literatur:
Vortragsfolien/online slides

15. Lehrveranstaltungen und -formen:
321601 Vorlesung Virtuelle und erweiterte Realität in der technisch-wissenschaftlichen Visualisierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
32161 Virtuelle und erweiterte Realität in der technisch-wissenschaftlichen Visualisierung (BSL), schriftlich, eventuell mündlich, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
PPT-Präsentation, Tafelanschrieb

20. Angeboten von:
2462 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 30410 Simulation mit Höchstleistungsrechnern
- 32120 Softwareentwurf für technische Systeme
- 32130 Parallele Simulationstechnik
Modul: 32130 Parallele Simulationstechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Resch
9. Dozenten: • Alfred-Erich Geiger
 • Uwe Küster

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Kenntnisse in numerischer Mathematik und Programmierung

12. Lernziele:
Ziel der Vorlesung ist die Vermittlung der notwendigen Grundkenntnisse, um die Studenten in die Lage zu versetzen, Lösungen zu folgenden Fragestellungen zu erarbeiten:

 • Wie sind parallelle und verteilte Systeme aufgebaut?
 • Wie finde ich das passende Rechnersystem für mein Problem?
 • Wie entwerfe ich parallele Software?
 • Wie konzepiere ich einen IT-Service für die technisch-wissenschaftliche Simulation?
 • Verstehen der Vorgänge innerhalb der Prozessor- Hardware, des Netzwerkes, der Schwierigkeiten beim Implementieren effizienter Algorithmen.
 • Grundbegriffe des Computing im Bereich massiven Rechnens
 • Verstehen grundsätzlicher Algorithmen, die im Höchstleistungsrechnen eine wichtige Rolle spielen.

13. Inhalt:
 • Rechnerarchitekturen
 • Betriebsweisen und Betriebssysteme
 • Programmiermodelle
 • Entwicklung paralleler Software
 • Parallelisierungsstrategien
 • Grid-Technologie und verteiltes Rechnen
 • Hardware: Prozessoren, Pipelining, Parallelität, Multi-Core, Vector_Units, Caches, Bandbreite, Latenz, Performance, Vektorisierung.
 • Implementierung: Vektoren, Datenstrukturen für schwachbesetzte Matrizen, Diffenzenalgorithmen, Finite- Elemente.
 • Numerische Mathematik: Partielle Differentialgleichungen, Diskretisierung, Lösungsverfahren für lineare Gleichungssysteme.
 • Parallelisierung: Grundlegende Ansätze, Programmiermodelle, Effizienz

14. Literatur: Skript / Eigene Unterlagen

15. Lehrveranstaltungen und -formen:
 • 321301 Vorlesung Parallelrechner - Architektur und Anwendung
 • 321302 Vorlesung Numerik für Höchstleistungsrechner

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Prüfungsnummer/n und -name: 32131 Parallelle Simulationstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19</td>
<td>Medienform: PowerPoint-Präsentation, Tafelaufschrift</td>
</tr>
<tr>
<td>20</td>
<td>Angeboten von:</td>
</tr>
</tbody>
</table>

Summe: 180 Stunden
Modul: 30410 Simulation mit Höchstleistungsrechnern

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041500006</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Informatik und Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studenten verstehen • die Funktionsweise eines Supercomputers • die Programmierung eines Supercomputers • die Architektur eines Supercomputers den Einsatz von Supercomputern im Maschinenbau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Neu zu erstellendes Skriptum zur Vorlesung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>304101 Vorlesung Simulation mit Höchstleistungsrechnern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30411 Simulation mit Höchstleistungsrechnern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentation, Tafelanschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32120 Softwareentwurf für technische Systeme

2. Modulkürzel: 041500008
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Stefan Wesner

9. Dozenten: Stefan Wesner

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundlagen der Informatik

 Im zweiten Teil der Vorlesung wird das Wissen je nach Studentenzahl auch teilweise in Gruppenarbeit auf eine Fallstudie angewendet, die, ausgehend vom kontrollierten Erfassen von Anforderungen über Analyse und Design und den entsprechenden Aufgaben im Projektmanagement, die Studenten den Entwurf technischer Systeme aus verschiedenen Rollen (z.B. Projektmanager, SysModulhandbuch temanalyst, Requirements Engineer) erfassen lässt.

 In der zugehörigen Übung werden die theoretischen Konzepte des ersten Vorlesungssteils weiter vertieft und durch konkrete Implementierungen in einer modernen Programmiersprache angewendet. Im Rahmen der Übung nehmen die Studenten zusätzlich zu den oben angeführten Rollen im Entwurfsprozess die Sicht des Softwarentwicklers ein.

15. Lehrveranstaltungen und -formen:
 • 321201 Vorlesung Softwareentwurf für technische Systeme
 • 321202 Übung Softwareentwurf für technische Systeme

16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>32121 Softwareentwurf für technische Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
2461 Kernfächer mit 6 LP

Zugeordnete Module: 30410 Simulation mit Höchstleistungsrechnern
Modul: 30410 Simulation mit Höchstleistungsrechnern

2. Modulkürzel: 041500006
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul: 30410
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Resch
9. Dozenten: Bastian Koller
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Methoden der Modellierung und Simulation
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen:
 Grundlagen der Informatik und Mathematik
12. Lernziele:
 Die Studenten verstehen
 • die Funktionsweise eines Supercomputers
 • die Programmierung eines Supercomputers
 • die Architektur eines Supercomputers
 den Einsatz von Supercomputern im Maschinenbau
13. Inhalt:
 Supercomputer-Konzepte
 Supercomputer-Architekturen
 Supercomputer-Programmierung
 Supercomputer-Einsatz
14. Literatur:
 Neu zu erstellendes Skriptum zur Vorlesung
15. Lehrveranstaltungen und -formen:
 304101 Vorlesung Simulation mit Höchstleistungsrechnern
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium: 138 h
 Summe: 180 h
17. Prüfungsnummer/n und -name:
 30411 Simulation mit Höchstleistungsrechnern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
 PPT-Präsentation, Tafelanschrieb
20. Angeboten von:
Modul: 32190 Praktikum Methoden der Modellierung und Simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041500013</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Resch

9. Dozenten: • Erich Schelkle • Alfred-Erich Geiger • Uwe Küster • Michael Resch • Uwe Wössner • Stefan Wesner • Rolf Rabenseifner

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 → Spezialisierungsfächer A (ING) → Gruppe Energiotechnik → Methoden der Modellierung und Simulation |

11. Empfohlene Voraussetzungen: Grundlagen der Informatik

13. Inhalt:

Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Beispiel1: Visualisierung technisch-wissenschaftlicher Daten mit COVISE:

Beispiel2: Modellierung mit 3D Studio Max für VRUmgebungen:

In diesem Praktikum werden Grundlagen der Modellierung und Animation vermittelt. Anhand von einfachen Beispielen werden Objekte erstellt, texturiert und animiert. Speziell für virtuelle Umgebungen werden Kamerafahrten, interaktive Elemente und Methoden zur Beschleunigung des Renderings wie LODs und visibility culling angewandt. Im Anschluss können die erstellten virtuellen Welten in der CAVE des HLRS erlebt werden.

Beispiel3: Finite Elemente-Analyse mit ABAQUS

Das Praktikum dient als Ergänzung zur Vorlesung „Computerunterstützte Simulationsmethoden (MCAE) im modernen Entwicklungsprozess“ und bietet den Studenten die Möglichkeit, die in der Vorlesung behandelten
theoretischen Grundlagen zur Finite-Elemente-Methode (FEM) praktisch anzuwenden. In einem 4 stündigen Praktikum sammeln Sie erste Erfahrungen mit dem weltweit eingesetzten Finite-Elemente Programm ABAQUS. Die Studenten lernen dabei die Arbeitsweise mit ABAQUS (Modellaufbau, Erstellung Inputdatensatz, Durchführung der Simulation sowie graphische Auswertemöglichkeiten) kennen. Anhand von Aufgabenstellungen, die teilweise bereits in der Vorlesung theoretisch gelöst wurden, müssen sie 2 Simulationen selbständig durchführen:

- Linear statische Berechnung einer ebenen Stab-Balken-Konstruktion
- Geometrisch nichtlineare statische Berechnung eines ebenen Balkentragwerkes

Durch einfache Parameteränderungen am FEMModell können sie die Auswirkungen auf die Ergebnisse studieren und visualisieren

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Praktikums-Unterlagen</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | • 321901 Spezialisierungsfachversuch 1
• 321902 Spezialisierungsfachversuch 2
• 321903 Spezialisierungsfachversuch 3
• 321904 Spezialisierungsfachversuch 4
• 321905 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 321906 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 321907 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 321908 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 Stunden
Selbststudium/Nacharbeitszeit: 60 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32191 Praktikum Methoden der Modellierung und Simulation (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

Stand: 23. Oktober 2012
247 Rationelle Energienutzung

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2471</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>2472</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2473</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>33130</td>
<td>Praktikum Rationelle Energienutzung</td>
</tr>
</tbody>
</table>
2473 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 36750 Rationelle Wärmeversorgung
- 36760 Wärmepumpen
- 36770 Optimale Energiewandlung
- 36780 Kraft-Wärme-Kältekopplung (BHKW)
- 36830 Lithiumbatterien: Theorie und Praxis
- 36850 Elektrochemische Energiespeicherung in Batterien
- 36860 Konstruktion von Wärmeübertragern
- 36870 Kältetechnik
Modul: 36850 Elektrochemische Energiespeicherung in Batterien

2. Modulkürzel: 042411045
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Friedrich
9. Dozenten: • Wolfgang Bessler
 • Birger Horstmann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energienutzung
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Teilnehmer/innen haben Kenntnisse in Grundlagen und
 Anwendungen der Batterietechnik. Sie verstehen das Prinzip der
 elektrochemischen Energieumwandlung und sind in der Lage,
 Zellspannung und Energiedichte mit Hilfe thermodynamischer
 Daten zu errechnen. Sie kennen Aufbau und Funktionsweise von
 typischen Batterien (Alkali- Mangan, Zink-Luft) und Akkumulatoren
 (Blei, Nickel- Metallhydrid, Lithium). Sie verstehen die Systemtechnik
 und Anforderungen typischer Anwendungen (portable Geräte,
 Fahrzeugtechnik, Pufferung regenerativer Energien, Hybridsysteme).
 Sie haben grundlegende Kenntnisse von Herstellungsverfahren,
 Sicherheitstechnik und Entsorgung.

13. Inhalt:
 - Grundlagen: Elektrochemische Thermodynamik, Elektrolyte,
 Grenzflächen, elektrochemische Kinetik
 - Primärzellen: Alkali-Mangan
 - Sekundärzellen: Blei-Säure, Nickel-Metallhydrid, Lithium-Ionen
 - Anwendungen: Systemtechnik, Hybridisierung, portable Geräte,
 Fahrzeugtechnik, regenerative Energien
 - Herstellung, Sicherheitstechnik und Entsorgung

14. Literatur:
 Skript zur Vorlesung;
 A. Jossen und W. Weydanz, Moderne Akkumulatoren richtig einsetzen

15. Lehrveranstaltungen und -formen:
 368501 Vorlesung Elektrochemische Energiespeicherung in
 Batterien

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Vor- / Nachbereitung: 62 h
 Gesamtaufwand: 90 h

17. Prüfungsnummer/n und -name:
 36851 Elektrochemische Energiespeicherung in Batterien (BSL),
 schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform: Tafelanschrieb und Powerpoint-Präsentation

20. Angeboten von:
Modul: 36860 Konstruktion von Wärmeübertragern

2. Modulkürzel: 042410035
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler
9. Dozenten:
- Klaus Spindler
- Wolfgang Heidemann
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
- Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
- Gruppe Energietechnik
- Feuerungs- und Kraftwerkstechnik
- Ergänzungsfächer mit 3 LP
M.Sc. Technologiemanagement, PO 2011
- Gruppe Energietechnik
- Rationelle Energiernutzung
- Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Grundkenntnisse in Wärme- und Stoffübertragung
12. Lernziele: Erworbene Kompetenzen:
- Kenntnis der verschiedenen Bauformen von Wärmeübertragern und deren Einsatzmöglichkeiten
- Kenntnis der Werkstoffe Kupfer, Stähle, Aluminium, Glas, Kunststoffe, Graphit hinsichtlich Verarbeitbarkeit, Korrosion, Temperatur- und Druckbereich, Verschmutzung
- Konstruktive Detaillösungen für Rohrverbindungen, Mantel, Stutzen, Dichtungen, Dehnungsausgleich, etc.
- Kenntnis der Fertigungsverfahren
- Vorgehensweise für Auslegungen
- Kenntnis einschlägiger Normen und Standards
13. Inhalt:
- Glatt- und Rippenrohre für Wärmeübertrager
- Rohrbündelwärmeübertrager
- Kupfer als Werkstoff im Apparatebau
- Technologie und Einsatzbereiche von Plattenwärmeübertrager
- Aussen- und innenberippte Aluminiumrohre für Wärmeübertrager
- Spezialwärmeübertrager für hochkorrosive Anwendungen
- Wärmeübertrager aus Kunststoff
- Graphit-Wärmeübertrager
- Auslegung und Anwendung von Lamellenrohrverdampfern
- Regenerative Wärmerückgewinnung
- Wärmeübertrager in Fahrzeugen
- Auslegung und Wirtschaftlichkeit von Kühlträmmern
- Fertigung von Wärmeübertragern
- Verschmutzung und Reinigung von Wärmeübertragern
14. Literatur:
Vorlesungsunterlagen,
VDI-Wärmeatlas, Springer Verlag, Berlin Heidelberg, New York
15. Lehrveranstaltungen und -formen: 368601 Vorlesung Konstruktion von Wärmeübertragern
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium/Nacharbeitung 62 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>36861</th>
<th>Konstruktion von Wärmeübertragern (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td>Powerpoint-Präsentation ergänzt um Tafelskizzen und Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 36780 Kraft-Wärme-Kältekopplung (BHKW)

2. Modulkürzel: 042410036
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler
9. Dozenten: Klaus Spindler
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energetechnik
 → Rationelle Energieverwendung
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
14. Literatur:
Powerpoint-Folien der Vorlesung, Daten- u. Arbeitsblätter
15. Lehrveranstaltungen und -formen: 367801 Vorlesung mit integrierten Übungen Kraft-Wärme-Kältekopplung (BHKW)
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium, Prüfungsvorb.: 62 h
Gesamt: 90 h
17. Prüfungsnummer/n und -name: 36781 Kraft-Wärme-Kältekopplung (BHKW) (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
Vorlesung als powerpoint-Präsentation mit Beispielen zur Anwendung des Stoffes, ergänzend Tafelanschrieb u. Overhead-Folien
20. Angeboten von:
Modul: 36870 Kältetechnik

2. Modulkürzel: 042410034

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modulduauer: 1 Semester

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler

9. Dozenten:
 • Thomas Brendel
 • Klaus Spindler

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energienutzung
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

 Grundkenntnisse in Physik und Thermodynamik

12. Lernziele:

 Die Studierenden
 • kennen die Grundlagen der Kälteerzeugung
 • können Kälte- und (Klima-) Anlagen berechnen und bewerten
 • kennen alle Komponenten einer Kälteanlage
 • verstehen die volkswirtschaftliche Bedeutung der Kältetechnik und die Zusammenhänge zwischen Umweltpolitik und Kälteanwendung

13. Inhalt:

14. Literatur:

 • Vorlesungs-skript
 • H.L. von Cube u.a.: Lehrbuch der Kältetechnik Bd. 1 u. 2, C.F. Müller Verlag, 4. Aufl. 1997

15. Lehrveranstaltungen und -formen:

 368701 Vorlesung Kältetechnik

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 28h
 Selbststudium: 62h
 Gesamt: 90h

17. Prüfungsnummer/n und -name:

 36871 Kältetechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

 Vorlesung als Powerpoint-Präsentation mit Beispielen zur Erläuterung und Anwendung des Vorlesungsstoffes, ergänzend Tafelanschrieb u. Overhead-Folien

20. Angeboten von:
Modul: 36830 Lithiumbatterien: Theorie und Praxis

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042411047</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.habil. Wolfgang Bessler

9. Dozenten: Wolfgang Bessler

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Rationelle Energiennutzung
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

13. Inhalt:

 1) Grundlagen und Hintergrund: Materialien und Elektrochemie, Zell- und Batteriekonzepte, Systemtechnik, Anwendungen
 2) Praxis: Messung von Kennlinien, Rasterelektronenmikroskopie, Hybridisierung
 3) Theorie: Elektrochemische Simulationen, Wärmemanagement, Systemauslegung

14. Literatur:
 Skript zur Veranstaltung;

15. Lehrveranstaltungen und -formen:
 368301 Vorlesung mit theoretischen und praktischen Übungen Lithiumbatterien: Theorie und Praxis

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 Stunden
 Selbststudium und Prüfungsvorbereitung: 62 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
 36831 Lithiumbatterien: Theorie und Praxis (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 a) Grundlagen und Hintergrund: Tafelanschrieb und Powerpoint-Präsentation
 b) Praxis: Experimentelles Arbeiten im Labor
 c) Theorie: Computersimulationen

20. Angeboten von:
Modul: 36770 Optimale Energiewandlung

2. Modulkürzel: 042410033
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler

9. Dozenten: Klaus Spindler

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Energietechnik
 - Rationelle Energienutzung
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:
Powerpoint-Folien der Vorlesung, Daten- u. Arbeitsblätter

15. Lehrveranstaltungen und -formen:
 - 367701 Vorlesung mit integrierten Übungen Optimale Energiewandlung
 - 367702 Exkursion Besichtigung einer KWK-Anlage

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium, Prüfungsvorb.: 62 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 36771 Optimale Energiewandlung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für...:

19. Medienform:
Vorlesung als powerpoint-Präsentation mit Beispielen zur Anwendung des Stoffes, ergänzend Tafelanschrieb u. Overhead-Folien

20. Angeboten von:
Modul: 36750 Rationelle Wärmeversorgung

2. Modulkürzel: 042410031
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler
9. Dozenten: Klaus Spindler
Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
Gruppe Energietechnik
Rationelle Energienutzung
Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Technische Thermodynamik I/II
Wärmeübertragung

15. Lehrveranstaltungen und -formen: 367501 Vorlesung Rationelle Wärmeversorgung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium, Prüfungsvorber.: 62 h
Gesamt: 90h

17. Prüfungsnummer/n und -name: 36751 Rationelle Wärmeversorgung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

20. Angeboten von:
Modul: 36760 Wärmepumpen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410028</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr.-Ing. Klaus Spindler</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Klaus Spindler</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Thermodynamik, Ingenieurwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Manuskript</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>367601 Vorlesung Wärmepumpen</td>
</tr>
<tr>
<td>17. Prüfungnummer/n und -name:</td>
<td>36761 Wärmepumpen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Vorlesung als powerpoint-Präsentation, ergänzend Tafelanschrieb und Overhead- Folien, Begleitendes Manuskript</td>
</tr>
</tbody>
</table>

Stand: 23. Oktober 2012
20. Angeboten von:
2472 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>16020</td>
<td>Brennstoffzellentechnik - Grundlagen, Technik und Systeme</td>
</tr>
<tr>
<td>18160</td>
<td>Berechnung von Wärmeübertragern</td>
</tr>
<tr>
<td>18330</td>
<td>Thermophysikalische Stoffeigenschaften</td>
</tr>
<tr>
<td>30420</td>
<td>Solarthermie</td>
</tr>
<tr>
<td>30470</td>
<td>Thermische Energiespeicher</td>
</tr>
<tr>
<td>30480</td>
<td>Simulation thermischer Prozesse</td>
</tr>
</tbody>
</table>
Modul: 18160 Berechnung von Wärmeübertragern

2. Modulkürzel: 042410030
5. Moduldauner: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Wolfgang Heidemann

9. Dozenten: Wolfgang Heidemann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Feuerungs- und Kraftwerkstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energienutzung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energienutzung
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmoduelle
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Grundkenntnisse in Wärme- und Stoffübertragung

12. Lernziele: Erworbene Kompetenzen:
 Die Studierenden
 • kennen die Grundgesetze der Wärmeübertragung und der Strömungen
 • sind in der Lage die Grundlagen in Form von Bilanzen,
 Gleichgewichtsaussagen und Gleichungen für die Kinetik zur
 Auslegung von Wärmeübertragern anzuwenden
 • kennen unterschiedliche Methoden zur Berechnung von
 Wärmeübertragern
 • kennen die Vor- und Nachteile verschiedener
 Wärmeübertrageraufbauten

13. Inhalt: Ziel der Vorlesung und Übung ist es einen wichtigen Beitrag zur
 Ingenieurausbildung durch Vermittlung von Fachwissen für die
 Berechnung von Wärmeübertragern zu leisten.
 Die Lehrveranstaltung
 • zeigt unterschiedliche Wärmeübertragarten und Strömungsformen
 der Praxis,
 • vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert,
 Kennzahlen, NTU-Diagramm, Zellenmethode
 • behandelt Sonderbauformen und Spezialprobleme (Wärmeverluste),
 • vermittelt Grundlagen zur Wärmeübertragung in
 Kanälen und im Mantelraum (einphasige Rohrströmung,
 Plattenströmung, Kondensation, Verdampfung),
• führt in Fouling ein (Verschmutzungsarten, Foulingwiderstände, Maßnahmen zur Verhinderung/ Minderung, Reinigungsverfahren),
• behandelt die Bestimmung von Druckabfall und die Wärmeübertragung durch berippte Flächen
• vermittelt die Berechnung von Regeneratoren

14. Literatur:
• Vorlesungsmanuskript,

15. Lehrveranstaltungen und -formen:
• 181601 Vorlesung Berechnung von Wärmeübertragern
• 181602 Übung Berechnung von Wärmeübertragern

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesung: Beamerpräsentation
Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware

20. Angeboten von:
Modul: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

2. Modulkürzel: 042410042
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Friedrich
9. Dozenten: Andreas Friedrich
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Energiesysteme und Energiewirtschaft
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationale Energiennutzung
 → Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen:
Abgeschlossenes Grundstudium und Grundkenntnisse Ingenieurwesen
12. Lernziele:
13. Inhalt:
 • **Einführung in die Energietechnik**, Entwicklung nachhaltiger Energietechnologien, Erscheinungsformen der Energie; Energieumwandlungsketten, Elektrochemische Energieerzeugung: - Systematik -
 • **Thermodynamische Grundlagen** der elektrochemischen Energiewandlung, Chemische Thermodynamik: Grundlagen und Zusammenhänge, Elektrochemische Potentiale und die freie Enthalpie DeltaG, Wirkungsgrad der elektrochemischen Stromerzeugung, Druckabhängigkeit der elektrochemischen Potentiale / Zellspannungen, Temperaturabhängigkeit der elektrochemischen Potentiale
 • **Aufbau und Funktion von Brennstoffzellen**, Komponenten: Anforderungen und Eigenschaften, Elektrolyt: Eigenschaften verschiedener Elektrolyte, Elektrochemische Reaktionsschicht von Gasdiffusionselektroden, Gasdiffusionsschicht, Stromkollektor und Gasverteiler, Stacktechnologie
• **Technischer Wirkungsgrad**, Strom-Spannungskennlinien von Brennstoffzellen; \(U(i)\)-Kennlinien, Transporthemmungen und Grenzströme, zweidimensionale Betrachtung der Transporthemmungen, Ohmscher Bereich der Kennlinie, Elektrochemische Überspannungen: Reaktionskinetik und Katalyse, experimentelle Bestimmung einzelner Verlustanteile

Technik und Systeme (SS):

• **Überblick**: Einsatzgebiete von Brennstoffzellensystemen, stationär, mobil, portabel

• **Brennstoffzellensysteme**, Niedertemperaturbrennstoffzellen, Alkalische Brennstoffzellen, Phosphorsaure Brennstoffzellen-, Polymerelektrolyt-Brennstoffzellen, Direktmethanol-Brennstoffzellen, Hochtemperaturbrennstoffzellen, Schmelzkarbonat-Brennstoffzellen, Oxidkeramische Brennstoffzellen

• **Einsatzbereiche von Brennstoffzellensystemen**, Verkehr: Automobilisystem, Auxiliary Power Unit (APU), Luftfahrt, stationäre Anwendung: Dezentrale Blockheizkraftwerke, Hausenergieversorgung, Portable Anwendung: Elektronik, Tragbare Stromversorgung, Netzunabhängige Stromversorgung

• **Brenngasbereitstellung und Systemtechnik**, Wasserstoffherstellung: Methoden, Reformierung, Systemtechnik und Wärmebilanzen,

• **Ganzheitliche Bilanzierung**, Umwelt, Wirtschaftlichkeit, Perspektiven der Brennstoffzellentechnologien

14. Literatur:

- Vorlesungszusammenfassungen,
- empfohlene Literatur:

15. Lehrveranstaltungen und -formen:

- 160201 Vorlesung Grundlagen Brennstoffzellentechnik
- 160202 Vorlesung Brennstoffzellentechnik, Technik und Systeme

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 56 h |
| Selbststudium / Nacharbeitszeit: | 124 h |

Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 16021 Brennstoffzellentechnik - Grundlagen, Technik und Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

20. Angeboten von: Institut für Thermodynamik und Wärmetechnik

Stand: 23. Oktober 2012

Seite 770 von 1220
Modul: 30480 Simulation thermischer Prozesse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042400037</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Heidemann
| | • Henner Kerskes |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Technischer Thermodynamik, Wärmeübertragung und Solartechnik |
| 13. Inhalt: | **I: Numerische Methoden in der Energietechnik (Heidemann):**
II: Simulation solarthermischer Anlagen (Kerskes):

Stand: 23. Oktober 2012
| 14. Literatur: | • I: Vorlesungsmanuskript „Numerische Methoden in der Energietechnik“
• II: Vorlesungsmanuskript „Simulation solarthermischer Anlagen“ |
| 15. Lehrveranstaltungen und -formen: | • 304801 Vorlesung und Übung Numerische Methoden in der Energietechnik
• 304802 Vorlesung und Übung Simulation solarthermischer Anlagen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 56 h
Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h
Gesamt: 180 h |
18. Grundlage für ... :	
19. Medienform:	PPT-Präsentationen, Skripte zu Vorlesungen und Übungen, Computeranwendungen
20. Angeboten von:	
Modul: 30420 Solarthermie

2. Modulkürzel: 042400023
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Harald Drück

9. Dozenten: Harald Drück

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 ➞ Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Energietechnik
 ➞ Rationelle Energienutzung
 ➞ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Energietechnik
 ➞ Rationelle Energienutzung
 ➞ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundkenntnisse in Mathematik und Thermodynamik

12. Lernziele:
Erworbene Kompetenzen:
Die Studierenden

• können die auf unterschiedlich orientierte Flächen auf der Erdoberfläche auftreffende Solarstrahlung berechnen

• kennen Methoden zur aktiven und passiven thermischen Solarenergienutzung im Niedertemperaturbereich

• kennen Solaranlagen und deren Komponenten zur Trinkwassererwärmung, Raumheizung und solaren Kühlung

• kennen unterschiedliche Technologien zur Speicherung von Solarwärme.

• kennen die Technologien konzentrierender Solartechnik zur Erzeugung von Strom und Hochtemperaturwärme

13. Inhalt:

14. Literatur:
15. Lehrveranstaltungen und -formen:
- 304201 Vorlesung Solarthermie
- 304202 Übung mit Workshop Solarthermie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 48 Stunden
- Selbstdstudium: 132 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 30421 Solarthermie (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0

19. Medienform:
Vorlesung als Powerpoint-Präsentation mit Beispielen zur Erläuterung und Anwendung des Vorlesungsstoffes ergänzend Tafelanschrieb

20. Angeboten von:
Modul: 30470 Thermische Energiespeicher

2. Modulkürzel: 042400038
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauser: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Harald Drück
9. Dozenten: Henner Kerskes

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 → Gruppe Energietechnik
 → Rationelle Energienutzung
 → Kern-/Ergänzungsfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energienutzung
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Grundkenntnisse in Mathematik, Thermodynamik und Wärme und Stoffübertragung

12. Lernziele:
Erworbene Kompetenzen:

Die Studierenden

- kennen die physikalischen Grundlagen zur thermischen Energiespeicherung
- kennen Verfahren zur thermischen Energiespeicherung im Gebäudesektor und für industrielle und Kraftwerks-Prozesse
- kennen Anlagen und deren Komponenten zur thermischen Energiespeicherung
- kennen Verfahren zur Prüfung thermischer Energiespeicher und zur Ermittlung von Bewertungskriterien
- können thermische Energiespeicher berechnen und auslegen.

13. Inhalt:

14. Literatur:
- I: Vorlesungsmanuskript „Thermische Energiespeicher - Grundlagen und Niedertemperaturanwendungen"
- II: Vorlesungsmanuskript „Thermische Energiespeicher - Hochtemperaturanwendungen"

15. Lehrveranstaltungen und -formen:
- 304701 Vorlesung und Übung Thermische Energiespeicher - Grundlagen und Niedertemperaturanwendungen
- 304702 Vorlesung und Übung Thermische Energiespeicher - Hochtemperaturanwendungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 56 h
Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
30471 Thermische Energiespeicher (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb

20. Angeboten von:
Modul: 18330 Thermophysikalische Stoffeigenschaften

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410029</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr.-Ing. Klaus Spindler</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Klaus Spindler</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Thermodynamik, Ingenieurwissenschaftliche Grundlagen |
| 13. Inhalt: | • Thermische Eigenschaften
• Dampftdruck
• Theorem der übereinstimmenden Zustände
• Dichte von Gasen, überhitztem Dampf und Flüssigkeiten
• Dichte auf der Grenzkurve
• kritische Temperatur, kritischer Druck, kritisches Volumen
• Verdampfungsenthalpie
• spezifische Wärmekapazität
• ideale, reale Gase und Flüssigkeiten
• Temperatur- und Druckabhängigkeit
• Methode der Gruppenbeiträge
• Verfahren mit der Zusatzwärmekapazität
• in der Nähe der Grenzkurve
• im überkritischen Gebiet
• Differenz der spezifischen Wärmekapazität auf der Grenzkurve
• Näherungsverfahren
• Transporteigenschaften
• Viskosität von Gasen und Flüssigkeiten
• Druck- und Temperaturabhängigkeit |
• Theorem der übereinstimmenden Zustände
• Flüssigkeiten auf der Siedelinie
• Wärmeleitfähigkeit
• Gase bei niedrigem u. hohem Druck
• Temperatur- und Druckabhängigkeit
• Flüssigkeiten
• Gemische
• Diffusionskoeffizient
• Gasgemische bei niedrigem und hohem Druck
• Flüssigkeiten
• Oberflächenspannung
• Thermophysikalische Eigenschaften von Festkörpern, Metalle und Legierungen, Kunststoffe, Wärmedämmstoffe, feuerfeste Materialien, Baustoffe, Erdreich, Holz, Schüttstoffe

14. Literatur:
• D. Lüdecke, C. Lüdecke: Thermodynamik - Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik
• Springer Verlag, Berlin, Heidelberg, 2000
• Manuskript und Arbeitsblätter

15. Lehrveranstaltungen und -formen:
• 183301 Vorlesung Thermophysikalische Stoffeigenschaften
• 183302 Übung Thermophysikalische Stoffeigenschaften

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name: 18331 Thermophysikalische Stoffeigenschaften (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Powerpoint, Overhead, Tafel

20. Angeboten von:
2471 Kernfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18160</td>
<td>Berechnung von Wärmeübertragern</td>
</tr>
<tr>
<td>18330</td>
<td>Thermophysikalische Stoffeigenschaften</td>
</tr>
<tr>
<td>30420</td>
<td>Solarthermie</td>
</tr>
<tr>
<td>30470</td>
<td>Thermische Energiespeicher</td>
</tr>
<tr>
<td>30480</td>
<td>Simulation thermischer Prozesse</td>
</tr>
</tbody>
</table>
Modul: 18160 Berechnung von Wärmeübertragern

2. Modulkürzel: 042410030 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Wolfgang Heidemann
9. Dozenten: Wolfgang Heidemann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Feuerungs- und Kraftwerkstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Rationelle Energiennutzung
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Rationelle Energiennutzung
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodulle
 ➔ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Grundkenntnisse in Wärme- und Stoffübertragung

12. Lernziele: Erworbbene Kompetenzen:

 Die Studierenden
 • kennen die Grundgesetze der Wärmeübertragung und der Strömungen
 • sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsaussagen and Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden
 • kennen unterschiedliche Methoden zur Berechnung von Wärmeübertragern
 • kennen die Vor- und Nachteile verschiedener Wärmeübertragerbauformen

 Die Lehrveranstaltung
 • zeigt unterschiedliche Wärmeübertragerarten und Strömungsformen der Praxis,
 • vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert, Kennzahlen, NTU-Diagramm, Zellenmethode
 • behandelt Sonderbauformen und Spezialprobleme(Wärmeverluste),
 • vermittelt Grundlagen zur Wärmeübertragung in Kanälen und im Mantelraum (einphasige Rohrströmung, Platteneinleitung, Kondensation, Verdampfung),
• führt in Fouling ein (Verschmutzungsarten, Foulingwiderstände, Maßnahmen zur Verhinderung/Minderung, Reinigungsverfahren),
• behandelt die Bestimmung von Druckabfall und die Wärmeübertragung durch berippte Flächen
• vermittelt die Berechnung von Regeneratoren

14. Literatur:
• Vorlesungsmanuskript,

15. Lehrveranstaltungen und -formen:
• 181601 Vorlesung Berechnung von Wärmeübertragern
• 181602 Übung Berechnung von Wärmeübertragern

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesung: Beamerpräsentation
Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware

20. Angeboten von:
Modul: 30480 Simulation thermischer Prozesse

2. Modulkürzel: 042400037
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Wolfgang Heidemann

9. Dozenten:
- Wolfgang Heidemann
- Henner Kerskes

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Thermodynamik, Wärmeübertragung und Solartechnik

12. Lernziele:

13. Inhalt:

I: Numerische Methoden in der Energietechnik (Heidemann):

II: Simulation solarthermischer Anlagen (Kerskes):
14. Literatur:
• I: Vorlesungsmanuskript „Numerische Methoden in der Energietechnik"
• II: Vorlesungsmanuskript „Simulation solarthermischer Anlagen"

15. Lehrveranstaltungen und -formen:
• 304801 Vorlesung und Übung Numerische Methoden in der Energietechnik
• 304802 Vorlesung und Übung Simulation solarthermischer Anlagen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 56 h
Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:
PPT-Präsentationen, Skripte zu Vorlesungen und Übungen, Computeranwendungen

20. Angeboten von:
Modul: 30420 Solarthermie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042400023</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Harald Drück

9. Dozenten: Harald Drück

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Rationelle Energienutzung
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundkenntnisse in Mathematik und Thermodynamik

12. Lernziele: Erworbene Kompetenzen:
Die Studierenden

- können die auf unterschiedlich orientierte Flächen auf der Erdoberfläche auftreffende Solarstrahlung berechnen
- kennen Methoden zur aktiven und passiven thermischen Solarenergienutzung im Niedertemperaturbereich
- kennen Solaranlagen und deren Komponenten zur Trinkwassererwärmung, Raumheizung und solaren Kühlung
- kennen unterschiedliche Technologien zur Speicherung von Solarwärme.
- kennen die Technologien konzentrierender Solartechnik zur Erzeugung von Strom und Hochtemperaturwärme

• Volker Quaschning: Regenerative Energiesysteme, Hanser Verlag.
 ISBN 978-3-446-40973-6

• Norbert Fisch / Bruno Möws / Jürgen Zieger: Solarstadt Konzepte,
 Technologien, Projekte, W. Kolhammer, 2001 ISBN 3-17-015418-4

• Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb
 und Aufgabenblättern

15. Lehrveranstaltungen und -formen:
• 304201 Vorlesung Solarthermie
• 304202 Übung mit Workshop Solarthermie

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 48 Stunden
 Selbststudium: 132 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 30421 Solarthermie (PL), schriftlich oder mündlich, 60 Min.,
 Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Vorlesung als Powerpoint-Präsentation mit Beispielen zur Erläuterung
 und Anwendung des Vorlesungsstoffes ergänzend Tafelanschrieb

20. Angeboten von:
Modul: 30470 Thermische Energiespeicher

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042400038</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Harald Drück</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Henner Kerskes</td>
</tr>
</tbody>
</table>
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energiennutzung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Rationelle Energiennutzung
 → Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse in Mathematik, Thermodynamik und Wärme und Stoffübertragung |
| 12. Lernziele: | Erworbene Kompetenzen:
 • kennen die physikalischen Grundlagen zur thermischen Energiespeicherung
 • kennen Verfahren zur thermischen Energiespeicherung im Gebäudesektor und für industrielle und Kraftwerks-Prozesse
 • kennen Anlagen und deren Komponenten zur thermischen Energiespeicherung
 • kennen Verfahren zur Prüfung thermischer Energiespeicher und zur Ermittlung von Bewertungskriterien
 • können thermische Energiespeicher berechnen und auslegen. |
14. Literatur:

- I: Vorlesungsmanuskript „Thermische Energiespeicher - Grundlagen und Niedertemperaturanwendungen"
- II: Vorlesungsmanuskript „Thermische Energiespeicher - Hochtemperaturanwendungen"

15. Lehrveranstaltungen und -formen:

- 304701 Vorlesung und Übung Thermische Energiespeicher - Grundlagen und Niedertemperaturanwendungen
- 304702 Vorlesung und Übung Thermische Energiespeicher - Hochtemperaturanwendungen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: ca. 56 h
Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

30471 Thermische Energiespeicher (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0,

18. Grundlage für ... :

19. Medienform:

Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb

20. Angeboten von:
Modul: 18330 Thermophysikalische Stoffeigenschaften

2. Modulkürzel: 042410029
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler

9. Dozenten: Klaus Spindler

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Rationelle Energienutzung
 ➔ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Rationelle Energienutzung
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

 Thermodynamik, Ingenieurwissenschaftliche Grundlagen

12. Lernziele:

 Sie beherrschen die Grundlagen der genauen Bestimmung thermophysikalischer Stoffeigenschaften für Prozesse mit vollständiger stofflicher Ausnutzung durch hohe Anforderungen des Umweltschutzes.

13. Inhalt:

 • Thermische Eigenschaften
 • Dampfdruck
 • Theorem der übereinstimmenden Zustände
 • Dichte von Gasen, überhitztem Dampf und Flüssigkeiten
 • Dichte auf der Grenzkurve
 • kritische Temperatur, kritischer Druck, kritisches Volumen
 • Verdampfungsenthalpie
 • spezifische Wärmekapazität
 • ideale, reale Gase und Flüssigkeiten
 • Temperatur- und Druckabhängigkeit
 • Methode der Gruppenbeiträge
 • Verfahren mit der Zusatzwärmekapazität
 • in der Nähe der Grenzkurve
 • im überkritischen Gebiet
 • Differenz der spezifischen Wärmekapazität auf der Grenzkurve
 • Näherungsverfahren
 • Transporteigenschaften
 • Viskosität von Gasen und Flüssigkeiten
 • Druck- und Temperaturabhängigkeit
- Theorem der übereinstimmenden Zustände
- Flüssigkeiten auf der Siedelinie
- Wärmeleitfähigkeit
- Gase bei niedrigem u. hohem Druck
- Temperatur- und Druckabhängigkeit
- Flüssigkeiten
- Gemische
- Diffusionskoeffizient
- Gasgemische bei niedrigem und hohem Druck
- Flüssigkeiten
- Oberflächenspannung
- Thermophysikalische Eigenschaften von Festkörpern, Metalle und Legierungen, Kunststoffe, Wärmedämmstoffe, feuerfeste Materialien, Baustoffe, Erdreich, Holz, Schüttstoffe

	D. Lüdecke, C. Lüdecke: Thermodynamik - Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik
	Springer Verlag, Berlin, Heidelberg, 2000
	Manuskript und Arbeitsblätter

| 15. Lehrveranstaltungen und -formen: | 183301 Vorlesung Thermophysikalische Stoffeigenschaften |
| | 183302 Übung Thermophysikalische Stoffeigenschaften |

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h
	Selbststudiumszeit / Nacharbeitszeit: 124 h
	Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 18331 Thermophysikalische Stoffeigenschaften (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |
| 19. Medienform: | Powerpoint, Overhead, Tafel |
| 20. Angeboten von: |
Modul: 33130 Praktikum Rationelle Energienutzung

2. Modulkürzel: 042400015
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Klaus Spindler

9. Dozenten:
 - Klaus Spindler
 - Wolfgang Heidemann
 - Henner Kerskes

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Energietechnik
 → Rationelle Energienutzung

 - Solarkollektor: Die Studierenden untersuchen die thermische Leistung eines Solarkollektors. Dabei werden bei unterschiedlichen Bestrahlungsstärken Messgrößen erfasst und daraus die Wirkungsgradkennlinie bestimmt.
 - Wärmeübertrager: Es wird die Leistung eines Wärmeübertragers im Gleich- und Gegenstrombetrieb ermittelt.
 - Wärmepumpe: Es wird die Leistungszahl einer Wasser/Wasser-Wärmepumpe bei verschiedenen Betriebszuständen bestimmt.
 - IR-Kamera: Es wird das Oberflächentemperaturfeld und der Emissionsgrad einer Modellfassade ermittelt.
 - Brennstoffzelle: Es wird das Betriebsverhalten eines PEM-Brennstoffzellen-Hybridsystems näher untersucht.
 - Kälteanlage: Es wird die Funktion und das Betriebsverhalten einer Kompressionskälteanlage mit verschiedenen Expansionsorganen untersucht
 - Stirlingmotor: Es wird das Indikatordiagramm eines Modell-Stirlingmotors elektronisch erfasst und die Abweichungen zum theoretischen Prozess werden erläutert.
 - Mini-Blockheizkraftwerk: Es wird die Funktion der Kraft-Wärme-Kopplung an einem Mini-BHKW bei verschiedenen Lastzuständen untersucht. Es wird eine Gesamtenergiebilanz für das BHKW erstellt.

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 331301 Spezialisierungsfachversuch 1
 - 331302 Spezialisierungsfachversuch 2
 - 331303 Spezialisierungsfachversuch 3
 - 331304 Spezialisierungsfachversuch 4
Selbststudium: 62 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name: 33131 Praktikum Rationelle Energienutzung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
248 Strömungsmechanik und Wasserkraft

Zugeordnete Module:
- 2481 Kernfächer mit 6 LP
- 2482 Kern-/Ergänzungsfächer mit 6 LP
- 2483 Ergänzungsfächer mit 3 LP
- 30780 Praktikum Strömungsmechanik und Wasserkraft
2483 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>30740</td>
<td>Strömungsmesstechnik</td>
</tr>
<tr>
<td>30750</td>
<td>Meeresenergie</td>
</tr>
<tr>
<td>30760</td>
<td>Die Rolle der Wasserkraft</td>
</tr>
<tr>
<td>30770</td>
<td>Planung von Wasserkraftanlagen</td>
</tr>
</tbody>
</table>
Modul: 30760 Die Rolle der Wasserkraft

2. Modulkürzel: 042000600
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch
9. Dozenten: Hans Peter Schiffer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Strömungsmechanik und Wasserkraft
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
• Kontext: Technik, Umwelt, Soziales
• Wassermanagement
• Energiebedarf, Stromerzeugung
• Vergleich verschiedener Stromerzeugungsarten
• Betrachtungen zur Anlagengröße
• Wirkung der Wasserkraft auf die nachhaltige Entwicklung
• Beurteilung nachhaltiger Entwicklungswirkung und „Sustainability Guidelines”

14. Literatur: Vorlesungsmitschrift „Die Rolle der Wasserkraft”

15. Lehrveranstaltungen und -formen: 307601 Verlesung Die Rolle der Wasserkraft

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30761 Die Rolle der Wasserkraft (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentationen, Tafelschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 30750 Meeresenergie

2. Modulkürzel: 042000600
5. Moduldaumer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Albert Ruprecht

9. Dozenten: Albert Ruprecht

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Strömungsmechanik und Wasserkraft
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
 - Einführung in Meeresenergie
 - Gezeitenkraftwerke
 - Strömungskraftwerke
 - Wellenergienutzung
 - Osmose-Kraftwerke
 - Nutzung thermischer Meeresenergie
 - Projektbeispiele

14. Literatur: Vorlesungsmanuskript „Meeresenergie"

15. Lehrveranstaltungen und -formen:
 • 307501 Vorlesung Meeresenergie
 • 307502 Seminar Meeresenergie (1Tag)

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium: 69 h
 Summe: 90 h

17. Prüfungsnummer/n und -name: 30751 Meeresenergie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: PPT-Präsentationen, Tafelanschrieb

20. Angeboten von:
Modul: 30770 Planung von Wasserkraftanlagen

2. Modulkürzel: 042000700
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch

9. Dozenten: Stephan Heimerl

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Strömungsmechanik und Wasserkraft
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

13. Inhalt: Die Vorlesung stellt die für die Planung von Wasserkraftanlagen erforderliche Ermittlung der natürlichen Grundlagen sowie die notwendigen Planungsschritte bis hin zur Realisierung anhand konkreter Beispiele vor. Schwerpunkte sind dabei die komplexen genehmigungsrechtlichen Randbedingungen sowie die damit eng zusammenhängende Festlegung umweltrelevanter Maßnahmen im Umfeld der Wasserkraftanlage, wie z. B. Fishaufstiegs- und Fischabstiegsanlagen.

Des Weiteren werden die unterschiedlichen Randbedingungen und Ansätze bei Wasserkraftplanungen in unterschiedlichen Ländern mittels Fallbeispielen in Deutschland, der Türkei sowie Zentralafrika dargestellt. Hierbei wird auch auf die international üblichen Standards zur Bewertung von Wasserkraftprojekten im Rahmen von vertieften Prüfungen, den sog. „Due Diligences“, eingegangen.

15. Lehrveranstaltungen und -formen:
• 307701 Verlesung Planung von Wasserkraftanlagen
• 307702 Exkursion Planung von Wasserkraftanlagen (1Tag)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
30771 Planung von Wasserkraftanlagen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform: PPT-Präsentationen, Tafelanschrieb

20. Angeboten von:
Modul: 30740 Strömungsmesstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000500</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Oliver Kirschner |
| 9. Dozenten: | Oliver Kirschner |

M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Strömungsmechanik und Wasserkraft
→ Ergänzungsfächer mit 3 LP |

| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Strömungslehre |

| 14. Literatur: | Vorlesungsmanuskript "Messverfahren in der Strömungsmechanik" zur Vertiefung:
Nitsche, W.: Strömungsmesstechnik, Springer-Verlag, zweite Auflage, 2006
Ruck, B.: Lasermethoden in der Strömungsmeßtechnik, ATFachverlag, Stuttgart, 1990

| 15. Lehrveranstaltungen und -formen: | 307401 Vorlesung Strömungsmesstechnik |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudium: 69 h
Summe: 90 h |

| 17. Prüfungsnummer/n und -name: | 30741 Strömungsmesstechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |

| 18. Grundlage für ...: | |

| 19. Medienform: | Präsentation mit Beamer, Tafel, Vorführung von Messgeräten, Ausstellungsstücke |

| 20. Angeboten von: | |
2482 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
<tr>
<td>17600</td>
<td>Numerische Strömungsmechanik</td>
</tr>
<tr>
<td>29210</td>
<td>Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen</td>
</tr>
<tr>
<td>30430</td>
<td>Fluidmechanik 2</td>
</tr>
</tbody>
</table>
Modul: 30430 Fluidmechanik 2

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000200</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Stefan Riedelbauch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Strömungsmechanik und Wasserkraft
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Technische Strömungslehre bzw. Fluidmechanik 1, ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik |
| 13. Inhalt: | • Thermodynamisches Verhalten und Fadentheorie von dichtveränderlichen Fluiden
• Grenzschichttheorie
• Grenzschichtströmung an festen Wänden
• Strömungsablösung |
| 14. Literatur: | Vorlesungsmanuskript "Fluidmechanik 2" |
| 15. Lehrveranstaltungen und -formen: | • 304301 Vorlesung Fluidmechanik 2
• 304302 Übung Fluidmechanik 2 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 30431 Fluidmechanik 2 (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Tafel, Tablet-PC mit Beamer, Powerpoint, Skripte |
| 20. Angeboten von: | |

Stand: 23. Oktober 2012
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Dr.-Ing. Stefan Riedelbauch

9. Dozenten:
Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2008, 5. Semester | → Ergänzungsmodul |
| → Kompetenzfeld II |
| B.Sc. Technologiemanagement, PO 2008, 5. Semester | → Kernmodule |
| → Pflichtmodule 4 und 5 mit Wahmöglichkeit |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester | → Ergänzungsmodul |
| → Kernmodule |
| → Pflichtmodule mit Wahmöglichkeit |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester | → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 | → Gruppe Energietechnik |
| → Strömungsmechanik und Wasserkraft |
| → Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 | → Gruppe Energietechnik |
| → Strömungsmechanik und Wasserkraft |
| → Kernfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 | → Vertiefungsmodul |
| → Wahrscheinlichkeit Gruppe 4: Energie- und Verfahrenstechnik |

11. Empfohlene Voraussetzungen:
- Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)
- Technische Strömungslehre (Fluidmechanik 1) oder Strömungsmechanik

12. Lernziele:

Die Studierenden kennen die prinzipielle Funktionsweise von Wasserkraftanlagen und die Grundlagen der hydraulischen Strömungsmaschinen. Sie sind in der Lage, grundlegende Vorauslegungen von hydraulischen Strömungsmaschinen in Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu beurteilen.

13. Inhalt:

Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise „Hydrodynamische Getriebe und Absperr- und Regelorgane behandelt.

14. Literatur:
- Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
- C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
- W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlag
- J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
- J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:
- 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h

17. Prüfungsnummer/n und -name:
- 14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
- 29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform:
- Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von:
Modul: 17600 Numerische Strömungsmechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000300</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Albert Ruprecht</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Albert Ruprecht</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Einführung in die numerische Strömungsmechanik, • Navier-Stokes-Gleichungen, • Turbulenzmodelle, • Finite Differenzen, Finite Volumen, Finite Elemente, • Lineare Gleichungsloser, • Algorithmen zur Strömungsberechnungen, • CFD-Anwendungen.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsmanuskript „Numerische Strömungsmechanik“</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 176001 Vorlesung Numerische Strömungsmechanik • 176002 Übung Numerische Strömungsmechanik</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17601 Numerische Strömungsmechanik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Computerübungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>042000400</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.-Dr.-Ing. Stefan Riedelbauch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik
 ➔ Strömungsmechanik und Wasserkraft
 ➔ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Strömungslehre und Regelungstechnik |
| 13. Inhalt: | • Instationäre Vorgänge in Rohrleitungssystemen
• Numerische Verfahren zur Lösung transienter Strömungsvorgänge
• Oszillierende Strömungen
• Kraftwerksregelung
• Netzregelung mit Wasserkraftanlagen |
| 14. Literatur: | Skript "Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen" |
| 15. Lehrveranstaltungen und -formen: | • 292101 Vorlesung Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen
• 292102 Übung Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 29211 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |

Stand: 23. Oktober 2012
2481 Kernfächer mit 6 LP

Zugeordnete Module: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>042000100</td>
<td>5. Moduldauer: 1 Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch

9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Ergänzungsmodul
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Ergänzungsmodul
 - Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Energietechnik
 - Strömungsmechanik und Wasserkraft
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Energietechnik
 - Strömungsmechanik und Wasserkraft
 - Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

- Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)
- Technische Strömungslehre (Fluidmechanik 1) oder Strömungsmechanik

12. Lernziele:

Die Studierenden kennen die prinzipielle Funktionsweise von Wasserkraftanlagen und die Grundlagen der hydraulischen Strömungsmaschinen. Sie sind in der Lage, grundlegende Vorauslegungen von hydraulischen Strömungsmaschinen in Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu beurteilen.

13. Inhalt:

14. Literatur:
- Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
- C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
- W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlag
- J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
- J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:
- 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

17. Prüfungsnummer/n und -name: 14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...: 29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform: Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von:
Modul: 30780 Praktikum Strömungsmechanik und Wasserkraft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000900</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Oliver Kirschner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Kirschner</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Spezialisierungsfächer A (ING)
→ Gruppe Energietechnik
→ Strömungsmechanik und Wasserkraft |
| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Strömungslehre |
| 12. Lernziele: | Die Studierenden sind in der Lage grundlegende Messungen in der Strömungsmechanik und an hydraulischen Strömungsmaschinen durchzuführen. |
Im Rahmen des Praktikums werden sowohl Strömungsmessgrößen als auch Leistungs- und Wirkungsgraddaten von hydraulischen Strömungsmaschinen gemessen. |
| 14. Literatur: | Versuchsunterlagen, Versuchsbeschreibung |
| 15. Lehrveranstaltungen und -formen: | • 307801 Spezialisierungsfachversuch 1
• 307802 Spezialisierungsfachversuch 2
• 307803 Spezialisierungsfachversuch 3
• 307804 Spezialisierungsfachversuch 4
• 307805 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 307806 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 307807 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
• 307808 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4 |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 30781 Praktikum Strömungsmechanik und Wasserkraft (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben. |
| 18. Grundlage für ...: |

20. Angeboten von:
249 Thermische Turbomaschinen

Zugeordnete Module:

- 2491 Kernfächer mit 6 LP
- 2492 Kern-/Ergänzungsfächer mit 6 LP
- 2493 Ergänzungsfächer mit 3 LP
- 30870 Praktikum Thermische Turbomaschinen
2493 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 30540 Dampfturbinentechnologie
- 30840 Numerische Methoden in Fluid- und Strukturodynamik
- 30850 Turbochargers
- 30860 Strömungs- und Schwingungsmesstechnik für Turbomaschinen
Modul: 30540 Dampfturbinentechnologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042310016</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>042310016</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Jürgen Mayer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Norbert Sürken</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik</td>
</tr>
<tr>
<td></td>
<td>➔ Feuerungs- und Kraftwerkstechnik</td>
</tr>
<tr>
<td></td>
<td>➔ Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik</td>
</tr>
<tr>
<td></td>
<td>➔ Thermische Turbomaschinen</td>
</tr>
<tr>
<td></td>
<td>➔ Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II, Strömungsmechanik oder Technische Strömungslehre</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende</td>
</tr>
<tr>
<td></td>
<td>• verfügt über vertiefte Kenntnisse und Verständnis der physikalischen und technischen Vorgänge in Dampfkraftwerken und Dampfturbinen</td>
</tr>
<tr>
<td></td>
<td>• beherrscht die Thermodynamik des zugrundeliegenden Clausius-Rankine-Prozesses</td>
</tr>
<tr>
<td></td>
<td>• ist in der Lage, die Funktionsprinzipen der wesentlichen Dampfturbinen-Komponenten und deren Zusammenwirken zu erkennen und zu analysieren</td>
</tr>
<tr>
<td></td>
<td>• erkennt die technischen Grenzen der verschiedenen Turbinen-Bauarten und kann diese begründen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Energieressourcen</td>
</tr>
<tr>
<td></td>
<td>• Marktentwicklungen für Kraftwerke</td>
</tr>
<tr>
<td></td>
<td>• Historische Entwicklung der Dampfturbine</td>
</tr>
<tr>
<td></td>
<td>• Dampfturbinenhersteller</td>
</tr>
<tr>
<td></td>
<td>• Einsatzspektrum</td>
</tr>
<tr>
<td></td>
<td>• Thermodynamischer Arbeitsprozess</td>
</tr>
<tr>
<td></td>
<td>• Arbeitsverfahren und Bauarten</td>
</tr>
<tr>
<td></td>
<td>• Leistungsregelung</td>
</tr>
<tr>
<td></td>
<td>• Beschaffelungen</td>
</tr>
<tr>
<td></td>
<td>• Betriebszustände</td>
</tr>
<tr>
<td></td>
<td>• Turbinenläufer und Turbinengehäuse</td>
</tr>
</tbody>
</table>
• Systemtechnik und Regelung
• Werkstofftechnik

14. Literatur:

• Bell, R., Dampfturbinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Traupel, W., Thermische Turbomaschinen, 4. Aufl., Bd. 1 u. 2, Springer 2001
• Dietzel, F., Dampfturbinen; 3. Aufl.; Hanser 1980

15. Lehrveranstaltungen und -formen:

305401 Vorlesung Dampfturbinentechnologie

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:

30541 Dampfturbinentechnologie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript

20. Angeboten von:

Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 30840 Numerische Methoden in Fluid- und Strukturodynamik

2. Modulkürzel: 043210014
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer

9. Dozenten: Jürgen Mayer

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Thermische Turbomaschinen
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

 Ingenieurwissenschaftliche Grundlagen, Strömungsmechanik oder
 Technische Strömungslehre

12. Lernziele:

 Der Studierende
 • verfügt über vertiefte Kenntnisse und Verständnis der Grundgleichungen von Struktur- und Fluiddynamik
 • beherrscht die Grundlagen der verschiedenen Diskretisierungstechniken
 • kennt die geeigneten Lösungsverfahren der numerischen Mathematik für die diskretisierten Gleichungen
 • erkennt die möglichen Einsatzbereiche der verschiedenen numerischen Verfahren und die Grenzen unterschiedlicher Modellbildungen
 • ist in der Lage, den unterschiedlichen Rechenaufwand bei verschiedenen Modellierungen und Lösungsverfahren zu begründen
 • verfügt über Grundkenntnisse moderner Rechentechnik

13. Inhalt:

 - Einsatzbereiche numerischer Verfahren
 - Wissenschaftliches Rechnen und Einfluss der Hardware-Entwicklung
 - Modellierung
 - Strömungsmechanische Grundgleichungen
 - Turbulenzmodellierung
 - Diskretisierung von Differentialgleichungen
 - Netzerzeugung
 - Randbedingungen
 - Finite-Differenzen-Verfahren
 - Finite-Volumen-Verfahren
 - Grundlagen der Finite-Elemente-Methode (FEM)
 - Lösungsverfahren
 - Anwendungen

14. Literatur:

 • Mayer, J.F., Numerische Methoden in Fluid- und Strukturodynamik, Vorlesungsmanuskript, ITSM Univ. Stuttgart
 • Casey, M., Wintergerste, T., Best Practice Guidelines, ERCOFTAC Special Interst Group on "Quality and Trust in Industrial CFD", 2000
15. Lehrveranstaltungen und -formen: | 308401 Vorlesung + 2 Übungen + 1 Präsentation Numerische Methoden in Fluid- und Strukturodynamik

Selbststudium: 69 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name: | 30841 Numerische Methoden in Fluid- und Strukturodynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

19. Medienform: | PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript

20. Angeboten von: | Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 30860 Strömungs- und Schwingungsmesstechnik für Turbomaschinen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>043210015</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Dr.-Ing. Jürgen Mayer

9. Dozenten:
- Gerhard Eyb
- Jürgen Mayer
- Markus Schatz

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Energietechnik ➔ Thermische Turbomaschinen ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Der Studierende
- verfügt über vertiefte Kenntnisse über die Grundlagen und die Anwendung von Messverfahren, die an Turbomaschinen zum Einsatz kommen
- ist in der Lage, für unterschiedlichste Messaufgaben die geeigneten Werkzeuge auszuwählen und anzuwenden.
- beherrscht den Umgang mit Verfahren zur Auswertung und Analyse der Messdaten
- besitzt die Fähigkeit, die Ergebnisse in Hinblick auf Plausibilität und Aussage zu bewerten

13. Inhalt:
- Grundlagen der Strömungsmesstechnik
- Messverfahren zur Strömungsmessung
- Einführung in die Schwingungsproblematik in Turbomaschinen
- Schwingungsmessverfahren
- Auswertung und Analyse dynamischer Signale
- Ergänzende Messverfahren
- Prüfstandstechnik

14. Literatur:
- Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
- Nitsche W., Brunn, A., Strömungsmesstechnik, Springer 2006
- Springer Handbook of Experimental Fluid Mechanics, 2007
- Wittenburg, J., Schwingungslehre, Springer 1996

15. Lehrveranstaltungen und -formen:
- 308601 Vorlesung Messtechnik Teil B: Anlagenmesstechnik
- 308602 Praktikum Strömungs- und Schwingungsmesstechnik für Turbomaschinen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden

Stand: 23. Oktober 2012

Seite 817 von 1220
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30861 Strömungs- und Schwingungsmesstechnik für Turbomaschinen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentationen, Tafelanschrieb, Übungen am PC, Vorlesungsmanuskript</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium</td>
</tr>
</tbody>
</table>
Modul: 30850 Turbochargers

2. Modulkürzel: 043210013
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Nach Ankündigung
8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenter: Michael Casey
10. Zuordnung zum Curriculum in diesem Studiengang:
 | B.Sc. Technologiemanagement, PO 2011 | Vorgezogene Master-Module |
 | M.Sc. Technologiemanagement, PO 2011 | Gruppe Energietechnik |
 | | Thermische Turbomaschinen |
 | | Ergänzungsfächer mit 3 LP |
12. Lernziele: The students of this module learn the thermodynamic and mechanical factors which determine how a turbocharger works. They understand the design and operational principles of turbocharger turbine and compressors, together with typical design parameters and velocity triangles for these. They understand how an engine can be correctly matched to a turbocharger system for best performance and operating range, and have an overview of the latest research into new engine systems and turbocharger developments, which will influence the development of the turbocharger industry in the years to come.
13. Inhalt:
 - Introduction to turbocharging
 - Thermodynamics of turbocharging
 - Radial compressors for turbochargers
 - Axial and radial turbines for turbochargers
 - Mechanical design of turbochargers
 - Matching of a turbocharger with a combustion engine
 - Modern system developments
 - Design exercise for a radial compressor and a radial turbine
14. Literatur:
 - Lecture notes "Turbochargers", ITSM, Universität Stuttgart
15. Lehrveranstaltungen und -formen: 308501 Verlesung und Übung Turbochargers
16. Abschätzung Arbeitsaufwand:
 - Präsenzzzeit: 21 Stunden
 - Selbststudium: 69 Stunden
 - Gesamt: 90 Stunden
17. Prüfungsnummer/n und -name: 30851 Turbochargers (BSL), schriftlich oder mündlich, Gewichtung: 1.0, mündlich, 20 min, od. schriftlich, 60 min
18. Grundlage für ... :
19. Medienform: PPT presentation, blackboard, script of lecture notes
20. Angeboten von: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
2492 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
14070 Grundlagen der Thermischen Strömungsmaschinen
30820 Thermische Strömungsmaschinen
30830 Numerik und Messtechnik für Turbomaschinen
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel: 042310004
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenten: Jürgen Mayer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2008, 5. Semester → Ergänzungsmodul
→ Kernmodule

B.Sc. Technologiemanagement, PO 2008, 5. Semester → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester → Ergänzungsmodul
→ Kernmodule

B.Sc. Technologiemanagement, PO 2011, 5. Semester → Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester → Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Thermische Turbomaschinen
→ Kern/-Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
→ Thermische Turbomaschinen
→ Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011 → Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

• Ingenieurwissenschaftliche Grundlagen
• Technische Thermodynamik I + II
• Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:

Der Studierende

• verfügt über vertiefte Kenntnisse in Thermodynamik und Strömungsmechanik mit dem Fokus auf der Anwendung bei Strömungsmaschinen
• kennt und versteht die physikalischen und technischen Vorgänge und Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen, Verdichter, Ventilatoren)
• beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung, Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
• ist in der Lage, aus dieser analytischen Durchdringung die Konsequenzen für Auslegung und Konstruktion von axialen und radialen Turbomaschinen zu ziehen

13. Inhalt:

• Anwendungsgebiete und wirtschaftliche Bedeutung
• Bauarten
• Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Bauteile: Beanspruchungen, Auslegung, Festigkeits- und Schwingungsprobleme
• Labyrinthdichtungen
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Beanspruchungen

14. Literatur:
• Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamutoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

15. Lehrveranstaltungen und -formen: 140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT-Präsentationen, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von:
Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 30830 Numerik und Messtechnik für Turbomaschinen

2. Modulkürzel: 043210012

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulduauer: 2 Semester

6. Turnus: jedes Semester

8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer

9. Dozenten:
 • Gerhard Eyb
 • Jürgen Mayer
 • Markus Schatz

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik
 → Thermische Turbomaschinen → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

 Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:

Der Studierende

 • verfügt über vertiefte Kenntnisse und Verständnis der Grundgleichungen von Struktur- und Fluidynamik
 • beherrscht die Grundlagen der verschiedenen Diskretisierungstechniken
 • kennt die geeigneten Lösungsverfahren der numerischen Mathematik für die diskretisierten Gleichungen
 • erkennt die möglichen Einsatzbereiche der verschiedenen numerischen Verfahren und die Grenzen unterschiedlicher Modellbildungen
 • ist in der Lage, den unterschiedlichen Rechenaufwand bei verschiedenen Modellierungen und Lösungsverfahren zu begründen
 • verfügt über Grundkenntnisse moderner Rechentechnik
 • verfügt über vertiefte Kenntnisse über die Grundlagen und die Anwendung von Messverfahren, die an Turbomaschinen zum Einsatz kommen
 • ist in der Lage, für unterschiedlichste Messaufgaben die geeigneten Werkzeuge auszuwählen und anzuwenden.
 • beherrscht den Umgang mit Verfahren zur Auswertung und Analyse der Messdaten
 • besitzt die Fähigkeit, die Ergebnisse in Hinblick auf Plausibilität und Aussage zu bewerten

13. Inhalt:

 - Einsatzbereiche numerischer Verfahren
 - Wissenschaftliches Rechnen und Einfluss der Hardware-Entwicklung
 - Modellierung
 - Strömungsmechanische Grundgleichungen
 - Turbulenzmodellierung
 - Diskretisierung von Differentialgleichungen
 - Netzzeugung
 - Randbedingungen
 - Finite-Differenzen-Verfahren
 - Finite-Volumen-Verfahren
 - Grundlagen der Finite-Elemente-Methode (FEM)
 - Lösungsverfahren
- Numerik-Anwendungen
- Grundlagen der Strömungsmesstechnik
- Messverfahren zur Strömungsmessung
- Einführung in die Schwingungsproblematik in Turbomaschinen
- Schwingungsmessverfahren
- Auswertung und Analyse dynamischer Signale
- Ergänzende Messverfahren
- Prüfstandstechnik

14. Literatur:
- Mayer, J.F., Numerische Methoden in Fluid- und Strukturmechanik, Vorlesungsmanuskript, ITSM Univ. Stuttgart
- Casey, M., Wintergerste, T., Best Practice Guidelines, ERCOFTAC Special Interest Group on "Quality and Trust in Industrial CFD", 2000
- Bathe, K. J., Finite-Elemente-Methoden, Springer 2002
- Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
- Nitsche W., Brunn, A., Strömungsmesstechnik, Springer 2006
- Springer Handbook of Experimental Fluid Mechanics, 2007
- Wittenburg, J., Schwingungslehre, Springer 1996

15. Lehrveranstaltungen und -formen:
- 308301 Vorlesung + 2 Übungen + 1 Präsentation Numerische Methoden in Fluid- und Strukturmechanik
- 308302 Vorlesung Messtechnik Teil B: Anlagenmesstechnik
- 308303 Praktikum Strömungs- und Schwingungsmesstechnik für Turbomaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 Stunden
Selbststudium: 138 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
30831 Numerik und Messtechnik für Turbomaschinen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT-Präsentationen, Tafelanschrieb, Skripten zu den Vorlesungen

20. Angeboten von:
Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 30820 Thermische Strömungsmaschinen

2. Modulkürzel: 042310011 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenten: • Markus Schatz
• Jörg Starzmann

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Thermische Turbomaschinen
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Thermische Turbomaschinen
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II, Strömungsmechanik oder Technische Strömungslehre, Grundlagen der Thermischen Strömungsmaschinen

12. Lernziele:
Der Studierende

• verfügt über vertiefte Kenntnisse und Verständnis der physikalischen und technischen Vorgänge der Turbomaschinen in Gas- und Dampfturbinen
• beherrscht die Thermodynamik der zugrundeliegenden thermodynamischen Systeme: Joule-Brayton-Prozess, Clausius-Rankine-Prozess, aufgeladener Seiliger Prozess, GuD-Prozess.
• ist in der Lage, die Funktionsprinzipien der wesentlichen Turbomaschinen-Komponenten und deren Zusammenwirken zu erkennen und zu analysieren
• Verfügt über Kenntnisse über die Auslegung von Turbomaschinen mit numerischen Methoden und Versuchstechnik in Turbomaschinen
• erkennt die technischen Grenzen der verschiedenen Turbomaschinentypen und kann diese begründen
• beherrscht die analytische Durchdringung der eindimensionalen Betrachtung von Arbeitsumsetzung, Geschwindigkeitsdreiecken und Verlusten bei axialen und radialen Turbokompressoren und Turbinen und den daraus resultierenden Konsequenzen für deren Konstruktion
• verfügt über vertiefte Kenntnisse des Betriebsverhaltens und der Regelungstechnik von Kompressoren und Turbinen

13. Inhalt:
- Einführung und Grundlagen
- Bauarten von Thermischen Turbomaschinen
- Thermodynamik der Systemprozesse
- Einsatzspektrum und Wahl des Turbomaschinentyps
- Axialverdichter
- Axialturbinen
- Radialverdichter und radialturbine
- Betriebszustände, Regelung und Betriebsverhalten
- Auslegung mit numerischen Methoden
- Versuchstechnik in Turbomaschinen
14. Literatur:
- Casey, M., Thermische Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
- Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>308201 Vorlesung und Übung Thermische Strömungsmaschinen</th>
</tr>
</thead>
</table>

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium 138 Stunden
Gesamt: 180 Stunden |
|---|--|

| 17. Prüfungsnummer/n und -name: | 30821 Thermische Strömungsmaschinen (PL), mündliche Prüfung,
40 Min., Gewichtung: 1.0 |
|---|--|

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>PPT-Präsentationen, Tafelanschrieb, Skript zur Vorlesung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium</th>
</tr>
</thead>
</table>
2491 Kernfächer mit 6 LP

Zugeordnete Module:
14070 Grundlagen der Thermischen Strömungsmaschinen
30820 Thermische Strömungsmaschinen
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel: 042310004
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenten: Jürgen Mayer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Thermische Turbomaschinen
 ➔ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Energietechnik
 ➔ Thermische Turbomaschinen
 ➔ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungs模块
 ➔ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
 • Ingenieurwissenschaftliche Grundlagen
 • Technische Thermodynamik I + II
 • Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Der Studierende
 • verfügt über vertiefte Kenntnisse in Thermodynamik und
 Strömungsmechanik mit dem Fokus auf der Anwendung bei
 Strömungsmaschinen
 • kennt und versteht die physikalischen und technischen Vorgänge und
 Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen,
 Verdichter, Ventilatoren)
 • beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung,
 Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
 • ist in der Lage, aus dieser analytischen Durchdringung die
 Konsequenzen für Auslegung und Konstruktion von axialen und
 radialen Turbomaschinen zu ziehen

13. Inhalt:
 • Anwendungsgebiete und wirtschaftliche Bedeutung
 • Bauarten
 • Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Bauteile: Beanspruchungen, Auslegung, Festigkeits- und Schwingungsprobleme
• Labyrinthdichtungen
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Beanspruchungen

14. Literatur:
• Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

15. Lehrveranstaltungen und -formen: 140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: PPT-Präsentationen, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 30820 Thermische Strömungsmaschinen

2. Modulkürzel: 042310011
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer

9. Dozenten: • Markus Schatz
 • Jörg Starzmann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Thermische Turbomaschinen
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Energietechnik
 → Thermische Turbomaschinen
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II, Strömungsmechanik oder Technische Strömungslehre, Grundlagen der Thermischen Strömungsmaschinen

12. Lernziele:
 Der Studierende
 • verfügt über vertiefte Kenntnisse und Verständnis der physikalischen
 und technischen Vorgänge der Turbomaschinen in Gasund
 Dampfturbinen und Turboladern
 • beherrscht die Thermodynamik der zugrundeliegenden
 thermodynamischen Systeme: Joule-Brayton-Prozess, Clausius-
 Rankine-Prozess, aufgeladener Seiliger Prozess, GuD-Prozess.
 • ist in der Lage, die Funktionsprinzipien der wesentlichen
 Turbomaschinen-Komponenten und deren Zusammenwirken zu
 erkennen und zu analysieren
 • Verfügt über Kenntnisse über die Auslegung von Turbomaschinen mit
 numerischen Methoden und Versuchstechnik in Turbomaschinen
 • erkennt die technischen Grenzen der verschiedenen
 Turbomaschinentypen und kann diese begründen
 • beherrscht die analytische Durchdringung der eindimensionalen
 Betrachtung von Arbeitsumsetzung, Geschwindigkeitsdreiecken und
 Verlusten bei axialen und radialen Turbokompressoren und Turbinen
 und den daraus resultierenden Konsequenzen für deren Konstruktion
 • verfügt über vertiefte Kenntnisse des Betriebsverhaltens und der
 Regelungsinstrumente der Kompressoren und Turbinen

13. Inhalt:
 - Einführung und Grundlagen
 - Bauarten von Thermischen Turbomaschinen
 - Thermodynamik der Systemprozesse
 - Einsatzspektrum und Wahl des Turbomaschinentyps
 - Axialverdichter
 - Axialturbinen
 - Radialverdichter und Radialturbinen
 - Betriebszustände, Regelung und Betriebsverhalten
 - Auslegung mit numerischen Methoden
 - Versuchstechnik in Turbomaschinen
14. Literatur:
- Casey, M., Thermische Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
- Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005

15. Lehrveranstaltungen und -formen: 308201 Vorlesung und Übung Thermische Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium 138 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name: 30821 Thermische Strömungsmaschinen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PPT-Präsentationen, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 30870 Praktikum Thermische Turbomaschinen

2. Modulkürzel: 042310020
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modul: 30870 Praktikum Thermische Turbomaschinen
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Jürgen Mayer
9. Dozenten: • Gerhard Eyb
 • Markus Schatz
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 Spezialisierungsfächer A (ING)
 Gruppe Energietechnik
 Thermische Turbomaschinen
11. Empfohlene Voraussetzungen:
 Vorlesung Grundlagen der Thermischen Strömungsmaschinen
12. Lernziele:
 Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.
13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 • Gasturbine: Die Studierenden untersuchen des Betriebsverhaltens einer Gasturbine. Dabei werden bei unterschiedlichen Belastungszuständen Messgrößen erfasst und daraus die wesentlichen Kenngrößen bestimmt.
 • Radialverdichter: Es wird das Kennfeld eines Radialverdichters abgefahren und an verschiedenen Betriebspunkten werden die wichtigsten Kenngrößen aus den Messwerten bestimmt.
 • Axialgebläse: An einem Axialgebläse werden Strömungsmessungen durchgeführt, die Ergebnisse daraus werden in Form von Geschwindigkeitsdreiecken in die Charakteristik des Gebläses eingebunden.
 • Labyrinthdichtung: Die Studenten bestimmen an einer Labyrinthdichtung die besonderen Eigenschaften dieser Art von Wellenabdichtung.
 • Schwingungen in Turbomaschinen: An einzelnen Schaufen und an einem rotierenden Laufrad werden Untersuchungen zum Schwingungsverhalten durchgeführt.
14. Literatur: Praktikumsunterlagen
15. Lehrveranstaltungen und -formen:
 • 308701 Praktikumsversuch Gasturbine
 • 308702 Praktikumsversuch Radialverdichter
 • 308703 Praktikumsversuch Axialgebläse
 • 308704 Praktikumsversuch Labyrinthdichtung
 • 308705 Praktikumsversuch Schwingungen in Turbomaschinen
 • 308706 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 308707 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 308708 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name: 30871 Praktikum Thermische Turbomaschinen (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
250 Gruppe Fahrzeug- und Motorentechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>251</th>
<th>Agrartechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>252</td>
<td>Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td></td>
<td>253</td>
<td>Kraftfahrzeuge</td>
</tr>
<tr>
<td></td>
<td>254</td>
<td>Verbrennungsmotoren</td>
</tr>
</tbody>
</table>
251 Agrartechnik

Zugeordnete Module:

- 2511 Kernfächer mit 6 LP
- 2512 Kern-/Ergänzungsfächer mit 6 LP
- 2513 Ergänzungsfächer mit 3 LP
- 33720 Praktikum Agrartechnik
2513 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
30600 Basics of Air Quality Control
32620 Baumaschinen
32630 Entsorgungslogistik
Modul: 30600 Basics of Air Quality Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500026</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr.-Ing. Günter Baumbach</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Günter Baumbach</td>
</tr>
<tr>
<td></td>
<td>• Ulrich Vogt</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Energietechnik</td>
<td></td>
</tr>
<tr>
<td>→ Feuerungs- und Kraftwerkstechnik</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsfächer mit 3 LP</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Fahrzeug- und Motorentechnik</td>
<td></td>
</tr>
<tr>
<td>→ Agrartechnik</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsfächer mit 3 LP</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The graduates of the module have understood pollutants formation, their sources and dependencies as well the air pollutants behavior in the atmosphere. Thus the student has acquired the basis for further understanding and application of air pollution control studies and measures.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>I. Lecture Basics of Air Quality Control, 2 SWh</td>
</tr>
<tr>
<td>• Clean air and air pollution, definitions</td>
<td></td>
</tr>
<tr>
<td>• Natural sources of air pollutants</td>
<td></td>
</tr>
<tr>
<td>• History of air pollution and air quality control</td>
<td></td>
</tr>
<tr>
<td>• Pollutant formation during combustion and industrial processes</td>
<td></td>
</tr>
<tr>
<td>• Dispersion of air pollutants in the atmosphere: Meteorological influences, inversions</td>
<td></td>
</tr>
<tr>
<td>• Atmospheric chemical transformations</td>
<td></td>
</tr>
<tr>
<td>• Ambient air quality</td>
<td></td>
</tr>
<tr>
<td>II. Excursion to an industrial plant with abatement technologies, 8 h</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Text book „Air Quality Control“ (Günter Baumbach, Springer Verlag); Scripts of the lectures, News on topics from internet (e.g. UBA, LUBW)</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>• 306001 Vorlesung Einführung in die Luftreinhaltung</td>
<td></td>
</tr>
<tr>
<td>• 306002 Excursion Einführung in die Luftreinhaltung</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Time of Attendance: 28 h Lecture + 8 h Excursion = 36 h</td>
<td></td>
</tr>
<tr>
<td>Self study: 54 h</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
</tr>
<tr>
<td>30601 Basics of Air Quality Control (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Black board, PowerPoint Presentations</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 32620 Baumaschinen

2. Modulkürzel: 072100014 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Christian Häfner
9. Dozenten: Christian Häfner

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 -> Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 -> Gruppe Fahrzeug- und Motorentechnik
 -> Agrartechnik
 -> Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 -> Gruppe Werkstoff- und Produktionstechnik
 -> Fördertechnik und Logistik
 -> Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele: Im Modul Baumaschinen sollen die Studierenden
 • den Aufbau und den Einsatz verschiedener Erdbewegungsmaschinen verstehen lernen.
 • die Schwerpunkte der Auslegung von Komponenten für Hydraulikbagger erlernen
 • sollen in der Lage sein, die grundsätzliche Dimensionierung von Baumaschinen zu verstehen und statische und dynamische Festigkeitsnachweise nachzuvollziehen.
 • die Arbeitsweise und Aufgaben von verschiedenen Transport- und Aufbereitungsgeräten für Beton und Mörtel erlernen

13. Inhalt: Im ersten Teil der Vorlesung wird zunächst die Einordnung und Systematisierung der unterschiedlichen Baumaschinen vorgestellt:
 Erdbewegungsmaschinen:
 • Seil- und Hydraulikbagger
 • Planier- und Rammbagger
 • Lader
 • Scraper
 • Grader
 • Erdtransportgeräte
 Dabei wird ein Schwerpunkt in der Auslegung von Komponenten für Hydraulikbagger gelegt:
 • Grabkräfte
• Hydraulik
• Standsicherheit
• Festigkeitsnachweis der Arbeitseinrichtung.

Die Dimensionierung hydraulischer Antriebssysteme von Baumaschinen wird durch mehrere Vorlesungsbegleitende Übungen erklärt.

Im zweiten Teil werden Transport- und Fördermittel für Beton und Mörtel als Baustoffe vorgestellt.
Die Schwerpunkte liegen dabei in:
• Betonaufbereitung
• Transport- und Fördermittel für Beton und Mörtel
• Transportfahrzeuge
• Betonpumpen (Verteilemast, Hydraulik, Betriebsdatenerfassung, Robotik)
• Mörtelmaschinen
• Verdichtungsmaschinen und
• Betonformgebungsanlagen.

14. Literatur:
• Peter Grimshaw, Excavators ISBN 0- 7137-1335-6
• B. Huxley, Opencast Coal, Plant & Equipment ISBN 1-871565-12-X
• N.N. Firmenschrift Rhein Braun, Unternehmen Braunkohle ISBN 3-7743-0225-1
• K. Haddock, Giant Earthmovers ISBN 0-7603-0369-X
• M. Engel, Erdbewegungsmaschinen ISBN 3-86133-222-1

15. Lehrveranstaltungen und -formen: 326201 Vorlesung + Übung : Baumaschinen

16. Abschätzung Arbeitsaufwand:
21 Std. Präsenz
24 Std. Vor-/Nachbearbeitung
45 Std. Prüfungsvorbereitung und Prüfung
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32621 Baumaschinen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
Modul: 32630 Entsorgungslogistik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072100015</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2011**
 - Vorgezogene Master-Module
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Fahrzeug- und Motorentechnik
 - Agrartechnik
 - Ergänzungsfächer mit 3 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Werkstoff- und Produktionstechnik
 - Fördertechnik und Logistik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

Grundkenntnisse im Bereich Logistik sind wünschenswert. Diese werden z. B. im B.Sc.-Modul 13340 Logistik und Fabrikbetriebslehre an der Universität Stuttgart vermittelt.

12. Lernziele:

13. Inhalt:

- Einleitung
- Rechtliche Rahmenbestimmungen
- Abfallarten und -mengen
- Sammelsysteme
- Transport-, Förder- und Umschlagsysteme
- Deponietechnik/ Ablagerung
- Grundlagen der Abfallbehandlung
- EDV-Einsatz in der Entsorgungswirtschaft
- Anlagenbeispiele

14. Literatur:

15. Lehrveranstaltungen und -formen: 326301 Vorlesung Entsorgungslogistik

16. Abschätzung Arbeitsaufwand: 30 Std. Präsenz
30 Std. Vor-/Nachbearbeitung
30 Std. Prüfungsvorbereitung und Prüfung
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32631 Entsorgungslogistik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
2512 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
</tr>
<tr>
<td>13900</td>
<td>Ackerschlepper und Ölhydraulik</td>
</tr>
<tr>
<td>14020</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
</tr>
<tr>
<td>32290</td>
<td>Konstruktion der Fahrzeuggetriebe</td>
</tr>
<tr>
<td>32330</td>
<td>Getriebelehre: Grundlagen der Kinematik</td>
</tr>
<tr>
<td>32940</td>
<td>Landmaschinen I und II</td>
</tr>
</tbody>
</table>
Modul: 13900 Ackerschlepper und Ölhydraulik

2. Modulkürzel: 070000001 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Stefan Böttinger
9. Dozenten: Stefan Böttinger
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung durch 4 Fachsemester
12. Lernziele: Die Studierenden können
• die wesentlichen Anforderungen der Landwirtschaft an landwirtschaftliche Maschinen, insbesondere Ackerschlepper, benennen und erklären
• ölhydraulischen Komponenten bezüglich ihrer Verwendung in Anlagen benennen und erklären
• unterschiedliche technischen Ausprägungen an Maschinen und Geräten und ölhydraulischen Anlagen bewerten

13. Inhalt:
• Entwicklung, Bauarten und Einsatzbereiche von AS
• Stufen-, Lastschalt-, stufenlose und leistungsverzweigte Getriebe
• Motoren und Zusatzaggregate
• Fahrwerke und Fahrkomfort
• Fahrmechanik, Kraftübertragung Rad/Boden
• Fahrzeug und Gerät
• Strömungstechnische Grundlagen
• Energiewandler: Hydropumpen und -motoren, Hydrozylinder
• Anlagenelemente: Ventile, Speicher, Wärmetauscher
- Grundschaltungen (Konstantstrom, Konstantdruck, Load Sensing)
- Steuerung und Regelung von ölhydraulischen Anlagen
- Anwendungsbeispiele

14. Literatur:
- Skript
- Eichhorn et al: Landtechnik. Ulmer

15. Lehrveranstaltungen und -formen:
- 139001 Vorlesung und Übung Ackerschlepper und Ölhydraulik
- 139002 Praktikumsversuch 1, wählbar aus dem APMB-Angebot des Instituts
- 139003 Praktikumsversuch 2, wählbar aus dem APMB-Angebot des Instituts

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13901 Ackerschlepper und Ölhydraulik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer, Tafel, Skript

20. Angeboten von:
Modul: 32330 Getriebelehre: Grundlagen der Kinematik

2. Modulkürzel: 072600005
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Bettina Rzepka
9. Dozenten: Bettina Rzepka

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe: Produktentwicklung und Konstruktionstechnik
 → Konstruktionstechnik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:
 In diesem Modul lernen die Studierenden
 • die Systematik und die unterschiedlichen Bauformen von Getrieben zu strukturieren,
 • die Lagensynthese von Gelenkgetrieben durchzuführen,
 • die Mechanismen und Getrieben unter Anwendung von grafischen Lösungsverfahren zu analysieren und zu modifizieren,
 • Übersetzungen und Drehzahlen von Umlaufgetrieben zu ermitteln,
 • Kurvengetriebe und viergliedrige Kurbelgetriebe zu unterteilen.

13. Inhalt:
 • Überblick über gleichförmig und ungleichförmig übersetzende Getriebe
 • Bauformen räumlicher und ebener Vielgelenk-Ketten Systematik der Viergelenkkette, Bauformen von Viergelenkgetrieben
 • Grafische und analytische Ermittlung von Geschwindigkeiten und Beschleunigungen an eben bewegten Getriebegliedern
 • Relativbewegungen mehrgliedriger Systeme Krümmungsverhältnisse von Bahnenkurven, Krümmungsverwandtschaft
 • Geschwindigkeits- und Beschleunigungspol, Polbahnen, Wende- und Tangentialkreis bewegter Ebenen Bewegungsgesetze für Kurbelgetriebe
 • Ebene und räumliche Kurvengetriebe

14. Literatur:
 Rzepka, B.: Getriebelehre. Skript zur Vorlesung
 Kerle, H; u.a.: Einführung in die Getriebelehre. Wiesbaden: Teubner, 2007
 Steinhilper, W; u.a.: Kinematische Grundlagen ebener Mechanismen und Getriebe. Würzburg: Vogel, 1993

15. Lehrveranstaltungen und -formen:
 323301 Vorlesung + Übung: Getriebelehre: Grundlagen der Kinematik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbstdstudium: 138 Stunden
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32331 Getriebelehre: Grundlagen der Kinematik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Maschinenelemente</td>
</tr>
</tbody>
</table>
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

2. Modulkürzel: 041900002
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Piesche
9. Dozenten: Manfred Piesche

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2008, 5. Semester
- Ergänzungsmodule
- Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
- Kernmodule
- Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
- Ergänzungsmodule
- Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
- Kernmodule
- Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
- Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
- Gruppe Fahrzeug- und Motorentechnik
- Agrartechnik
- Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Gruppe Verfahrenstechnik
- Mechanische Verfahrenstechnik
- Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Gruppe Verfahrenstechnik
- Mechanische Verfahrenstechnik
- Kernfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
- Vertiefungsmodul
- Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
- Inhaltlich: Strömungsmechanik
- Formal: keine

12. Lernziele:
- Die Studierenden beherrschen die Grundoperationen der Mechanischen Verfahrenstechnik: Trennen, Mischen, Zerteilen und Agglomerieren.

13. Inhalt:
- Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
• Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
• Einphasenströmungen in Leitungssystemen
• Transportverhalten von Partikeln in Strömungen
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zylkonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h

Summe: 180 h

17. Prüfungsnummer/n und -name: 14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Michael Bargende</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>→ Kompetenzfeld II</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
</tr>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td>→ Agrartechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td>→ Verbrennungsmotoren</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td>→ Verbrennungsmotoren</td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodul</td>
</tr>
<tr>
<td>→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundkenntnisse aus 1. bis 4. Fachsemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorlesungsmanuskript</td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen: 113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 32290 Konstruktion der Fahrzeuggetriebe

2. Modulkürzel: 072600004 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Bernd Bertsche
9. Dozenten: • Bernd Bertsche
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: 322901 Vorlesung + Übung Konstruktion der Fahrzeuggetriebe
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32291 Konstruktion der Fahrzeuggetriebe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 32940 Landmaschinen I und II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070000002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldate:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Stefan Böttinger</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Böttinger</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Die Studierenden können - die wesentlichen Anforderungen der Landwirtschaft an landwirtschaftliche Verfahren und Maschinen benennen und erklären - unterschiedliche technische Ausprägungen an Maschinen und Geräten bewerten</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>329401 Vorlesung und Übung Landmaschinen I + II</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32941 Landmaschinen I und II (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

Stand: 23. Oktober 2012
20. Angeboten von:
Modul: 14160 Methodische Produktentwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hansgeorg Binz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hansgeorg Binz</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Ergänzungsmodule
 - Kernmodule
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Ergänzungsmodule
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Fahrzeug- und Motorentechnik
 - Agrartechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Werkstoff- und Produktionstechnik
 - Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe: Produktentwicklung und Konstruktionstechnik
 - Konstruktionstechnik
 - Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodulle
 - Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:

- Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module
 - Konstruktionslehre I - IV oder
 - Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
 - Konstruktion in der Medizingerätetechnik I + II

12. Lernziele:

Im Modul Methodische Produktentwicklung

14. Literatur:

• Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:

• 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudium / Nacharbeitszeit: 130 h
Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min |

18. Grundlage für ... : |

19. Medienform: Beamer-Präsentation, Tafel |

20. Angeboten von: Institut für Konstruktionstechnik und Technisches Design |
Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Maier</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Thomas Maier
• Markus Schmid |
→ Ergänzungsmodule
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit

B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kernfach mit 6 LP

M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodul
→ Wahlmöglichkeit Gruppe 2: Konstruktion

| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder
Grundzüge der Maschinen-konstruktion I / II |
|----------------|--|
| 12. Lernziele: | Im Modul Technisches Design
• besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung, |
können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen:

Die Studierenden

- erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,
- beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,
- beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
- können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
- beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
- haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

13. Inhalt:

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:

- Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
- Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
- Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:

- 142401 Vorlesung Technisches Design
- 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
2511 Kernfächer mit 6 LP

Zugeordnete Module:

13900 Ackerschlepper und Ölhydraulik
32940 Landmaschinen I und II
Modul: 13900 Ackerschlepper und Ölhydraulik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Stefan Böttinger

9. Dozenten: Stefan Böttinger

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmoduls
 → Kernmodule
- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmoduls
 → Kernmodule
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kernfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmoduls
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung durch 4 Fachsemester

12. Lernziele:

- Die Studierenden können
- die wesentlichen Anforderungen der Landwirtschaft an landwirtschaftliche Maschinen, insbesondere Ackerschlepper, benennen und erklären
- ölhydraulischen Komponenten bezüglich ihrer Verwendung in Anlagen benennen und erklären
- unterschiedliche technischen Ausprägungen an Maschinen und Geräten und ölhydraulischen Anlagen bewerten

13. Inhalt:

- Entwicklung, Bauarten und Einsatzbereiche von AS
- Stufen-, Lastschalt-, stufenlose und leistungsverzweigte Getriebe
- Motoren und Zusatzaggregate
- Fahrwerke und Fahrkomfort
- Fahrmechanik, Kraftübertragung Rad/Boden
- Fahrzeug und Gerät
- Strömungstechnische Grundlagen
- Energiewandler: Hydropumpen und -motoren, Hydrozyylinder
- Anlagenelemente: Ventile, Speicher, Wärmetauscher
- Grundschaltungen (Konstantstrom, Konstantdruck, Load Sensing)
- Steuerung und Regelung von ölhydraulischen Anlagen
- Anwendungsbeispiele

| 14. Literatur: | Skript
| | Eichhorn et al: Landtechnik. Ulmer |

| 15. Lehrveranstaltungen und -formen: | 139001 Vorlesung und Übung Ackerschlepper und Ölhydraulik
| | 139002 Praktikumsversuch 1, wählbar aus dem APMB-Angebot des Instituts
| | 139003 Praktikumsversuch 2, wählbar aus dem APMB-Angebot des Instituts |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 138 h |

Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 13901 Ackerschlepper und Ölhydraulik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | Beamer, Tafel, Skript |

| 20. Angeboten von: |
Modul: 32940 Landmaschinen I und II

2. Modulkürzel: 070000002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Stefan Böttinger
9. Dozenten: Stefan Böttinger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen:
12. Lernziele: Die Studierenden können
 - die wesentlichen Anforderungen der Landwirtschaft an
 landwirtschaftliche Verfahren und Maschinen benennen und erklären
 - unterschiedliche technische Ausprägungen an Maschinen und Geräten
 bewerten
13. Inhalt:
 • Maschinenelemente und Baugruppen, Stoffeigenschaften
 • Grundfunktionen: Verteilen: Sä- u. Pflanzgeräte, Düngereinrichtung, Geräte
 für Pflanzenschutz, Beregnung und Heuwirtschaft.
 • Schneiden: Mähgeräte, Häckslers.
 • Sammeln u. Verdichten: Ladewagen, Quaderballen- u. Rundballenpressen.
 • Trennen u. Fördern: Trenneigenschaften, Förderelemente, Mähdrescher, Kartoffel- und Rübenmaschinen.
 • Bodenbearbeitung: Wirkungsweise der Bodenwerkzeuge, Primär-
 (Pflüge) und Sekundärbodenbearbeitung (Grubber, Eggen).
 • Übungen: Beispiele für Aufbau, Funktion und Konstruktion von
 Landmaschinen zur Bodenbearbeitung, Bestellung, Ernte und
 Aufbereitung.
14. Literatur: Böttinger, S.: Landmaschinen I und II. Skripte zur Vorlesung
 Eichhorn, H. et al.: Landtechnik. Ulmer Verlag 1999
 Kutzbach, H.D.: Agrartechnik - Grundlagen, Ackerschlepper,
 Fördergeräte, Forschungsbericht Agrartechnik, 476, Hohenheim 2009
15. Lehrveranstaltungen und -formen: 329401 Vorlesung und Übung Landmaschinen I + II
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
17. Prüfungsnummer/n und -name: 32941 Landmaschinen I und II (PL), mündliche Prüfung, 40 Min.,
 Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 33720 Praktikum Agrartechnik

2. Modulkürzel: 070000003
3. Leistungspunkte: 3.0 LP
4. SWS: 3.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Stefan Böttinger
9. Dozenten: Stefan Böttinger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
11. Empfohlene Voraussetzungen:
 • Untersuchungen an Ackerschleppern: Aufnahme von Zugkraft / Schlupfkurven und von Motorkennfeldern (Verlauf von Motorleistung, Drehmoment und Kraftstoffverbrauch)
 • Lastkollektive an Häckslern: Aufbau und Funktion von Häckslern, Lastkollektive als Grundlage der Dimensionierung, praktische Untersuchung zur Aufnahme von Lastkollektiven
 • GPS-Messtechnik in der Landwirtschaft: Aufbau und Funktion von Globalen Positionier Systemen, Fehler bei der Positionsbestimmung, landtechnische Anwendungen
 • Strömungsmessung und Schwebekennlinien von Getreide: Untersuchungen an pneumatischen Förderanlagen, Ermittlung von Stoffeigenschaften landwirtschaftlicher Güter
15. Lehrveranstaltungen und -formen:
 • 337201 Spezialisierungsfachversuch 1
 • 337202 Spezialisierungsfachversuch 2
 • 337203 Spezialisierungsfachversuch 3
 • 337204 Spezialisierungsfachversuch 4
 • 337205 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 337206 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 337207 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
 • 337208 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 30 Stunden
 Selbststudium / Nacharbeitszeit: 60 Stunden
 Summe: 90 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33721</th>
<th>Praktikum Agrartechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
253 Kraftfahrzeuge

Zugeordnete Module:

- 2531 Kernfächer mit 6 LP
- 2532 Kern-/Ergänzungsfächer mit 6 LP
- 2533 Ergänzungsfächer mit 3 LP
- 37810 Praktikum Kraftfahrzeuge
2533 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 37760 Fahreigenschaften des Kraftfahrzeugs
Modul: 37760 Fahreigenschaften des Kraftfahrzeugs

2. Modulkürzel: 070820105
5. Moduldauer: 2 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Jens Neubeck
9. Dozenten: • Jochen Wiedemann
• Jens Neubeck
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Kraftfahrzeuge
→ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
Kraftfahrzeuge I/II
12. Lernziele:
Die Studierenden kennen die grundlegenden Zusammenhänge und Einflussgrößen, welche die Fahreigenschaften eines Kraftfahrzeugs bestimmen und die Wechselbeziehung zwischen diesen Einflussgrößen. Sie kennen die wesentlichen Methoden zur Bestimmung und Beeinflussung der Fahreigenschaften.
13. Inhalt:
• Einführung, Eigenschaften der Reifen, Fahrzeug-Querdynamik (Fahrverhalten), Vertikalbewegungen des Fahrzeugs (Federungsverhalten), Fahrdemonstration.
• Geeignete Methoden der Mechanik und Mathematik, mathematische Modelle, kombinierte Bewegungen, ausgewählte Einzelprobleme.
14. Literatur:
• Wiedemann, J.: Fahreigenschaften des Kraftfahrzeugs I, Vorlesungsumdruck
• Neubeck, J.: Fahreigenschaften des Kraftfahrzeugs II, Vorlesungsumdruck
15. Lehrveranstaltungen und -formen: 377601 Vorlesung Fahreigenschaften des Kraftfahrzeugs I/II
16. Abschätzung Arbeitsaufwand:
Präsenzzeit 21 h,
Selbststudium und Nachbearbeitung 69 h,
Gesamt 90 h
17. Prüfungsnummer/n und -name: 37761 Fahreigenschaften des Kraftfahrzeugs (BSL), schriftliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für...:
19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien
20. Angeboten von:
2532 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 13590 Kraftfahrzeuge I + II
- 33030 Grundlagen der Fahrzeugtechnik
- 36640 Spezielle Kapitel bei Fahrzeugen
Modul: 33030 Grundlagen der Fahrzeugtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070820102</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Nils Widdecke

9. Dozenten:
- Jochen Wiedemann
- Nils Widdecke
- Andreas Wiesebrock

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Kraftfahrzeuge I/II

12. Lernziele:
Die Studierenden kennen die grundlegenden Beschreibungsgleichungen der Fahrzeugaerodynamik, den Einfluss der Körperform auf die Fahrzeugum- und -durchströmung sowie alle wesentlichen Fahrzeugkomponenten zum Antreiben, Steuern und Bremsen.

13. Inhalt:
- Kraftfahrzeug-Aerodynamik I: Strömungsgleichungen; numerische Strömungssimulation; Luftkräfte und -momente; Einflüsse der Karosserieform; Bodengruppengestaltung; Kühlfluftdurchströmung; Anströmbedingungen; Fahrbahndarstellung; Be- und Entlüftung; Motorkühlung; Bremsenkühlung; Scheibenwischer.
- Kraftfahrzeug-Komponenten: Kraftübertragung: Kupplung, Getriebe, Gelenkwellen; automatische/stufenlose Getriebe; Lenkung: Lenkgetriebe, Servolenkungen, Überlagerungslenkung, elektrische Lenkung; Bremsanlagen: Gesetzliche Vorschriften, theoretische Grundlagen, Komponenten von Betriebsbremsanlagen, Nutzfahrzeugbremsanlagen; Bremssysteme; Thermokomponenten.

14. Literatur:
- Vorlesungsmanuskripte Kraftfahrzeug-Komponenten, KFZ-Aerodynamik I

15. Lehrveranstaltungen und -formen:
- 330301 Vorlesung Kraftfahrzeug-Aerodynamik I
- 330302 Vorlesung Kraftfahrzeug-Komponenten

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h, Selbststudium und Nachbearbeitung: 138 h, Gesamt: 180 h

17. Prüfungsnummer/n und -name:
33031 Grundlagen der Fahrzeugtechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:
19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Jochen Wiedemann
9. Dozenten: Jochen Wiedemann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

14. Literatur:
 • Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck, 2007
 • Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005
15. Lehrveranstaltungen und -formen:
 - 135901 Vorlesung Kraftfahrzeuge I + II
 - 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
 13590 Kraftfahrzeuge I + II

19. Medienform:
 Beamer, Tafel

20. Angeboten von:
 Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 36640 Spezielle Kapitel bei Fahrzeugen

2. Modulkürzel: 070820104
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 2 Semester
6. Turnus: jedes Semester
8. Modulverantwortlicher: Nils Widdecke
9. Dozenten: • Jochen Wiedemann • Nils Widdecke
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeuge
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Kraftfahrzeuge I/II

12. Lernziele:

13. Inhalt:
• Fahreigenschaften I + II: Eigenschaften der Reifen, Fahrzeug-Querdynamik (Fahrverhalten), Vertikalbewegungen des Fahrzeugs (Federungsverhalten), Fahrdemonstration. Geeignete Methoden der Mechanik und Mathematik, mathematische Modelle, kombinierte Bewegungen, ausgewählte Einzelprobleme.
• Aerodynamik: Strömungsgleichungen, numerische Strömungssimulation, Einfluss spezieller Fahrzeugkomponenten auf Luftkräfte und -momente, spezielle Anströmbedingungen, Simulation der Straßenfahrt.
• Windkanal-Versuchs- und Messtechnik: Windkanalbauformen und resultierende Unterschiede zwischen Windkanal und Straße, spezielle Windkanaleffekte, Windkanalmesstechniken.
• Planung und Konzeption von Prüfständen: Grundlagen und Definitionen; von der Prüfaufgabe zum Prüfstand; Systematik der Prüfstandsorten; Prüfanlage als Gesamtsystem: Gebäude, technische Versorgungssysteme, Prüftechnik; Planungssprozess; ausgeführte Anlagen; gesetzliche Genehmigungsgrundlagen; Sondergebiete: Arbeitsschutz, Schallschutz, Erschütterungs- und Schwerbelastungsschutz, Sicherheitstechnik; Kosten von Prüfanlagen.
• Projektmanagement in der Kfz-Industrie: Begriffe; Geschichtliche Entwicklung; Systemtechnik. Projektorganisation: Projektarten,
Projektauftrag, Organisationskonzepte, Projektpersonal.

- Fahrzeugakustik: Mess- und Analysentechniken; Allgemeines zur Geräuschenstehung und Minderungsmaßnahmen; Antriebsgeräusche; Reifen-Fahrhahn-Geräusch; Rad-Schiene-Geräusch; Umströmungsgeräusche, Maßnahmen an der Karosserie. Problematik des Straßenverkehrslärms; Geräusche von motorisierten Zweirädern, Geräusche von alternativen Antrieben; Geräuschenentwicklung von Trommel- und Scheibenbremsen; Sonstige Störgeräusche; Datenerfassung und Signalanalyse; Numerische Akustik in der Fahrzeugentwicklung; Psychoakustik; Sounddesign.

- Karosserietechnik: Produkt; Historie und Gegenwart; Gesamtfahrzeug; rechnerische Simulation; Karosseriewerkstoffe; Verbindungs- und Oberflächentechnik; Bauweisen; Packaging Interieur und Exterieur; passive Sicherheit, Karosserieigenschaften.

- Kfz-Recycling: Umwelt und Ressourcen; Grundlagen und Begriffe; Recycling bei der Kfz-Produktion, während des Produktgebrauchs und am Kfz-Lebensende; Werkstoffeinsatz am Pkw; Technologieeinsatz; Recyclingprozesse; Metallrecycling; Recycling von Betriebsflüssigkeiten; Elektrik / Elektronik, Kunststoffe, Reststoffe; Umlaubbilanz von Recyclingprozessen; Umsetzung Design für Recycling; Recyclinggerechte Konstruktion; Demontage- und Recyclingplanung.

14. Literatur:
- Nachfolgend genannte Vorlesungsskripte (z. B. Kfz-Aerodynamik II) und die dort angegebene weiterführende Literatur

15. Lehrveranstaltungen und -formen: 366401 Vorlesung Spezielle Kapitel bei Fahrzeugen
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>36641 Spezielle Kapitel bei Fahrzeugen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
2531 Kernfächer mit 6 LP

Zugeordnete Module:

13590 Kraftfahrzeuge I + II
33030 Grundlagen der Fahrzeugtechnik
Modul: 33030 Grundlagen der Fahrzeugtechnik

2. Modulkürzel: 070820102
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Nils Widdecke

9. Dozenten:
• Jochen Wiedemann
• Nils Widdecke
• Andreas Wiesebrock

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Fahrzeug- und Motorentechnik
➞ Kraftfahrzeuge
➞ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Fahrzeug- und Motorentechnik
➞ Kraftfahrzeuge
➞ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Kraftfahrzeuge I/II

12. Lernziele:
Die Studierenden kennen die grundlegenden Beschreibungsgleichungen der Fahrzeugaerodynamik, den Einfluss der Körperform auf die Fahrzeugum- und -durchströmung sowie alle wesentlichen Fahrzeugkomponenten zum Antreiben, Steuern und Bremsen.

13. Inhalt:
• Kraftfahrzeug-Aerodynamik I: Strömungsgleichungen; numerische Strömungssimulation; Luftkräfte und -momente; Einflüsse der Karosserieform; Bodengruppengestaltung; Kühlflutdurchströmung; Anströmbedingungen; Fahrbahndarstellung; Be- und Entlüftung; Motorkühlung; Bremsenkühlung; Scheibenwascher.
• Kraftfahrzeug-Komponenten: Kraftübertragung: Kupplung, Getriebe, Gelenkwellen; automatische/stufenlose Getriebe; Lenkung: Lenkgetriebe, Servolenkung, Überlagerungslenkung; Elektrische Lenkung; Bremsanlagen: Gesetzliche Vorschriften, theoretische Grundlagen, Komponenten von Betriebsbremsanlagen, Nutzfahrzeugbremsanlagen; Bremsysteme; Thermokomponenten.

14. Literatur:
• Vorlesungsmanuskripte Kraftfahrzeug-Komponenten, KFZ-Aerodynamik I

15. Lehrveranstaltungen und -formen:
• 330301 Vorlesung Kraftfahrzeug-Aerodynamik I
• 330302 Vorlesung Kraftfahrzeug-Komponenten

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h, Selbstdstudium und Nachbearbeitung: 138 h, Gesamt: 180 h

17. Prüfungsnummer/n und -name: 33031 Grundlagen der Fahrzeugtechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Jochen Wiedemann
9. Dozenten: Jochen Wiedemann

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit

 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Fahrzeug- und Motorentechnik
 ➔ Kraftfahrzeuge
 ➔ Kern-/Ergänzungsfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Fahrzeug- und Motorentechnik
 ➔ Kraftfahrzeuge
 ➔ Kernfächer mit 6 LP

 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodul
 ➔ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

14. Literatur:
 • Wiedemann, J.: Kraftfahrzeuge I-II, Vorlesungsumdruck, 2007
 • Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005
15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbstdieumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
- 13590 Kraftfahrzeuge I + II

19. Medienform:
- Beamer, Tafel

20. Angeboten von:
- Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 37810 Praktikum Kraftfahrzeuge

2. Modulkürzel: 070820106
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Nils Widdecke

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer A (ING)
→ Gruppe Fahrzeug- und Motorentechnik
→ Kraftfahrzeuge

11. Empfohlene Voraussetzungen: Kraftfahrzeuge I/II

12. Lernziele:
Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen. Die Studierenden

• kennen die Methoden, Verfahren und Prüfeinrichtungen zur Prüfung von Bauteilen und Baugruppen von Kraftfahrzeugen,
• können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen,
• sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

• Modellwindkanal: Im Versuch Modellwindkanal werden die Wechselbeziehungen zwischen den wichtigsten Strömungsgleichungen (Kontinuitäts- und Bernoulli-Gleichung) und dimensionslosen Beiwerten und Kennzahlen (Druck-, Auftriebs- und Widerstandsbeiwert, etc., Reynolds- und Machzahl) in der praktischen Versuchsanwendung veranschaulicht. Zur Beurteilung der Güte der experimentellen Simulation der Straßenfahrt im Windkanal wird insbesondere der Einfluss der Grenzschichtkonditionierung sowie die Darstellung der bewegten Fahrbahn und der drehenden Räder auf die Druckverteilung und die daraus resultierenden Kräfte und Momente am Fahrzeugmodell untersucht.
• Außengeräuschmessung: Der Versuch beinhaltet eine Übersicht über die Anforderungen der ISO362 zur beschleunigten Vorbeifahrt, sowie eine praktische Versuchsdurchführung in einer studentischen Variante.
• Straßensimulation: Der Versuch gibt einen groben Überblick über die Fahrzeugakustikprüfstände des FKFS. Das Verfahren der Straßensimulation auf einem Hydropulsprüfstand wird erklärt und im Anschluss findet ein "praktisches Erfahren" eines Simulationsergebnisses statt.
• Aeroakustik: Der Versuch behandelt den 1:1 Fahrzeugwindkanal im Bezug auf die Aeroakustik eines Kraftfahrzeugs. Verantwortliche Mechanismen und Hintergründe werden erklärt und in der Praxis "erhört".
• Kraftfahrzeugprüfstand: Im Rahmen des Versuches werden auf einem Rollenprüfstand an einem Kfz Leistungsmessungen durchgeführt. Die Versuchsdaten werden im Anschluss ausgewertet und diskutiert.

Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen:
- Modellwindkanal
- Außengeräuschmessung
- Kfz-Prüfstand
- Straßensimulation
- Aeroakustik

14. Literatur:
• Umdrucke zu den Laborversuchen und den Praktischen Übungen

15. Lehrveranstaltungen und -formen:
• 378101 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1
• 378102 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2
• 378103 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3
• 378104 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 28 h, Selbststudium und Nachbearbeitung 62 h, Gesamt 90 h

17. Prüfungsnummer/n und -name: 37811 Praktikum Kraftfahrzeuge (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
252 Kraftfahrzeugmechatronik

Zugeordnete Module:

- 2521 Kernfächer mit 6 LP
- 2522 Kern-/Ergänzungsfächer mit 6 LP
- 2523 Ergänzungsfächer mit 3 LP
- 37820 Praktikum Kraftfahrzeugmechatronik
2523 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 37790 Hybridantriebe
- 37800 Einführung in die KFZ-Systemtechnik
- 38170 Qualität automobiler Elektroniksysteme
Modul: 37800 Einführung in die KFZ-Systemtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070830103</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hans-Christian Reuss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Hettich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Kraftfahrzeugmechatronik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Kraftfahrzeugmechatronik I/II |
| 13. Inhalt: | 1. EE-Systeme im Kraftfahrzeug
Definition
Historie der Systeme
Sensoren
Aktoren
Steuergeräte
Stecker und Kabelbäume
Bordnetz
Bussysteme
Systemarchitektur
Elektrische Antriebe
2. Mess- und Steuerungstechnik
3. Fahrzeugelektronik
4. Elektrische Antriebstechnik
5. Elektrofahrzeuge
6. E-Mobilität
7. Elektrofahrzeug-Basis-Technik |
| 14. Literatur: | • Vorlesungsskript
| 15. Lehrveranstaltungen und -formen: | 378001 Vorlesung Einführung in die KFZ-Systemtechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 21 h, Selbststudium und Nachbearbeitung 69 h
Gesamt 90 h |
| 17. Prüfungsnummer/n und -name: | 37801 Einführung in die KFZ-Systemtechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Tafelanschrieb, PPT-Präsentationen, Overheadfolien |
| 20. Angeboten von: | |
Modul: 37790 Hybridantriebe

2. Modulkürzel: 070830105
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hans-Christian Reuss
9. Dozenten: Karl-Ernst Noreikat

Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
Gruppe Fahrzeug- und Motorentechnik
Kraftfahrzeugmechatronik
Gruppe Fahrzeug- und Motorentechnik

11. Empfohlene Voraussetzungen: keine

14. Literatur:
- Vorlesungsumdruck: „Hybridantriebe“ (Noreikat)
- Braess, Seiffert: Handbuch Kraftfahrzeugtechnik, 5. Auflage, Vieweg-Verlag
- Wallentowitz, Reif: Handbuch Kraftfahrzeugelektronik, Vieweg-Verlag
- Naunin u.a.: Hybrid-, Batterie- und Brennstoffzellen-Elektrofahrzeuge; Expert-Verlag
- Saenger-Zetina: Optimal Control with Kane Mechanics Applied to a Hybrid Power Split Transmission, Dissertation RWTH Aachen, 2009, Sierke Verlag

15. Lehrveranstaltungen und -formen: 377901 Vorlesung Hybridantriebe
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit 21 h, Selbststudium und Nachbearbeitung 69 h Gesamt 90 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>37791 Hybridantriebe (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für … :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 38170 Qualität automobiler Elektroniksysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070830104</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hans-Christian Reuss</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Fahrzeug- und Motorentechnik ➔ Kraftfahrzeugmechatronik ➔ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |
| 13. Inhalt: | |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | 381701 Vorlesung Qualität automobiler Elektroniksysteme |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnummer/n und -name: | 38171 Qualität automobiler Elektroniksysteme (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | |
2522 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
12330 Elektrische Signalverarbeitung
12350 Echtzeitdatenverarbeitung
21750 Softwaretechnik II
30920 Elektronikmotor
36980 Simulationstechnik
Modul: 12350 Echtzeitdatenverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Fahrzeug- und Motorentechnik ➔ Kraftfahrzeugmechatronik ➔ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Modul Elektrische Signalverarbeitung |

12. Lernziele:

13. Inhalt:
- Einführung in die Echtzeit-Datenverarbeitung
 - Systeme zur Echtzeit-Datenverarbeitung
 - Analoge Schnittstellen
 - Digital Signal Processors DSP
 - DSP-Systementwicklung
- Strukturen für zeitdiskrete Systeme
 - LTI-Systeme und ihre Darstellung im Blockdiagramm
 - Strukturen von IIR und FIR-Filter
 - Auswirkung der endlichen Rechengenauigkeit
- Filterentwurf
 - Entwurf von zeitdiskreten FIR-Filtern: Fenstermethode, Eigenschaften der Fenster, Kaiser-Fenster
- Frequenzanalyse und Fast Fourier Transformation
 - Fourier-Reihenentwicklung und Fourier-Transformation
 - Die Diskrete Fourier-Transformation DFT
 - Fast Fourier-Transformation FFT
 - Anwendungen
- Modulationen
 - Einführung in die digitalen Modulationen: Signalraum
 - Digitale Übertragung über den AWGN
14. Literatur:
- Vorlesungsumdruck bzw. Folien
- Übungsblätter
- Aus der Bibliothek:
 - S. M. Kuo, W. S. Gan: Digital Signal Processors, Prentice Hall
 - A. V. Oppenheim, R. W. Schafer: Zeitdiskrete Signalverarbeitung, Oldenbourg
 - weitere Literatur wird in der Vorlesung bekannt gegeben
- Praktikums-Versuchsanleitungen

15. Lehrveranstaltungen und -formen:
- 123501 Vorlesung Echtzeitdatenverarbeitung mit integrierten Vortragsübungen
- 123502 Praktikum Echtzeitdatenverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 52 h (incl. 10 h Übung)
Selbststudiumszeit / Nacharbeitszeit: 128 h
Gesamt: 180 h
4 SWS gegliedert in 2 VL und 2 Ü

17. Prüfungsnummer/n und -name:
- 12351 Echtzeitdatenverarbeitung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Studienleistung: Teilnahme am Praktikum
- 12352 Echtzeitdatenverarbeitung USL (USL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Studienleistung: Teilnahme am Praktikum

18. Grundlage für ...:
33840 Dynamische Filterverfahren

19. Medienform:
Beamer-Präsentation, Tafelanschrieb, Overhead-Projektor

20. Angeboten von:
Institut für Systemdynamik
Modul: 12330 Elektrische Signalverarbeitung

2. Modulkürzel: 074711010
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Cristina Tarin Sauer

9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Fahrzeug- und Motorentechnik
 - Kraftfahrzeugmechatronik
 - Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Systemdynamik
 - Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Modul Einführung in die Elektrotechnik

12. Lernziele:

13. Inhalt:

 • Grundlagen
 - Gleichstrom und Wechselstrom
 - Bauelemente: Diode, Transistor, Operationsverstärker
 - Gesamtkonzept zur Datenübertragung

 • Signale und Systeme
 - Transformation der unabhängigen Variable
 - Grundsignale
 - LTI-Systeme

 • Transformationen
 - Fourier-Analyse zeitkontinuierlicher und zeitdiskreter Signale und Systeme
 - Z-Transformation
 - Abtastung

 • Filter
 - Ideale und nichtideale frequenzselektive Filter
 - Zeitkontinuierliche frequenzselektive Filter
 - Filterentwurf

 • Analogische Modulationen
 - Amplitudenmodulation
 - Winkelmodulation

14. Literatur:

 • Vorlesungsumdruck (Vorlesungsfolien)
 • Übungsblätter
• Aus der Bibliothek:
 - Tietze und Schenk: Halbleiter-Schaltungstechnik
 - Oppenheim and Willsky: Signals and Systems
 - Oppenheim and Schafer: Digital Signal Processing
• Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen: 123301 Vorlesung Elektrische Signalverarbeitung: Vorlesung mit integrierten Vortragsübungen

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42h
 Nachbereitungszeit: 138h
 Gesamt: 180h

 4 SWS gegliedert in 2 VL und 2 Ü

17. Prüfungsnummer/n und -name: 12331 Elektrische Signalverarbeitung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

 • 12350 Echtzeitdatenverarbeitung
 • 33840 Dynamische Filterverfahren

19. Medienform:

 Beamer-Präsentation, Tafelnschrieb, Overhead-Projektor

20. Angeboten von:

 Institut für Systemdynamik
Modul: 30920 Elektronikmotor

| 2. Modulkürzel: | 051001024 | 5. Modulduauer: | 1 Semester |
| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Nejila Parspour |
| 9. Dozenten: | • wiss. MA
• Enzo Cardillo |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
</table>
| B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Energietechnik
→ Elektrische Maschinen und Antriebe
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Kraftfahrzeugmechatronik
→ Kern-/Ergänzungsfächer mit 6 LP |

| 11. Empfohlene Voraussetzungen: |

• N. Parspour: Bürstenlose Gleichstrommaschine mit Fuzzy Regelung für ein Herzunterstützungssystem, Shaker Verlag, Aachen, 1996 |

| 15. Lehrveranstaltungen und -formen: | 309201 Vorlesung Elektronikmotor |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h |

| 17. Prüfungsnummer/n und -name: | 30921 Elektronikmotor (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |

| 18. Grundlage für ...: |

| 19. Medienform: | Beamer, Tafel, ILIAS |

| 20. Angeboten von: | Institut für Elektrische Energiewandlung |
Modul: 36980 Simulationstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td></td>
<td>→ Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Vertiefungsmodule</td>
</tr>
<tr>
<td></td>
<td>→ Wahlmöglichkeit Gruppe 3: Produktion</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Pflichtmodule Mathematik</td>
</tr>
<tr>
<td></td>
<td>• Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsumdrucke</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 369801 Vorlesung mit integrierter Übung Simulationstechnik</td>
</tr>
<tr>
<td></td>
<td>• 369802 Praktikum Simulationstechnik</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 53 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium/ Nacharbeit: 127 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>36981 Simulationstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) sowie alle nicht elektronischen Hilfsmittel</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>12290 Systemanalyse I</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 21750 Softwaretechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Peter Göhner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Göhner</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Fahrzeug- und Motorentechnik</td>
</tr>
<tr>
<td></td>
<td>→ Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Softwaretechnik I</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• besitzen vertiefte Kenntnisse über Softwarequalität für technische Systeme</td>
</tr>
<tr>
<td></td>
<td>• wenden Softwaretechniken für bestehende technische Systeme an</td>
</tr>
<tr>
<td></td>
<td>• lernen aktuelle Themen der Softwaretechnik kennen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Konfigurationsmanagement</td>
</tr>
<tr>
<td></td>
<td>• Prototyping bei der Softwareentwicklung</td>
</tr>
<tr>
<td></td>
<td>• Metriken</td>
</tr>
<tr>
<td></td>
<td>• Formale Methoden zur Entwicklung qualitativ hochwertiger Software</td>
</tr>
<tr>
<td></td>
<td>• Wartung & Pflege von Software</td>
</tr>
<tr>
<td></td>
<td>• Reengineering</td>
</tr>
<tr>
<td></td>
<td>• Datenbanksysteme</td>
</tr>
<tr>
<td></td>
<td>• Software-Wiederverwendung</td>
</tr>
<tr>
<td></td>
<td>• Agentenorientierte Softwareentwicklung</td>
</tr>
<tr>
<td></td>
<td>• Agile Softwareentwicklung</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsskript</td>
</tr>
<tr>
<td></td>
<td>• Balzert, H.: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, 2000</td>
</tr>
<tr>
<td></td>
<td>• Sommerville, I.: Software Engineering, Addison Wesley, 2006</td>
</tr>
<tr>
<td></td>
<td>• Eckstein, J.: Agile Softwareentwicklung im Großen, dpunkt-Verlag, 2005</td>
</tr>
<tr>
<td></td>
<td>• Andresen, A.: Komponentenbasierte Softwareentwicklung mit MDA, UML2 und XML, Hanser Fachverlag, 2004</td>
</tr>
<tr>
<td></td>
<td>• Choren .R; et al.: Software Engineering for Multi-Agent Systems III, Springer-Verlag, 2005</td>
</tr>
<tr>
<td></td>
<td>• Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st2</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>217501 Vorlesung Softwaretechnik II</td>
</tr>
<tr>
<td></td>
<td>217502 Übung Softwaretechnik II</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzzeit: 56 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>21751 Softwaretechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
<tr>
<td>Institut für Automatisierungs- und Softwaretechnik</td>
<td></td>
</tr>
</tbody>
</table>
2521 Kernfächer mit 6 LP

Zugeordnete Module:

14130 Kraftfahrzeugmechatronik I + II
32950 Embedded Controller und Datennetze in Fahrzeugen
Modul: 32950 Embedded Controller und Datennetze in Fahrzeugen

2. Modulkürzel: 070830101
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: -

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hans-Christian Reuss

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeugmechatronik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
 Kraftfahrzeugmechatronik I/II

12. Lernziele:

 Ferner kennen die Studierenden verschiedene Bussysteme, die im Kraftfahrzeug eingesetzt werden. Außerdem können sie diese Bussysteme unterscheiden, sowie deren Potential erkennen und bewerten. Wichtige Entwicklungswerkzeuge können sie nutzen.

 Außerdem sind die Studierenden in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen. Die Studierenden
 • können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen
 • sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.
 • kennen Grundlagen von Kommunikation und Diagnose im Kraftfahrzeug
 • verstehen die technischen Eigenheiten und Problemfelder moderner Kommunikationssysteme und Bordnetzelektronik
 • können elektronische Systeme im Kfz analysieren sowie Fehler identifizieren und beseitigen

13. Inhalt:
 Embedded Controller:
 • Mikrorechnertechnik: Eigenschaften von analogen und digitalen Signalen
 • Struktur Mikrorechner: Aufbau eines Mikrorechners und dessen Komponenten (Speicher, Steuerwerk, Befehlsatz, Schnittstellen, ADC, DAC)
 • Embedded Systems, Embedded Controller, Verschiedenen Architekturen (Von Neumann, Harvard, Extended Harvard)
 • Übung: Praktische Programmierung von Microcontrollern mit der Programmiersprache C (Taskverwaltung, Ansteuerung eines Schrittmotors, CAN Netzwerk)

 Datennetze:
• Netztopologien: ISO-OSI Schichtenmodell, Schnittstellen, Buszugriffsverfahren, Fehlererkennung, Abtration, Leitungscodes
• Verschiedene Bussysteme (CAN, Flexray, LIN), Vertiefung der einzelnen Bussysteme (Botschaftsaufbau, Fehlererkennung und Behandlung, Bitcodierung, Eigenschaften, Vor- und Nachteile)
• Übung: Praktische Nutzung eines Entwicklungsprogramms, Aufbau eines CAN-Netzwerkes

Praktikum:

14. Literatur:
• Vorlesungsumdruck: „Embedded Controller (Reuss)
• Vieweg Verlag: W. Ameling, Digitalrechner Band 1 und 2
• Vieweg Verlag: B. Morgenstern, Elektronik III Digitale Schaltungen und Systeme
• Hanser Verlag: Westerholz, Embedded Controll Architekturen
• Vorlesungsumdruck: „Datennetze im Kraftfahrzeug“ (Reuss)
• Bonfig Feldbus-Systeme, Band 374 Expert Verlag;
• W. Lawrenz CAN Controller Area Network- Grundlagen und Praxis Hüthig Buch Verlag Heidelberg;
• K. Etschberger CAN Controller Area Network- Grundlagen, Protokolle, Bausteine, Anwendungen Carl Hanser Verlag Wien
• M. Rausch Flexray Hanser Verlag

15. Lehrveranstaltungen und -formen:
• 329501 Vorlesung Embedded Controller
• 329502 Vorlesung Datennetze im Kraftfahrzeug
• 329503 Übung Embedded Controller und Datennetze

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h,
Selbststudium und Nachbearbeitung 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>32951 Embedded Controller und Datennetze in Fahrzeugen (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14130 Kraftfahrzeugmechatronik I + II

2. Modulkürzel: 070800002
5. Moduldaurer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: unregelmäßig

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Hans-Christian Reuss

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit

- B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module

- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeugmechatronik
 → Kernfächer mit 6 LP

- M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.

Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
• Systemarchitektur und Fahrzeugentwicklungsprozesse
• Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik

• Rapid Prototyping (Simulink)
• Modellbasierte Funktionsentwicklung mit TargetLink
• Elektronik

14. Literatur:
Vorlesungsumdruck: „Kraftfahrzeugmechatronik I“ (Reuss)

15. Lehrveranstaltungen und -formen:
• 141301 Vorlesung Kraftfahrzeugmechatronik I
• 141302 Vorlesung Kraftfahrzeugmechatronik II
• 141303 Laborübungen Kraftfahrzeugmechatronik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Modul: 37820 Praktikum Kraftfahrzeugmechatronik

2. Modulkürzel: 070830106
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr.-Ing. Hans-Christian Reuss

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Fahrzeug- und Motorentechnik
 → Kraftfahrzeugmechatronik

11. Empfohlene Voraussetzungen: Kraftfahrzeugmechatronik I/II

12. Lernziele:
 Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen. Die Studierenden
 • kennen die Methoden, Verfahren und Prüfeinrichtungen zur Prüfung von Bauteilen und Baugruppen aus Verbrennungsmotoren,
 • können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen
 • sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.
 • kennen Grundlagen von Kommunikation, Diagnose, Energiemanagement und Motorsteuerungssystemen im Kraftfahrzeug
 • verstehen die technischen Eigenheiten und Problemfelder moderner Kommunikationssysteme und Bordnetzelektronik
 • können elektronische Systeme im Kfz analysieren sowie Fehler identifizieren und beseitigen

13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter
 http://www.uni-stuttgart.de/mabau/msc/msc_mach/
 linksunddownloads.html
 • Motorsteuerung: Ziel dieses Versuches ist es, die Funktionsweise eines Ottomotors mit Saugrohreinspritzung zu vermitteln, Kennenlernen der Komponenten eines KFZ-Motorsteuerungssystems und Messung und Darstellung der Funktionen eines

• Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen:
 "Energiemanagement"
 "Motorsteuerung"
 "CAN-Vernetzung"
 "CAN-Fehlersuche"
 "Flexray-Vernetzung"
 "Flexray "

14. Literatur:

• Umdrucke zu den Laborversuchen und den Praktischen Übungen

15. Lehrveranstaltungen und -formen:
• 378201 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1
• 378202 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2
• 378203 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3
• 378204 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 30 h,
Selbststudium und Nachbearbeitung 60 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
37821 Praktikum Kraftfahrzeugmechatronik (USL), Sonstiges,
Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
254 Verbrennungsmotoren

Zugeordnete Module:

2541 Kernfächer mit 6 LP
2542 Kern-/Ergänzungsfächer mit 6 LP
2543 Ergänzungsfächer mit 3 LP
37830 Praktikum Verbrennungsmotoren
2543 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 37750 Berechnung und Analyse innermotorischer Vorgänge
Modul: 37750 Berechnung und Analyse innermotorischer Vorgänge

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>070810106</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaeu:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Michael Bargende</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Fahrzeug- und Motorentechnik
→ Verbrennungsmotoren
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Grundlagen der Verbrennungsmotoren |
| 13. Inhalt: | Einführung und Übersicht; Startwerte der Hochdruckrechnung; Kalorik; Wärmeübergang; Druckverlaufsanalyse; Prozessrechnung beim Ottomotor; Prozessrechnung beim DI-Dieselmotor; Ladungswechselberechnung; Zusammenfassung. |
| 14. Literatur: | • Vorlesungsumdruck Berechnung und Analyse innermotorischer Vorgänge
• Rudolf Pischinger u.a., Thermodynamik der Verbrennungskraftmaschine, Springer-Verlag |
| 15. Lehrveranstaltungen und -formen: | 377501 Vorlesung Berechnung und Analyse innermotorischer Vorgänge |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 21 h, Selbststudium und Nachbearbeitung 69 h Gesamt 90 h |
| 17. Prüfungsnummer/n und -name: | 37751 Berechnung und Analyse innermotorischer Vorgänge (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
2542 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
</tr>
<tr>
<td>33170</td>
<td>Motorische Verbrennung und Abgase</td>
</tr>
<tr>
<td>34030</td>
<td>Spezielle Themen bei Verbrennungsmotoren</td>
</tr>
</tbody>
</table>
Modul: 11390 Grundlagen der Verbrennungsmotoren

2. Modulkürzel: 070800003
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Bargende
9. Dozenten: Michael Bargende
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Ergänzungsmodule
 ➞ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Kernmodule
 ➞ Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Fahrzeug- und Motorentechnik
 ➞ Agrartechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Fahrzeug- und Motorentechnik
 ➞ Verbrennungsmotoren
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Fahrzeug- und Motorentechnik
 ➞ Verbrennungsmotoren
 ➞ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Vertiefungsmodule
 ➞ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Grundkenntnisse aus 1. bis 4. Fachsemester

14. Literatur:
 • Vorlesungsmanuskript
15. Lehrveranstaltungen und -formen: 113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 33170 Motorische Verbrennung und Abgase

2. Modulkürzel:	070810102
5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP
4. SWS:	4.0
7. Sprache:	Deutsch

8. Modulverantwortlicher: Dr. Dietmar Schmidt
9. Dozenten: Dietmar Schmidt

 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Verbrennungsmotoren
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundlagen der Verbrennungsmotoren

Die Studenten sind in der Lage Zusammenhänge herzustellen, zu interpretieren und entsprechende Lösungsstrategien zu entwickeln.

13. Inhalt:
• Motorische Verbrennung: Grundlagen Kraftstoffe; Hoch-, Niedertemperaturoxidation (am Beispiel Klopfen beim Ottomotor, Diesel, HCCI); Zündprozesse, Klopfen; Turbulenz Chemie-WW (laminare und turbulente Flammengeschwindigkeit), Skalen
• Abgase und Abgasnachbehandlung bei Otto- und Dieselmotoren: Bildungsmechanismen; primäre Maßnahmen; Abgasnachbehandlung, Beeinflussung durch motorische Parameter

14. Literatur:
Vorlesungsumdruck Motorische Verbrennung und Abgase, An Introduction to Combustion, Mc Graw Hill

15. Lehrveranstaltungen und -formen:
• 331701 Vorlesung Motorische Verbrennung
• 331702 Vorlesung Abgase von Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h,
Selbststudium und Nachbearbeitung 138 h,
Gesamt 180 h

17. Prüfungsnummer/n und -name: 33171 Motorische Verbrennung und Abgase (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 34030 Spezielle Themen bei Verbrennungsmotoren

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Dietmar Schmidt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Michael Bargende
• Dietmar Schmidt
• Horst Brand
• Jürgen Hammer
• Wolfgang Thiemann
• Adolf Bauer
• Hartmut Kolb
• Michael Casey
• Hubert Fußhoeller
• Donatus Wichelhaus
• Olaf Weber
• Wolfgang Zahn
• Karl-Ernst Noreikat
• Wolfgang Bessler
• Ute Tuttlies |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Verbrennungsmotoren
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Verbrennungsmotoren
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Grundlagen der Verbrennungsmotoren |
Durch die freie Auswahl aus dem großen Pool soll die/der Student/in die Möglichkeit bekommen, sich in verschiedenen Teilbereiche der Verbrennungsmotorentechnik einzuarbeiten. Die Studenten kennen die grundlegenden Zusammenhänge, wie auch die komplexen Problemstellungen der verschiedenen Teilbereiche, welche sie auf dem aktuellen Stand der Technik vermittelt bekommen. Sie verfügen in diesen Bereichen fundierte Kenntnisse, die sie in die Lage versetzt, gesamtmotorische Zusammenhänge zu verstehen und auf spezielle Fragestellungen anzuwenden.

13. Inhalt:

Aus den folgenden Lehrveranstaltungen sind 4 SWS auszuwählen und in einem Übersichtsbogen darzustellen.

- **Abgase von Verbrennungsmotoren**: Mechanismen der Schadstoffbildung, Beeinflussung durch motorische Parameter, Abgasnachbehandlung.

- **Einspritztechnik**: Einsatzgebiete; Kenndaten; Markt und künftige Anforderungen an Dieselantriebe; Grundlagen Dieseleinspritzung; Übersicht und Funktionsprinzipien von Dieseleinspritzsystemen; Verteilereinspritzpumpe; Pumpe-Düse System; Common Rail System; Einspritzfunktionen im elektr. Steuergerät; Numerisch Hydrauliksimulation; elektronische Dieselregelung; Dieselsystemoptimierung; Grundlagen Ottomotor und Saugrohreinspritzung; Benzin- Direkteinspritzung.

- **Ausgewählte Kapitel der Dieselmotorentechnik**: Wirtschaftliche Bedeutung; Arbeitsverfahren; Beispiele ausgeführter Motoren; Entwicklungstendenzen; Kurbelgehäuse; Gestaltung und Lagerung der Kurbelwelle; Pleuelstange; Kolben; Zylinderkopf; Brennraum; Saug- und Abgassysteme; Aufladung; moderne Entwicklungsverfahren.

- **Motorsteuergeräte**: Wozu Motorsteuergeräte - Zielkonflikt; das mechatronische System - Funktionsumfang; Hardwareaufbau; Software und Betriebssystem; Sensorerfassung; Stellieransteuerung; Luftsteuerung; Kraftstoffzumessung; Zündung; Abgasreinigung - Rohemission, Abgasnachbehandlung; Immissionsreduzierung; On-Board-Diagnose - gesetzliche Anforderungen, Prüfstrategie, ausgewählte Systemdiagnosen; Kommunikation - CAN, Standard - Protokolle; Sicherheit und Verfügbarkeit; Applikation - Tools und Schnittstelle.

- **Motorische Verbrennung und Abgase**: (1) Motorische Verbrennung: Grundlagen Kraftstoffe; Hoch-, Niedertemperaturoxidation (am Beispiel Diesel, HCCI); Zündprozesse, Klopfen; Turbulenz-Chemie-WW (laminare und turbulente Flammengeschwindigkeit),Skalen. (2) Abgase und Abgasnachbehandlung bei Otto- und Dieselmotoren: Bildungsmechanismen; primäre Maßnahmen; Abgasnachbehandlung. (3) Simulationstechniken: quasi-dim. Modellierung; detaillierte Kinetik; chem. Gleichgewichte, 0/1/2-dimensionale Flammen; Turbulenzmodellierung (3D Modellierung mit Star CD/OpenFOAM).
• **Planung und Konzeption von Prüfständen I und II**: Grundlagen und Definitionen; von der Prüfaufgabe zum Prüfstand; Systematik der Prüfstandsarten; Prüfanlage als Gesamtsystem: Gebäude, technische Versorgungssysteme, Prüftechnik; Planungsprozess; ausgeführte Anlagen; gesetzliche Genehmigungsgrundlagen; Sondergebiete: Arbeitsschutz, Schallschutz, Erschütterungsschutz, Sicherheitstechnik; Kosten von Prüfanlagen.

• **Kleinvolumige Hochleistungsmotoren**: Anforderungen an die Antriebe von handgehaltenen Arbeitsgeräten, z.B. Motorsägen; kleinvolumiger Hochleistungszweitaktmotor; Bauweisen und Beispiele für konventionelle kleinvolumige Zweitaktmotoren; Bauweisen und Beispiele für niedrig emittierende kleinvolumige Zweitaktmotoren; Gemischsaufbereitung und Zündung; der kleinvolumige Hochleistungsviertaktmotor; gemischgeschmierte und getrennt geschmierte kleinvolumige Viertaktmotoren; praktische Anwendungen und Sonderentwicklungen.

• **Turbo-Chargers**: Introduction to turbochargers, Radial compressors, Axial and radial turbines, Dimensionless performance, Component testing, Mechanical Design, Matching of turbine and compressor, Matching with the Engine, Developments.

• **Sport- und Rennmotorentechnik**: Überblick über den aktuellen Stand der Motorentechnik in der Formel 3, DTM und Formel 1 sowie bei Dieselmotoren im Rennsport hinsichtlich Auslegung und Entwicklungsprozessen.

• **Internationales Projektmanagement an Motorsystemen**: (1) Systeme von Verbrennungsmotoren: Was ist das, warum
die Betrachtung, praktische Beispiele, Status und Zukunft. (2) Projektmanagement: Wozu ist dies notwendig, Zusammenarbeit unterschiedlicher Disziplinen und Mentalitäten, Schaffen eines gemeinsamen Verständnisses. (3) Kultur: Einfluss der Mutterkultur von Ingenieuren auf die Denkweise und Zusammenarbeit in multidisziplinären Arbeitsgruppen.

14. Literatur:
- Vorlesungsumdrucke Abgase von Verbrennungsmotoren, Motorische Verbrennung, Einspritztechnik, etc.
- Rudolf Pischinger u.a., Thermodynamik der Verbrennungskraftmaschine, Springer-Verlag
- etc.

15. Lehrveranstaltungen und -formen: 340301 Vorlesung Spezielle Themen bei Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium und Nachbearbeitung 138 h Gesamt 180 h

17. Prüfungsnummer/n und -name: 34031 Spezielle Themen bei Verbrennungsmotoren (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
2541 Kernfächer mit 6 LP

Zugeordnete Module:

11390 Grundlagen der Verbrennungsmotoren
34030 Spezielle Themen bei Verbrennungsmotoren
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Michael Bargende

9. Dozenten: Michael Bargende

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 - B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 - B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Verbrennungsmotoren
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Verbrennungsmotoren
 → Kernfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Grundkenntnisse aus 1. bis 4. Fachsemester

12. Lernziele:

 - Die Studenten kennen die Teilprozesse des Verbrennungsmotors.

13. Inhalt:

 - Thermodynamische Vergleichsprozesse, Kraftstoffe, Otto- und dieselmotorische Gemischbildung, Zündung und Verbrennung,
 - Ladungswechsel, Aufladung, Auslegung eines Verbrennungsmotors,
 - Triebwerksdynamik, Konstruktionselemente, Abgas- und Geräuschemissionen.

14. Literatur:

 - Vorlesungsmanuskript
15. Lehrveranstaltungen und -formen: 113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Institut für Verbrennungsmotoren und Kraftfahrwesen

Modul: 34030 Spezielle Themen bei Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070810105</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Dietmar Schmidt</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Michael Bargende
• Dietmar Schmidt
• Horst Brand
• Jürgen Hammer
• Wolfgang Thiemann
• Adolf Bauer
• Hartmut Kolb
• Michael Casey
• Hubert Fußhoeller
• Donatus Wichelhaus
• Olaf Weber
• Wolfgang Zahn
• Karl-Ernst Noreikat
• Wolfgang Bessler
• Ute Tuttlies |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Verbrennungsmotoren
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Verbrennungsmotoren
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Grundlagen der Verbrennungsmotoren |
Durch die freie Auswahl aus dem großen Pool soll die/der Student/in die Möglichkeit bekommen, sich in verschiedenen Teilbereiche der Verbrennungsmotorentechnik einzuarbeiten. Die Studenten kennen die grundlegenden Zusammenhänge, wie auch die komplexen Problemstellungen der verschiedenen Teilbereiche, welche sie auf dem aktuellen Stand der Technik vermittelt bekommen. Sie verfügen in diesen Bereichen fundierte Kenntnisse, die sie in die Lage versetzt, gesamtmotorische Zusammenhänge zu verstehen und auf spezielle Fragestellungen anzuwenden.

- **Abgase von Verbrennungsmotoren**: Mechanismen der Schadstoffbildung, Beeinflussung durch motorische Parameter, Abgasnachbehandlung.

- **Einspritztechnik**: Einsatzgebiete; Kenndaten; Markt und künftige Anforderungen an Dieselantriebe; Grundlagen Dieseleinspritzung; Übersicht und Funktionsprinzipien von Dieseleinspritzsystemen; Verteilereinspritzpumpe; Pumpe-Düse System; Common Rail System; Einspritzfunktionen im elektr. Steuergerät; Numerisch Hydrauliksimulation; elektronische Dieselregelung; Dieselsystemoptimierung; Grundlagen Ottomotor und Saugrohreinspritzung; Benzin- Direkteinspritzung.

- **Ausgewählte Kapitel der Dieselmotorentechnik**: Wirtschaftliche Bedeutung; Arbeitsverfahren; Beispiele ausgeführter Motoren; Entwicklungstendenzen; Kurbelgehäuse; Gestaltung und Lagerung der Kurbelwelle; Pleuelstange; Kolben; Zylinderkopf; Brennräume; Saug- und Abgassysteme; Aufladung; moderne Entwicklungsverfahren.

- **Motorsteuergeräte**: Wozu Motorsteuergeräte - Zielkonflikt; das mechatronische System - Funktionsumfang; Hardwareaufbau; Software und Betriebssystem; Sensorerfassung; Stellansteuerung; Luftsteuerung; Kraftstoffzumessung; Zündung; Abgasreinigung - Rohemission, Abgasnachbehandlung; Immissionsreduzierung; On-Board-Diagnose - gesetzliche Anforderungen, Prüfstrategie, ausgewählte Systemdiagnosen; Kommunikation - CAN, Standard - Protokolle; Sicherheit und Verfügbarkeit; Applikation - Tools und Schnittstelle.

- **Motorische Verbrennung und Abgase**: (1) Motorische Verbrennung: Grundlagen Kraftstoffe; Hoch-, Niedertemperaturoxidation (am Beispiel Diesel, HCCI); Zündprozesse, Klopfen; Turbulenz-Chemie-WW (laminare und turbulente Flammengeschwindigkeit),Skalen. (2) Abgase und Abgasnachbehandlung bei Otto- und Dieselmotoren: Bildungsmechanismen; primäre Maßnahmen; Abgasnachbehandlung. (3) Simulationstechniken: quasi-dim. Modellierung; detaillierte Kinetik; chem. Gleichgewichte, 0/1/2-dimensionale Flammen; Turbulenzmodellierung (3D Modellierung mit Star CD/OpenFOAM).
Planung und Konzeption von Prüfständen I und II: Grundlagen und Definitionen; von der Prüfaufgabe zum Prüfstand; Systematik der Prüfstandsarten; Prüfanlage als Gesamtsystem: Gebäude, technische Versorgungssysteme, Prüftechnik; Planungsprozess; ausgeführte Anlagen; gesetzliche Genehmigungsgrundlagen; Sondergebiete: Arbeitsschutz, Schallschutz, Erschütterungsschutz, Sicherheitstechnik; Kosten von Prüfanlagen.

Kleinvolumige Hochleistungsmotoren: Anforderungen an die Antriebe von handgehaltenen Arbeitsgeräten, z.B. Motorsägen; kleinvolumiger Hochleistungszweitaktmotor; Bauweisen und Beispiele für konventionelle kleinvolumige Zweitaktmotoren; Bauweisen und Beispiele für niedrig emittierende kleinvolumige Zweitaktmotoren; Gemischaufbereitung und Zündung; der kleinvolumige Hochleistungsviertaktmotor; gemischgeschmierte und getrennt geschmierte kleinvolumige Viertaktmotoren; praktische Anwendungen und Sonderentwicklungen.

Turbo-Chargers: Introduction to turbochargers, Radial compressors, Axial and radial turbines, Dimensionless performance, Component testing, Mechanical Design, Matching of turbine and compressor, Matching with the Engine, Developments.

Sport- und Rennmotorentechnik: Überblick über den aktuellen Stand der Motorentechnik in der Formel 3, DTM und Formel 1 sowie bei Dieselmotoren im Rennsport hinsichtlich Auslegung und Entwicklungsprozessen.

Internationales Projektmanagement an Motorsystemen: (1) Systeme von Verbrennungsmotoren: Was ist das, warum
die Betrachtung, praktische Beispiele, Status und Zukunft. (2) Projektmanagement: Wozu ist dies notwendig, Zusammenarbeit unterschiedlicher Disziplinen und Mentalitäten, Schaffen eines gemeinsamen Verständnisses. (3) Kultur: Einfluss der Mutterkultur von Ingenieuren auf die Denkweise und Zusammenarbeit in multidisziplinären Arbeitsgruppen.

14. Literatur:
 • Vorlesungsumdrucke Abgase von Verbrennungsmotoren, Motorische Verbrennung, Einspritztechnik, etc.
 • Rudolf Pischinger u.a., Thermodynamik der Verbrennungskraftmaschine, Springer-Verlag
 • etc.

15. Lehrveranstaltungen und -formen: 340301 Vorlesung Spezielle Themen bei Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium und Nachbearbeitung 138 h Gesamt 180 h

17. Prüfungsnummer/n und -name: 34031 Spezielle Themen bei Verbrennungsmotoren (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Modul: 37830 Praktikum Verbrennungsmotoren

2. Modulkürzel: 070810107 5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP 6. Turnus: jedes Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Dietmar Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Fahrzeug- und Motorentechnik
 → Verbrennungsmotoren

11. Empfohlene Voraussetzungen: Grundlagen der Verbrennungsmotoren

 • kennen die Methoden, Verfahren und Prüfeinrichtungen zur Prüfung von Bauteilen und Baugruppen aus Verbrennungsmotoren,
 • können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen
 • sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.
 • kennen Grundlagen von Kommunikation, Diagnose, Energiemanagement und Motorsteuerungssystemen im Kraftfahrzeug

 • Abgasmessung: Grundlagen der Abgas- und Schadstoffentstehung sowie entsprechender Messverfahren zu ihrer Erfassung.
 • Motorindizierung: In diesem Versuch werden die Grundlagen der Motorindizierung vermittelt. Dazu gehört insbesondere der Prüfstandsauflauf mit der dazugehörenden Messtechnik und Vorgehensweise, wobei der Schwerpunkt auf der Messkette für die Druckindizierung liegt. Weiterhin werden die Grundlagen der thermodynamischen Auswertung der Messungen behandelt.
 • Schalleistungsmessung: Sowohl gesetzliche als auch kundenspezifische Anforderungen machen es notwendig, Geräuschemissionen eines Verbrennungsmotors genau zu bestimmen. Zur Identifikation dieser kann als Maß die Schallleistung, d.h. die Gesamtenergie, die von der Schallquelle je Zelteinheit
in Form von Luftschall freigesetzt wird, herangezogen werden. Im durchzuführenden Praktikumsversuch wird die Schalleistung eines Verbrennungsmotors im Hallraum bei drei verschiedenen Lastzuständen ermittelt. Dabei muss in experimentellen Untersuchungen der vom Verbrennungsmotor emittierte Schalldruck gemessen werden.

Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen:

- Leistungs- und Verbrauchsmessung
- Abgasmessung
- Motorindizierung
- Schallleistungsmessung

14. Literatur:

- Umdrucke zu den Laborversuchen und den Praktischen Übungen

15. Lehrveranstaltungen und -formen:

- 378301 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1
- 378302 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2
- 378303 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3
- 378304 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4

16. Abschätzung Arbeitsaufwand:

Präsenzzeit 30 h, Selbststudium und Nachbearbeitung 60 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:

- 37831 Praktikum Verbrennungsmotoren (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
260 Gruppe Technologiemanagement

Zugeordnete Module: 261 Technologiemanagement
261 Technologiemanagement

Zugeordnete Module:
- 2611 Kernfächer mit 6 LP
- 2612 Kern-/Ergänzungsfächer mit 6 LP
- 2613 Ergänzungsfächer mit 3 LP
- 33590 Praktikum Technologiemanagement
2613 Ergänzungsfächer mit 3 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>33580</td>
<td>Personalwirtschaft</td>
</tr>
<tr>
<td>33600</td>
<td>Simultaneous Engineering und Projektmanagement</td>
</tr>
<tr>
<td>33610</td>
<td>Neue Methoden des FuE-Managements</td>
</tr>
<tr>
<td>33620</td>
<td>Führungsinformationssysteme</td>
</tr>
<tr>
<td>41870</td>
<td>Strategische Unternehmensplanung: Business Planning & Venture Capital</td>
</tr>
</tbody>
</table>
Modul: 33620 Führungsinformationssysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010014</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Rita Noestdal
• Dieter Spath |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | |
| 15. Lehrveranstaltungen und -formen: | 336201 Vorlesung Führungsinformationssysteme |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 33621 Führungsinformationssysteme (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Beamer-Präsentation, Softwaredemonstration und -übungen |
| 20. Angeboten von: | Institut für Arbeitswissenschaft und Technologiemanagement |

Stand: 23. Oktober 2012
Modul: 33610 Neue Methoden des FuE-Managements

2. Modulkürzel: 072010015
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Dieter Spath
9. Dozenten: • Peter Ohlhausen
 • Dieter Spath
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Technologiemanagement
 → Technologiemanagement
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen:
12. Lernziele: Die Studierenden haben ein Verständnis für die einzelnen Vorgehensweisen zur Neuproduktplanung, zu Unternehmenskooperationen, zu Simulationstechnologien und zum Veränderungsmanagement entwickelt. Die Studierenden kennen die unterschiedlichen Vorgehensweisen und können anhand der Fallbeispiele die verschiedenen erarbeiteten Techniken anwenden.
 • Cronenbroeck, W.: Internationales Projektmanagement; Berlin, Cornelsen Verlag GmbH, 2004
 • vertiefende Literatur wird nach jedem Schwerpunkthema vorgestellt
15. Lehrveranstaltungen und -formen: 336101 Vorlesung Neue Methoden des FuE-Managements
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 33611 Neue Methoden des FuE-Managements (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...:
19. Medienform: Beamer-Präsentation
20. Angeboten von: Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 33580 Personalwirtschaft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010016</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Dieter Spath
• Hartmut Buck |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Ergänzungsfächer mit 3 LP |

11. Empfohlene Voraussetzungen:

Die Studierenden bekommen ein Verständnis für die Bedeutung der unterschiedlichen personalwirtschaftlichen Themenfelder. Sie kennen einzelne Ansätze und Methoden der Personalwirtschaft und können diese anwenden.

Die Studierenden können die Chancen und Risiken unterschiedlicher Führungsansätze beurteilen. Zudem bilden sie ein Verständnis von welchen Faktoren die Motivation und Arbeitszufriedenheit der Mitarbeiter anhängt und mit welchen Führungsinstrumenten auf diese eingewirkt werden kann.

12. Lernziele:

Unter der Überschrift Personalführung und Mitarbeitermotivation werden verschiedene Forschungsansätze zur Personalführung, Führungsmodelle und -instrumente, der Unternehmenskultur sowie die Inhalts- und Prozesstheorien der Motivation und Arbeitszufriedenheit subsummiert.

Den Abschluss der Vorlesungseinheit bildet die Erläuterung der Teilsysteme und Komponenten der Personalplanung, Personalbeschaffung, Personalauswahl und Personalbeurteilung.
14. Literatur:

- Spath, D.; Buck, H.: Skript zur Vorlesung Personalwirtschaft

Vertiefend:

15. Lehrveranstaltungen und -formen: 335801 Vorlesung Personalwirtschaft

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnr/n und -name: 33581 Personalwirtschaft (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation

20. Angeboten von: Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 33600 Simultaneous Engineering und Projektmanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010017</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Joachim Warschat
• Peter Ohlhausen |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: |
Erarbeitung der Anwendungsfelder des Projektmanagements: Produktentwicklung, Fabrikplanung, integrierte Auftragsabwicklung.
Den Schwerpunkt bilden dabei Praxiskonzepte des Simultaneous Engineering, die darauf abzielen, durch weitgehende Parallelisierung von Aufgaben und Prozessen, Durchlaufzeiten zu verkürzen und die Wertschöpfungskette zu optimieren. |
| 14. Literatur: | • Warschat, J.; Ohlhausen, P.: Skript zur Vorlesung
• Schelle, H.; Ottmann, R.; Pfeiffer, A.: ProjektManager, Nürnberg: GPM - Deutsche Gesellschaft für Projektmanagement, 2005 |
| 15. Lehrveranstaltungen und -formen: | 336001 Vorlesung Simultaneous Engineering und Projektmanagement |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>33601 Simultaneous Engineering und Projektmanagement (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: Beamer-Präsentation</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Institut für Arbeitswissenschaft und Technologiemanagement</td>
</tr>
</tbody>
</table>
Modul: 41870 Strategische Unternehmensplanung: Business Planning & Venture Capital

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010019</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Klaus-Dieter Laidig</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Technologiemanagement ➔ Technologiemanagement ➔ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | keine |
| 14. Literatur: | keine |
| 15. Lehrveranstaltungen und -formen: | 418701 Vorlesung Strategische Unternehmensplanung: Business Planning & Venture Capital |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 41871 Strategische Unternehmensplanung: Business Planning & Venture Capital (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Beamer-Präsentation |
| 20. Angeboten von: | Institut für Arbeitswissenschaft und Technologiemanagement |
2612 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 13330 Technologiemanagement
- 14240 Technisches Design
- 32890 Informationstechnik
- 32900 Mensch-Rechner-Interaktion
- 32910 Produktionsmanagement
- 33640 Angewandte Arbeitswissenschaft
- 33650 Digitale Produktion
- 33680 Service Engineering - Systematische Entwicklung von Dienstleistungen
Modul: 33640 Angewandte Arbeitswissenschaft

2. Modulkürzel: 072010008 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Dieter Spath
9. Dozenten: • Wilhelm Bauer • Martin Braun

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Technologiemanagement ➞ Technologiemanagement ➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Das Modul „angewandte Arbeitswissenschaft“ besteht aus den Vorlesungen „Arbeitsgestaltung im Büro“ und „Sicherheit und Gesundheit bei der Arbeit“.

Die Vorlesung Arbeitsgestaltung im Büro vermittelt Grundlagen und Anwendungswissen zur Entwicklung von anforderungsorientierten Arbeits- und Bürokonzepten. Ein besonderer Fokus wird dabei auf die Bedeutung von Arbeits- und Bürogestaltung an sich und den relevanten Einflussfaktoren auf die Performanz, die Motivation von mobilen und stationären Büro- und Wissensarbeitern gelegt. Zudem werden die Charakteristika unterschiedlicher Bürokonzepte vermittelt, sowie anhand eines Praxisbeispiels Umsetzungswissen vermittelt. Abschließend werden die Auswirkungen von Büroarbeit auf die Ressourceninanspruchnahme und deren Umweltwirkung vorgestellt und verschiedenen Lösungsansätze für die Gestaltung ökologisch,
ökonomisch und sozial ausgewogener Arbeits- und Bürokonzepte vermittelt.

Eine freiwillige Exkursion zu einem Unternehmen sichert die Verbindung zwischen theoretisch vermitteltem Wissen und der praktischen Anwendung im Unternehmen dar.

Die Vorlesung **Sicherheit und Gesundheit bei der Arbeit** vermittelt Grundlagen, Modelle und Methodenwissen zu sicherer und gesunder Arbeit. Inhalte werden an Praxisbeispielen veranschaulicht.

Es wird die betriebliche und überbetriebliche Organisation des Arbeitsschutzes thematisiert (einschl. Managementsysteme, öffentliche Institutionen).

Es werden Ansätze des betrieblichen Gesundheitsmanagements und Praxisbeispiele vorgestellt und diskutiert.

14. Literatur:
- Bauer W.; Rief, S.: Skript zur Vorlesung
- Spath, D.; Bauer W.; Rief, S.: Green Office - ökonomische und ökologische Potenziale nachhaltiger Arbeits- und Bürogestaltung, Gabler Verlag, 2010
- Spath, D.; Braun, M.: Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 336401 Vorlesung Arbeitsgestaltung im Büro
- 336402 Vorlesung Sicherheit und Gesundheit bei der Arbeit

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33641 Angewandte Arbeitswissenschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Videos und optionale Exkursion

20. Angeboten von:
Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 33650 Digitale Produktion

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Dieter Spath
9. Dozenten: • Joachim Warschat
 • Dieter Spath
 • Frank Wagner

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Technologiemanagement
 ➞ Technologiemanagement
 ➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

14. Literatur:
 • Spath, D.; Wagner, F.: Folien Hand-Out zur Vorlesung
 • Warschat, J.; Wagner, F.: Skript und Folien Hand-Out zur Vorlesung
 • S. Vajna et al: CAx für Ingenieure, Berlin, Heidelberg: Springer, 2009
15. Lehrveranstaltungen und -formen:

- 336501 Vorlesung CAD/PDM - Informationssysteme in der Produktentwicklung
- 336502 Vorlesung Simulation im Technologiemanagement

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

- 33651 Digitale Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

- Beamer-Präsentationen, Videos, Software-Demos

20. Angeboten von:

- Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 32890 Informationstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Anette Weisbecker</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Technologiemanagement</td>
</tr>
<tr>
<td></td>
<td>→ Technologiemanagement</td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Das Modul Informationstechnik besteht aus den Vorlesungen „Electronic Business“ im WS und „Softwaretechnik und -management“ im SS.

Softwaretechnik und -management: Software entsteht heute nicht mehr durch die Arbeit eines einzelnen, sondern im Team und mit Hilfe von effizienten Werkzeugen. Die Vorlesung Softwaretechnik und -management vermittelt Grundlagen und Anwendungswissen zu Vorgehensmodellen,

14. Literatur:
- Weisbecker, A.: Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 328901 Vorlesung Electronic Business
- 328902 Vorlesung Softwaretechnik und -management

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 42 Stunden |
| Selbststudium: 138 Stunden |
| Summe: 180 Stunden |

17. Prüfungsnummer/n und -name:
32891 Informationstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Demonstrationen

20. Angeboten von:
Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 32900 Mensch-Rechner-Interaktion

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
- Prof. Dr.-Ing. Dieter Spath

9. Dozenten:
- Dieter Spath
- Rolf Ilg
- Fabian Hermann

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➞ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Technologiemanagement ➞ Technologiemanagement ➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
- keine

12. Lernziele:

13. Inhalt:

14. Literatur:
- Spath, D.; Ilg, R.: Skript zur Vorlesung Mensch-Rechner Interaktion I
• Machate, J.; Burmester, M. (Hrsg.): User Interface Tuning, Benutzungsschnittstellen menschlich gestalten, Frankfurt: Software & Support Verlag, 2003
• Jacko, Sears. The Human-Computer Interaction Handbook. LEA 2004
• Ben Shneiderman, Catherine Plaisant: Designing the User Interface. Pearson/ Addison- Wesley, Boston (2005)

15. Lehrveranstaltungen und -formen:
• 329001 Vorlesung Mensch-Rechner-Interaktion I
• 329002 Vorlesung Mensch-Rechner-Interaktion II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32901 Mensch-Rechner-Interaktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Multimedia-Präsentation

20. Angeboten von:
Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 32910 Produktionsmanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Joachim Lentes
• Peter Rally
• Wolfgang Schweizer |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | |
• Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Aachen: Lean Management Institut, 2000

Stand: 23. Oktober 2012
15. Lehrveranstaltungen und -formen:

• 329101 Vorlesung Mathematische Methoden der Produktionsplanung
• 329102 Vorlesung Wertstrom Engineering

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit: 42 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td>Summe: 180 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

32911 Produktionsmanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Beamer-Präsentation, Videos, Tafel

20. Angeboten von:

Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 33680 Service Engineering - Systematische Entwicklung von Dienstleistungen

2. Modulkürzel: 072010013
5. Moduldober: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Dieter Spath

9. Dozenten:
 • Thomas Meiren
 • Thomas Burger

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Technologiemanagement ➔ Technologiemanagement ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

13. Inhalt: Die Vorlesung Service Engineering umfasst folgende Inhalte:
 • Definitionen und Begriffsklärungen
 • Grundlagen des Service Engineering
 • Vorgehensmodelle
 • Methoden und Werkzeuge
 • Kundenerwartungen und -bedürfnisse
 • Gestaltung der Kundeninteraktion
 • Pricing von Dienstleistungen
 • Management der Dienstleistungsentwicklung
 • Exkurs: Produktbegleitende Dienstleistungen

Darüber hinaus wird das Konzipieren und Testen von Dienstleistungen in Form von Gruppenarbeiten im ServLab vertieft.

14. Literatur: Die Studenten erhalten folgende Literatur während der Vorlesung:
 • Meiren, T.; Barth, T.: Service Engineering in Unternehmen umsetzen. Leitfaden für die Entwicklung von Dienstleistungen, IRB-Verlag, 2002

Darüber hinaus ist folgende weiterführende Literatur empfehlenswert:
• Spath, D.; Fähnrich, K.-P. (Hrsg.): Advances in Services Innovations, Springer-Verlag, 2007

15. Lehrveranstaltungen und -formen:
• 336801 Vorlesung Service Engineering - Systematische Entwicklung von Dienstleistungen
• 336802 Übung Service Engineering - Systematische Entwicklung von Dienstleistungen

16. Abschätzung Arbeitsaufwand:
Präsentzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33681 Service Engineering - Systematische Entwicklung von Dienstleistungen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Videos (Testen von Dienstleistungen), Animation (CASET), Gruppenarbeit im ServLab

20. Angeboten von:
Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 14240 Technisches Design

2. Modulkürzel: 072710110 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Maier
9. Dozenten: • Thomas Maier • Markus Schmid

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2008, 5. Semester
→ Kernmodule
→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Ergänzungsmodule
→ Kompetenzfeld II
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule mit Wahlmöglichkeit
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Fahrzeug- und Motorentechnik
→ Agrartechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe: Produktentwicklung und Konstruktionstechnik
→ Konstruktionstechnik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinen-konstruktion I / II

12. Lernziele:
• besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,
Erworbene Kompetenzen:

Die Studierenden

• erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,
• beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomiche Grundlagen,
• beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
• können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
• beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
• haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

13. Inhalt:
Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:
• Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
• Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
• Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:
• 142401 Vorlesung Technisches Design
• 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 13330 Technologiemanagement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr.-Ing. Dieter Spath</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Dieter Spath
• Sven Seidenstricker |
→ Kernmodule
→ Pflichtmodule
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Kernmodule
→ Pflichtmodule
B.Sc. Technologiemanagement, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Technologiemanagement
→ Technologiemanagement
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | keine |
Erworbene Kompetenzen: Die Studierenden
• können die Bedeutung des Technologiemanagements im Unternehmen einordnen
• kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
• verstehen die Handlungsoptionen des Technologiemanagements
• kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
• sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden |
| 13. Inhalt: | Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement. Im einzelnen werden folgende Themen behandelt: Umfeld des Technologiemanagements, Begriffsklärungen, zukünftige Technologien, Forschungs- und Entwicklungsmanagement, Integriertes Technologiemanagement, |
Normatives Technologiemanagement, Technologiebeobachtung, Technologiefrühaufklärung, Strategisches Technologiemanagement, Fallstudien zum strategischen Technologiemanagement, Portfoliomanagement, Operatives Technologiemanagement, Grundzüge des Projektmanagements, Ganzheitliche Sichtweise des Innovationsmanagements, Ansätze des Innovationscontrollings, Wissensmanagement, Organisationsmanagement, Dienstleistungsmanagement und Service Engineering, Betreibermodelle, E-Business

14. Literatur:
- Spath, D.: Skript zur Vorlesung Technologiemanagement
- Gerpott, T. J.: Strategisches Technologie- und Innovationsmanagement, Stuttgart: Schäffer-Poeschel, 2005

15. Lehrveranstaltungen und -formen:
- 133301 Vorlesung Technologiemanagement I
- 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 46 Stunden
- Selbststudium: 134 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 13331 Technologiemanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Beamer-Präsentation, Videos, Animationen, Praktikum

20. Angeboten von:
2611 Kernfächer mit 6 LP

Zugeordnete Module: 13330 Technologiemanagement
 13530 Arbeitswissenschaft
Modul: 13530 Arbeitswissenschaft

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Dieter Spath
9. Dozenten: • Dieter Spath • Oliver Rüssel

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 → Ergänzungsbezüge
 → Kompetenzfeld II
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 → Ergänzungsbezüge
 → Vorgezogene Master-Module
 → Gruppe Technologiemanagement
 → Technologiemanagement
 → Kernfächer mit 6 LP
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 2: Konstruktion

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Die Studierenden haben ein Verständnis für die Gestaltung
 arbeitswissenschaftlicher Arbeitsprozesse und die Bedeutung
 des Menschen im Arbeitsystem. Sie kennen Methoden zur
 Arbeitsprozessgestaltung, Arbeitsmittelgestaltung, Arbeitsplatzgestaltung
 und Arbeitsstrukturierung. Die Studierenden können Arbeitsaufgaben,
 Arbeitsplätze, Produkte/Arbeitsmittel, Arbeitsprozesse und
 Arbeitssysteme arbeitswissenschaftlich beurteilen, gestalten und
 optimieren.

13. Inhalt:
 Die Vorlesung Arbeitswissenschaft I vermittelt Grundlagen und
 Anwendungswissen zu Arbeit im Wandel, Arbeitsphysiologie und
 -psychologie, Produktgestaltung, Arbeitsplatzgestaltung, Arbeitsanalyse,
 Arbeitsumgebungsgestaltung. Dazu werden Anwendungsbeispiele
 vorgestellt und Methoden und Vorgehensweisen eingeübt.
 Die Vorlesung Arbeitswissenschaft II vermittelt Grundlagen und
 Anwendungswissen zu arbeitswissenschaftlichen Arbeitsprozessen,
 Arbeitssystemen, Planungssystematik speziell zu Montagesystemen,
 Entgeltgestaltung, Arbeitszeit, Ganzheitliche Produktionssysteme.
 Auch hier werden Anwendungsbeispiele vorgestellt und Methoden und
 Vorgehensweisen eingeübt.
Die Anwendungsbeispiele werden durch eine freiwillige Exkursion (1 x im Semester) zu einem Unternehmen verdeutlicht.

Beide Vorlesungen werden durch einen jeweils 2-stündigen Praktikumsversuch abgerundet.

14. Literatur:
- Spath, D.: Skript zur Vorlesung Arbeitswissenschaft

15. Lehrveranstaltungen und -formen:
- 135301 Vorlesung Arbeitswissenschaft I
- 135302 Vorlesung Arbeitswissenschaft II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 h
Selbststudiumszeit / Nacharbeitszeit: 134 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13531 Arbeitswissenschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Hinweis: Die Note der Modulfachprüfung wird dem Prüfungsamt erst nach Teilnahme an den beiden Praktika übermittelt!

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Videos, Animationen, Demonstrationsobjekte

20. Angeboten von:
Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 13330 Technologiemanagement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Dieter Spath</td>
<td>• Sven Seidenstricker</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2008, 5. Semester |
| Kernmodule | Pflichtmodule |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester |
| Kernmodule | Pflichtmodule |
| B.Sc. Technologiemanagement, PO 2011, 5. Semester |
| Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| Gruppe Technologiemanagement | Technologiemanagement | Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 |
| Gruppe Technologiemanagement | Technologiemanagement | Kernfächer mit 6 LP |

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

Die Studierenden haben Kenntnis von den theoretischen Ansätzen des Technologiemanagements im Unternehmen, unterscheiden in normatives, strategisches und operatives Technologiemanagement. Sie grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien. Sie verstehen, wie Technologien in Unternehmen geplant und sinnvoll eingesetzt werden sowie die Einsatzplanung bedeutender neuer Technologien und deren Auswirkungen.

Erworbene Kompetenzen: Die Studierenden

- können die Bedeutung des Technologiemanagements im Unternehmen einordnen
- kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
- verstehen die Handlungsoptionen des Technologiemanagements
- kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
- sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden

13. Inhalt:

Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement. Im einzelnen werden folgende Themen behandelt: Umfeld des Technologiemanagements, Begriffsklärungen, zukünftige Technologien, Forschungs- und Entwicklungsmanagement, Integriertes Technologiemanagement,
Normatives Technologiemanagement, Technologiebeobachtung, Technologiefrühaufklärung, Strategisches Technologiemanagement, Fallstudien zum strategischen Technologiemanagement, Portfoliomanagement, Operatives Technologiemanagement, Grundzüge des Projektmanagements, Ganzheitliche Sichtweise des Innovationsmanagements, Ansätze des Innovationscontrollings, Wissensmanagement, Organisationsmanagement, Dienstleistungsmanagement und Service Engineering, Betreibermodelle, E-Business

14. Literatur:
- Spath, D.: Skript zur Vorlesung Technologiemanagement
- Gerpott, T. J.: Strategisches Technologie- und Innovationsmanagement, Stuttgart: Schäffer-Poeschel, 2005

15. Lehrveranstaltungen und -formen:
- 133301 Vorlesung Technologiemanagement I
- 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
13331 Technologiemanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Videos, Animationen, Praktikum

20. Angeboten von:
Modul: 33590 Praktikum Technologiemanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010018</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dieter Spath</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Dieter Spath
• Rolf Ilg |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer A (ING)
→ Gruppe Technologiemanagement
→ Technologiemanagement |
| | Beispiele: |
| | • etc. |
| 14. Literatur: | Praktikums-Unterlagen, zugehörige Skripte (teilweise mit Theorieteil und Fallstudie) zu den einzelnen Praktika |
| 15. Lehrveranstaltungen und -formen: | • 335901 Spezialisierungsfachversuch 1
• 335902 Spezialisierungsfachversuch 2
• 335903 Spezialisierungsfachversuch 3
• 335904 Spezialisierungsfachversuch 4 |
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: | 33591 Praktikum Technologiemanagement (USL), Sonstiges,
Gewichtung: 1.0, Anwesenheitspflicht

18. Grundlage für ... :

19. Medienform: | abhängig vom jeweiligen Versuch

20. Angeboten von: | Institut für Arbeitswissenschaft und Technologiemanagement
270 Gruppe Mechatronik und Technische Kybernetik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>272</td>
<td>Steuerungstechnik</td>
</tr>
<tr>
<td>273</td>
<td>Systemdynamik</td>
</tr>
<tr>
<td>274</td>
<td>Technische Dynamik</td>
</tr>
<tr>
<td>275</td>
<td>Technische Mechanik</td>
</tr>
</tbody>
</table>
271 Regelungstechnik

Zugeordnete Module:
- 2711 Kernfächer mit 6 LP
- 2712 Kern-/Ergänzungsfächer mit 6 LP
- 2713 Ergänzungsfächer mit 3 LP
- 33660 Praktikum Spezialisierungsfach Regelungstechnik
2713 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 32770 Angewandte Regelung und Optimierung in der Prozessindustrie
41820 Modellierung, Analyse und Entwurf neuer Roboterkinematiken
Modul: 32770 Angewandte Regelung und Optimierung in der Prozessindustrie

2. Modulkürzel: 074810190
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer

9. Dozenten: Alexander Horch

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Regelungstechnik
 → Ergänzungsfächer mit 3 LP

13. Inhalt:
 - Anwendung einiger Regelungs- und Optimierungsverfahren:
 • Zustandsüberwachung von Regelkreisen
 • Anlagenweite Störungüberwachung
 • Lineare, Nichtlineare, Hybride modellprädiktive Regelung / Optimierung
 • Modellbasierte gehobene PID Regelung
 • Mixed Integer (Non)Linear programming
 • ‘Large-scale’ modell-basierte Optimierung
 - Grundlagen einiger Aspekte der Automatisierungstechnik
 • Prozessleitungstechnik
 • Wirtschaftlichkeitsrechnung; Automatisierung projektierung
 • Modellierung mit Modelica
 - Einblick in einige Industriebereiche:
 • Petro-)Chemie
 • Kraftwerke
 • Metallherstellung und -verarbeitung
 • Ölförderung
 • Wassernetze
 • Leistungselektronik
 • Papier und Zellstoffindustrie

14. Literatur:
- + zahlreiche Zeitschriftenveröffentlichungen, die jeweils referenziert werden, da das Material bisher in Büchern kaum veröffentlicht ist.

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>327701 Vorlesung Angewandte Regelung und Optimierung in der Prozessindustrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32771 Angewandte Regelung und Optimierung in der Prozessindustrie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 41820 Modellierung, Analyse und Entwurf neuer Roboterkinematiken

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910093</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
<th>→ Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Gruppe Mechatronik und Technische Kybernetik</td>
</tr>
<tr>
<td></td>
<td>→ Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

13. Inhalt:

- Modellbildung von Maschinen mit komplexer Kinematik
- Techniken zur Analyse von Eigenschaftsbestimmung
- Kinematische Transformation und Arbeitsraumbestimmung
- Methoden für Entwurf und Auslegung

14. Literatur:

15. Lehrveranstaltungen und -formen: 418201 Vorlesung Modellierung, Analyse und Entwurf neuer Roboterkinematiken

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	28 Stunden
Selbststudium:	62 Stunden
Summe:	90 Stunden

17. Prüfungsnummer/n und -name: 41821 Modellierung, Analyse und Entwurf neuer Roboterkinematiken (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
2712 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18610</td>
<td>Konzepte der Regelungstechnik</td>
</tr>
<tr>
<td>18620</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>18630</td>
<td>Robust Control</td>
</tr>
<tr>
<td>18640</td>
<td>Nonlinear Control</td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
</tr>
</tbody>
</table>
Modul: 29940 Convex Optimization

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810180</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Christian Ebenbauer

9. Dozenten: Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Regelungstechnik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: The students obtain a solid understanding of convex optimization theory and tools. In particular, they are able to formulate and assess optimization problems and to apply methods and tools from convex optimization, such as linear and semi-definite programming, duality theory and relaxation techniques, to solve optimization problems in various areas of engineering and sciences.

12. Lernziele: - Linear programming
 - Semidefinite programming
 - Linear matrix inequalities
 - Duality theory
 - Relaxation techniques
 - Polynomial optimization
 - Simplex method and Interior-point methods
 - Applications

13. Inhalt:

14. Literatur:
 - Vollständiger Tafelanschrieb,
 - Handouts,
 - Buch: Convex Optimization (S. Boyd, L. Vandenberghe), Nichtlineare Optimierung (R.H. Elster), Lectures on Modern Convex Optimization (A. Ben-Tal, A. Nemirovski)
 - Material für (Rechner-)Übungen wird in den Übungen ausgeteilt

15. Lehrveranstaltungen und -formen: 299401 Vorlesung Convex Optimization

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 42 Stunden
 - Selbststudium: 138 Stunden
 - Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 29941 Convex Optimization (PL), schriftlich oder mündlich, Gewichtung: 1.0, Convex Optimization, 1,0, schriftlich 120 min oder mündlich 40 min.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 18610 Konzepte der Regelungstechnik

2. Modulkürzel: 074810110
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer

9. Dozenten: Frank Allgöwer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
⇒ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
⇒ Gruppe Mechatronik und Technische Kybernetik
⇒ Regelungstechnik
⇒ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
⇒ Gruppe Mechatronik und Technische Kybernetik
⇒ Regelungstechnik
⇒ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
⇒ Vertiefungsmodule
⇒ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
Grundkenntnisse der mathematischen Beschreibung dynamischer Systeme, der Analyse dynamischer Systeme und der Regelungstechnik, wie sie z.B. in den folgenden B.Sc. Modulen an der Universität Stuttgart vermittelt werden:
- 074710001 Systemdynamik
- 074810040 Einführung in die Regelungstechnik

12. Lernziele:
Der Studierende

- kennt die relevanten Methoden zur Analyse linearer und nichtlinearer dynamischer Systeme und ist in der Lage diese an realen Systemen anzuwenden
- kann Regler für lineare und nichtlineare Dynamische Systeme entwerfen und validieren
- kennt und versteht die Grundbegriffe wichtiger Konzepte der Regelungstechnik, insbesondere der nichtlinearen, optimalen und robusten Regelungstechnik

13. Inhalt:
- Erweiterte Regelkreisstrukturen
- Struktureigenschaften linearer und nichtlinearer Systeme
- Lyapunov - Stabilitätstheorie
- Regelentwurf für lineare und nichtlineare Systeme

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 186101 Vorlesung und Übung Konzepte der Regelungstechnik
- 186102 Gruppenübung Konzepte der Regelungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudium / Nacharbeitszeit: 117h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>18611 Konzepte der Regelungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 18640 Nonlinear Control

2. Modulkürzel: 074810140
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Englisch
8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik
 → Regelungstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Vorlesung: Konzepte der Regelungstechnik
12. Lernziele: The student
 • knows the mathematical foundations of nonlinear control
 • has an overview has an overview of the properties and characteristics of nonlinear control systems,
 • is trained in the analysis of nonlinear systems with respect to system-theoretical properties,
 • knows modern nonlinear control design principles,
 • is able to apply modern control design methods to practical problems,
 • has deepened knowledge, enabling him to write a scientific thesis in the area of nonlinear control and systems-theory.
13. Inhalt: Course "Nonlinear Control":
 Mathematical foundations of nonlinear systems, properties of nonlinear systems, non-autonomous systems, Lyapunov stability, ISS, Input/Output stability, Control Lyapunov Functions, Backstepping, Dissipativity, Passivity, and Passivity based control design
15. Lehrveranstaltungen und -formen: 186401 Vorlesung Nonlinear Control
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42h
 Selbststudiumsszeit / Nacharbeitszeit: 138h
 Gesamt: 180h
17. Prüfungsnummer/n und -name: 18641 Nonlinear Control (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 18620 Optimal Control

2. Modulkürzel: 074810120
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Ebenbauer
9. Dozenten: Christian Ebenbauer
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik
→ Regelungstechnik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
B.Sc.-Abschluss in Technischer Kybernetik, Maschinenbau, Automatisierungstechnik, Verfahrenstechnik oder einem vergleichbaren Fach sowie Grundkenntnisse der Regelungstechnik (vergleichbar Modul Regelungstechnik)

12. Lernziele:
The students are able to solve static and dynamic optimization problems (optimal control problems) and they obtain a basic mathematical understanding of the key ideas and concepts of the underlying theory. The students can apply their knowledge of optimal control to small project exercises.

13. Inhalt:
The goal of the lecture is twofold:

- Understanding of the key ideas of static and dynamic optimization methods.
- Communication of both analytic and numeric solution methods for such problems.

In the first part of the lecture basic methods for static (finite-dimensional) optimization problems are presented and illustrated via simple examples. The main part of the lecture focuses on solution methods for nonlinear optimal control problems including the following topics:

- Dynamic Programming
- Hamilton-Jacobi-Bellman Theory
- Calculus of Variations
- Pontryagin Maximum Principle
- Numerical Algorithms
- Model Predictive Control
- Optimal Trajectory Tracking
- Application examples

The exercises contain a group work mini project in which the students apply their knowledge to solve the given specified optimal control problem in a predefined time period.

14. Literatur:
A. Brassan and B. Piccoli: Introduction to Mathematical Control Theory, AMS,
F.L. Lewis and V. L. Syrmos: Optimal Control, John Wiley and Sons,
I.M. Gelfand and S.V. Fomin: Calculus of Variations, Dover,
H. Sagan: *Introduction to the Calculus of Variations*, Dover,
D. Bertsekas: *Dynamic Programming and Optimal Control*, Athena Scientific,

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>186201 Vorlesung Optimal Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>18621 Optimal Control (PL), schriftlich oder mündlich, Gewichtung: 1,0</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 18630 Robust Control

2. Modulkürzel: 074810130
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Englisch
8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: • Frank Allgöwer
 • Carsten Scherer
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Regelungstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Vorlesung Konzepte der Regelungstechnik oder Vorlesung Lineare Kontrolltheorie
12. Lernziele:
 The students are able to mathematically describe uncertainties in dynamical systems and are able to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge on a specified project.
13. Inhalt:
 • Selected mathematical background for robust control
 • Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties, parametric uncertainties, ...)
 • The generalized plant framework
 • Robust stability and performance analysis of uncertain dynamical systems
 • Structured singular value theory
 • Theory of optimal H-infinity controller design
 • Application of modern controller design methods (H-infinity control and mu-synthesis) to concrete examples
14. Literatur:
 • C.W. Scherer, Theory of Robust Control, Lecture Notes.
15. Lehrveranstaltungen und -formen: 186301 Vorlesung mit Übung und Miniprojekt Robust Control
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42h
 Selbststudiumszeit / Nacharbeitszeit: 138h
 Gesamt: 180h
17. Prüfungsnummer/n und -name: 18631 Robust Control (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
2711 Kernfächer mit 6 LP

Zugeordnete Module: 18610 Konzepte der Regelungstechnik
Modul: 18610 Konzepte der Regelungstechnik

2. Modulkürzel: 074810110 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Regelungstechnik
 → Kern- / Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Regelungstechnik
 → Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
Grundkenntnisse der mathematischen Beschreibung dynamischer Systeme, der Analyse dynamischer Systeme und der Regelungstechnik, wie sie z.B. in den folgenden B.Sc. Modulen an der Universität Stuttgart vermittelt werden:
• 074710001 Systemdynamik
• 074810040 Einführung in die Regelungstechnik

12. Lernziele:
Der Studierende
• kennt die relevanten Methoden zur Analyse linearer und nichtlinearer dynamischer Systeme und ist in der Lage diese an realen Systemen anzuwenden
• kann Regler für lineare und nichtlineare Dynamische Systeme entwerfen und validieren
• kennt und versteht die Grundbegriffe wichtiger Konzepte der Regelungstechnik, insbesondere der nichtlinearen, optimalen und robusten Regelungstechnik

13. Inhalt:
• Erweiterte Regelkreisstrukturen
• Struktureigenschaften linearer und nichtlinearer Systeme
• Lyapunov - Stabilitätstheorie
• Reglerventwurf für lineare und nichtlineare Systeme

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 186101 Vorlesung und Übung Konzepte der Regelungstechnik
• 186102 Gruppenübung Konzepte der Regelungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudiumszeit / Nacharbeitszeit: 117h

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>18611 Konzepte der Regelungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33660 Praktikum Spezialisierungsfach Regelungstechnik

2. Modulkürzel: 074810170
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Frank Allgöwer

9. Dozenten: Frank Allgöwer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 ➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➞ Spezialisierungsfächer A (ING)
 ➞ Gruppe Mechatronik und Technische Kybernetik
 ➞ Regelungstechnik

11. Empfohlene Voraussetzungen: Besuch der Vorlesung „Konzepte der Regelungstechnik“

 Beispiele:
 • etc.

14. Literatur: Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:
 • 336601 Spezialisierungsfachversuch 1
 • 336602 Spezialisierungsfachversuch 2
 • 336603 Spezialisierungsfachversuch 3
 • 336604 Spezialisierungsfachversuch 4
 • 336605 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 • 336606 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 • 336607 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
 • 336608 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33661 Praktikum Spezialisierungsfach Regelungstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:
19. Medienform:

20. Angeboten von:
272 Steuerungstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2721</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>2722</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2723</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>33890</td>
<td>Praktikum Steuerungstechnik</td>
</tr>
</tbody>
</table>
2723 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 32470 Automatisierung in der Montage- und Handhabungstechnik
- 33730 Robotersysteme - Auslegung und Einsatz
- 37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation
- 37280 Öhydraulik und Pneumatik in der Steuerungstechnik
- 37320 Steuerungstechnik II
- 41670 Grundlagen der Prozessrechentechnik und Softwaretechnik
- 41880 Grundlagen der Bionik
Modul: 32470 Automatisierung in der Montage- und Handhabungstechnik

4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl
9. Dozenten: Andreas Wolf

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Ergänzungsfächer mit 3 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fabrikbetrieb
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
 • Überblick über die Möglichkeiten und Grenzen der Automatisierung in der Handhabungs- und Montagetechnik.
 • Handhabungsfunktionen, die zugehörige Gerätetechnik, deren Verkettung.
 • Materialfluss zwischen Fertigungsmitteln und die Automatisierungs-möglichkeiten.
 • Montagegerechte Gestaltung von Werkstücken.
 • Wirtschaftliche Betrachtung von Automatisierungsvorhaben.

14. Literatur:

15. Lehrveranstaltungen und -formen: 324701 Vorlesung Automatisierung in der Montage- und Handhabungstechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32471 Automatisierung in der Montage- und Handhabungstechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 41880 Grundlagen der Bionik

2. Modulkürzel: 072910094
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Steuerungstechnik
→ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Keine

13. Inhalt:
- Geschichte der Bionik
- Evolution und Optimierung in Biologie, und Technik
- Modellbildung, Analogiebildung, Transfer in die Technik
- Bionik als Kreativitätstechnik
- Biologische Materialien und Strukturen
- Formgestaltung und Design
- Konstruktionen und Geräte
- Bau und Klimatisierung
- Robotik und Lokomotion
- Sensoren und neuronale Steuerungen
- Biomedizinische Technik
- System und Organisation

14. Literatur:

Weitere Literatur wird in der Vorlesung bekanntgegeben

15. Lehrveranstaltungen und -formen: 418801 Vorlesung mit integriertem Seminar Bionik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 28 Stunden
- Selbststudium: 52 Stunden
- Summe: 90 Stunden

Stand: 23. Oktober 2012
17. Prüfungsnummer/n und -name: 41881 Grundlagen der Bionik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41670 Grundlagen der Prozessrechentechnik und Softwaretechnik

2. Modulkürzel: 072910014
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Klemm
9. Dozenten: Peter Klemm
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Steuerungstechnik
→ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
- Die Studierenden verstehen die Grundlagen flexibler Fertigungseinrichtungen und deren Anforderungen an ihre Steuerungssoftware,
- beherrschen die Grundlagen, Denkmodelle/Denkmuster sowie die systemtechnischen Methoden der ingenieurmaßigen Softwareentwicklung und erkennen ihre Notwendigkeit,
- verstehen die Phasen der Softwareentwicklung und die zugehörigen Vorgehensmodelle,
- verstehen die Grundlagen der funktionsorientierten und der objektorientierten Softwareentwicklung,
- können Funktionen von Maschinen und Steuerungen systematisch beschreiben und besitzen damit die Fähigkeit zur interdisziplinären Kommunikation,
- kennen die Struktur der Software Speicherprogrammierbarer Steuerungen (SPS) und sind in der Lage solche Software zu entwickeln.
13. Inhalt:
- Überblick über die Struktur von produzierenden Unternehmen und über flexible Fertigungseinrichtungen,
- Grundlagen und Methoden der Softwaretechnik für Fertigungseinrichtungen,
- Vorgehensmodelle der Softwareentwicklung,
- funktionsorientierte und objektorientierte Softwareentwicklung (inc. UML),
- Beschreibung von Maschinen- und Steuerungsfunktionen,
- Softwaretechnik für Speicherprogrammierbare Steuerungen, insbesondere baukastenbasierte Softwareentwicklung.
14. Literatur:
- Manuskript und Übungsaufgaben,

- Erler, T.: Das Einsteigerseminar UML. bhv Verlag.

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>416701 Vorlesung und Übung Grundlagen der Prozessrechentechnik und Softwaretechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>41671 Grundlagen der Prozessrechentechnik und Softwaretechnik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910092</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Alexander Verl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Urs Schneider</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Steuerungstechnik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | • Einführung in die Orthopädie
• Bewegungserfassung, Bewegungssteuerung und Bewegungserzeugung
• Anwendungen in der Prothetik, Orthetik und Rehabilitation. |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | 372701 Vorlesung Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 37271 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | Steuerungstechnik und Mechatronik für Produktionssysteme |
Modul: 33730 Robotersysteme - Auslegung und Einsatz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910041</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Systemstrukturen und Komponenten von Robotersystemen • Konstruktion von Robotersystemen, speziell Antriebsstränge, Achsverbindungselemente • Zusammenwirken der Roboterkinematik (Stellgrößen für den Prozess) • Dimensionierung von Systemkomponenten • Einsatzbeispiele</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Lernmaterialien werden verteilt</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>337301 Vorlesung Robotersysteme - Auslegung und Einsatz</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33731 Robotersysteme - Auslegung und Einsatz (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 37320 Steuerungstechnik II

2. Modulkürzel: 072910005
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl
9. Dozenten: Alexander Verl
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: keine
13. Inhalt:
 • Grundtypen von Hardwarerealisierungen / Hardwarearchitekturen
 • Grundtypen von Steuerungssystemen / Softwarearchitekturen
 • Echtzeitbetriebssysteme
 • Funktionsorientierte Aufteilung der Steuerungsaufgaben / Softwareimplementierungen
 • Kommunikationstechnik
 • Sicherheitstechnik in der Steuerungstechnik
 • Open Source Automatisierung
 • Kennenlernen der wesentlichen Hersteller von Steuerungskomponenten: BECKHOFF / BOSCH-Rexroth / ELAU / ISG / SIEMENS
14. Literatur:
15. Lehrveranstaltungen und -formen: 373201 Vorlesung Steuerungstechnik II
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 37321 Steuerungstechnik II (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 37280 Ölhydraulik und Pneumatik in der Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910031</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Ölhydraulik und Pneumatik in der Steuerungstechnik</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Seyfarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Seyfarth</td>
</tr>
</tbody>
</table>
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden kennen die Gesetzmäßigkeiten und Elemente hydraulischer und pneumatischer Systeme. Sie können diese in fluidischen Schaltplänen erkennen und eigene fluidische Schaltungen entwerfen |
| 13. Inhalt: | • Grundlagen fluidischer Systeme.
 • Elemente fluidischer Systeme (Pumpen, Motoren, Ventile).
 • Schaltungen fluidischer Systeme. |
| 15. Lehrveranstaltungen und -formen: | 372801 Vorlesung Ölhydraulik und Pneumatik in der Steuerungstechnik |
 Selbststudium: 69 Stunden
 Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 37281 Ölhydraulik und Pneumatik in der Steuerungstechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
2722 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 16250 Steuerungstechnik
- 17160 Prozessplanung und Leittechnik
- 33430 Anwendungen von Robotersystemen
- 41660 Angewandte Regelungstechnik in Produktionsanlagen
Modul: 41660 Angewandte Regelungstechnik in Produktionsanlagen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910007</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl
9. Dozenten: Alexander Verl
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Steuerungstechnik
 - Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Studierenden können das Zusammenspiel der elektrischen Antriebssysteme, des mechanischen Maschineaufbaus und die daraus resultierenden Auswirkungen auf den Bearbeitungsprozess verstehen, modellieren und regelungstechnisch handhaben.

13. Inhalt:
 - Modellbildung des elektrischen Antriebssystems von Werkzeugmaschinen.
 - Regelkreise und Vorsteueralgorithmen
 - Schwingungsunterdrückung
 - Behandlung von Prozesseinflüssen (z.B. Rattern).
 - Praktische Übungen in MATLAB.

14. Literatur: Lernmaterialien werden verteilt
15. Lehrveranstaltungen und -formen: 416601 Vorlesung mit integriertem Seminar Angewandte Regelungstechnik in Produktionsanlagen
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
17. Prüfungsnummer/n und -name: 41661 Angewandte Regelungstechnik in Produktionsanlagen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 33430 Anwendungen von Robotersystemen

2. Modulkürzel: 072910093
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr.-Ing. Alexander Verl
9. Dozenten: • Ralf Koepepe
• Martin Hägele
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mechatronik und Technische Kybernetik ➔ Steuerungstechnik ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Robotersysteme - Anwendungen aus der Industrie:
• Anwendungen von Robotersystemen in der Automobil- und allgemeinen Industrie
• Roboterbasiertes thermisches Fügen, Fräsen, Biegen, Montieren
• Roboter in der Logistik, Medizin und Weltraumtechnik
• Sensorbasierte Regelung
• Programmieren durch Vormachen
• Steuerung kooperierender und nachgiebig geregelter Robotersysteme
Robotersysteme - Anwendungen aus der Servicerobotik
• Anhand zahlreicher Produktbeispiele, aktueller Prototypen und Technologieträger erfolgt ein umfassender Überblick über die Schlüsseltechnologien der Servicerobotik.
• Die vermittelten Grundlagen ermöglichen, ein Servicerobotersystem zu konzipieren und zu entwickeln.
• Schlüsseltechnologien: Steuerungsarchitekturen, Sensoren, mobile Navigation, Handhaben und Greifen, Planung und maschinelles Lernen, Mensch-Maschine-Interaktion.
• Realisierungsbeweispiele („Case-Studies“)

14. Literatur:
Lernmaterialien werden verteilt

15. Lehrveranstaltungen und -formen:
• 334301 Vorlesung Robotersysteme - Anwendungen aus der Industrie
• 334302 Vorlesung Robotersysteme - Anwendungen aus der Servicerobotik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
• 33431 Robotersysteme - Anwendungen aus der Industrie (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
• 33432 Robotersysteme - Anwendungen aus der Servicerobotik (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 17160 Prozessplanung und Leittechnik

2. Modulkürzel: 072911002
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.8
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Klemm
9. Dozenten: Peter Klemm

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technologiemanagement, PO 2011 | → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 | → Gruppe Mechatronik und Technische Kybernetik |
| → Steuerungstechnik |
| → Kern-/Ergänzungsfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 | → Gruppe Mechatronik und Technische Kybernetik |
| → Steuerungstechnik |
| → Kernfächer mit 6 LP |
| M.Sc. Technologiemanagement, PO 2011 | → Vertiefungsmodul |
| → Wahlmöglichkeit Gruppe 3: Produktion |

12. Lernziele: Die Studierenden

- verstehen den Aufbau und die Eigenschaften von **Flexiblen Fertigungseinrichtungen**;
- können die Struktur, der Aufgabenbereiche und **Informationsflüsse in Produktionsunternehmen** erkennen und die Aufgaben und Arbeitsschritte der **Arbeits- und Prozessplanung** erfassen;
- verstehen die Aufgaben und Funktionen der **CAD/NC-Verfahrenskette**;
- verstehen die Struktur und den Inhalt von **NC-Programmen** für Werkzeugmaschinen sowie Industrieroboter und können NC-Programme erstellen;
- können den Nutzen der **rechnerunterstützten NC-Programmierung** erkennen und besitzen die Voraussetzungen für die schnelle Einarbeitung in Softwarewerkzeuge für die NC-Programmierung;
- können die Grundlagen der **objektorientierten Bearbeitungsmodellierung** verstehen und bewerten und erwerben einen Überblick über die **CAD/NC-Verfahrenskette**;
- verstehen die Aufgaben und Funktionen von **Leitsystemen (Manufacturing Execution Systems)**;
- verstehen die Aufgaben von **Informationssystemen** in der Produktion.

13. Inhalt: Aufgaben und Funktionen von:

- Flexiblen Fertigungseinrichtungen,
- Informationsfluss in Produktionsunternehmen,
- CAD/NC-Verfahrenskette,
- Arbeits- und Prozessplanung,
- NC-Programmierung,
- Leittechnik (Manufacturing Execution Systems),
- Informationssystemen in der Produktion.

Stand: 23. Oktober 2012
14. Literatur:

- Manuskript, Übungsaufgaben

15. Lehrveranstaltungen und -formen:

- 171601 Softwaretechnik für Prozessplanung und Leitsysteme I, Vorlesung und Übung
- 171602 Softwaretechnik für Prozessplanung und Leitsysteme II, Vorlesung und Übung
- 171603 Praktikum Prozessplanung und Leittechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 50 h
Nacharbeitszeit: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

17161 Prozessplanung und Leittechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Beamer, Overheadprojektor, Tafel

20. Angeboten von:

Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 16250 Steuerungstechnik

2. Modulkürzel: 072910002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.5
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl

9. Dozenten: • Alexander Verl
• Michael Seyfarth

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mechatronik und Technische Kybernetik ➔ Steuerungstechnik ➔ Kern-/Eröfnungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mechatronik und Technische Kybernetik ➔ Steuerungstechnik ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Keine besonderen Vorkenntnisse

13. Inhalt:
• Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotertechnik, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung.
• Darstellung und Lösung steuerungstechnischer Problemstellungen.
• Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme (Elektromotoren, fluidische Antriebe).
• Typische praxisrelevante Anwendungsbeispiele.
• Praktikumsversuche zur Programmierung der verschiedenen Steuerungsarten

14. Literatur:
• Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
• 162501 Vorlesung Steuerungstechnik mit Antriebstechnik
• 162502 Übung Steuerungstechnik
• 162503 Praktikum Steuerungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 48 h
Selbststudiumszeit / Nacharbeitszeit: 132 h
Gesamt: 180 h
| 17. Prüfungsnummer/n und -name: | • 16251 Steuerungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,
• 16252 Steuerungstechnik Praktikum (USL), schriftlich, eventuell mündlich, 0 Min., Gewichtung: 1.0 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für:</td>
<td>14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Overhead, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen</td>
</tr>
</tbody>
</table>
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

2. Modulkürzel: 072910003
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl

9. Dozenten: Alexander Verl

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2008, 6. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 6. Semester
 → Ergänzungsmodul
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 6. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 6. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mikrotechnik, Geräte- und Technische Optik
 → Elektronikfertigung
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Werkstoff- und Produktionstechnik
 → Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs-
 und Steuerungstechnik)

12. Lernziele:

Industrieroboter können die Studierenden die Komponenten innerhalb der Steuerung, wie z.B. Lagesollwertbildung oder Adaptive Control-Verfahren interpretieren. Sie können die Auslegung der Antriebstechnik und die zugehörigen Problemstellungen der Regelungs- und Messtechnik verstehen, bewerten und Lösungen erarbeiten.

Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

• Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
• Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
• Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung. |
|---|---|
| 15. Lehrveranstaltungen und -formen: | • 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
• 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
• 142303 Praktikum 1 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
• 142304 Praktikum 2 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 50h
Nacharbeitszeit: 130h
Gesamt: 180h |
| 17. Prüfungsnummer/n und -name: | 14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: | Beamer, Overhead, Tafel |
| 20. Angeboten von: | Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen |
2721 Kernfächer mit 6 LP

Zugeordnete Module:
- 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 16250 Steuerungstechnik
- 17160 Prozessplanung und Leittechnik
Modul: 17160 Prozessplanung und Leittechnik

2. Modulkürzel: 072911002
5. Modulsdauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.8
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Klemm
9. Dozenten: Peter Klemm

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Modulverantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technologiemanagement, PO 2011</td>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Gruppe Mechatronik und Technische Kybernetik</td>
</tr>
<tr>
<td></td>
<td>→ Steuerungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Gruppe Mechatronik und Technische Kybernetik</td>
</tr>
<tr>
<td></td>
<td>→ Steuerungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td>→ Vertiefungsmodule</td>
</tr>
<tr>
<td></td>
<td>→ Wahlmöglichkeit Gruppe 3: Produktion</td>
</tr>
</tbody>
</table>

12. Lernziele: Die Studierenden

- verstehen den Aufbau und die Eigenschaften von **Flexiblen Fertigungseinrichtungen**;
- können die Struktur, der Aufgabenbereiche und **Informationsflüsse in Produktionsunternehmen** erkennen und die Aufgaben und Arbeitsschritte der **Arbeits- und Prozessplanung** erfassen;
- verstehen die Aufgaben und Funktionen der **CAD/NC-Verfahrenskette**;
- verstehen die Struktur und den Inhalt von **NC-Programmen** für Werkzeugmaschinen sowie Industrieroboter und können NC-Programme erstellen;
- können den Nutzen der **rechnerunterstützten NC-Programmierung** erkennen und besitzen die Voraussetzungen für die schnelle Einarbeitung in Softwarewerkzeuge für die NC-Programmierung;
- können die Grundlagen der **objektorientierten Bearbeitungsmodellierung** verstehen und bewerten und erwerben einen Überblick über die **CAD/NC-Verfahrenskette**;
- verstehen die Aufgaben und Funktionen von **Leitsystemen (Manufacturing Execution Systems)**;
- verstehen die Aufgaben von **Informationssystemen** in der Produktion.

13. Inhalt: Aufgaben und Funktionen von:

- Flexiblen Fertigungseinrichtungen,
- Informationsfluss in Produktionsunternehmen,
- CAD/NC-Verfahrenskette,
- Arbeits- und Prozessplanung,
- NC-Programmierung,
- Leittechnik (Manufacturing Execution Systems),
- Informationssystemen in der Produktion.
14. Literatur:

- Manuskript, Übungsaufgaben

15. Lehrveranstaltungen und -formen:

- 171601 Softwaretechnik für Prozessplanung und Leitsysteme I, Vorlesung und Übung
- 171602 Softwaretechnik für Prozessplanung und Leitsysteme II, Vorlesung und Übung
- 171603 Praktikum Prozessplanung und Leittechnik

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 50 h
- Nacharbeitzeit: 130 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 17161 Prozessplanung und Leittechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Beamer, Overheadprojektor, Tafel

20. Angeboten von:

- Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 16250 Steuerungstechnik

2. Modulkürzel: 072910002
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.5
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl
9. Dozenten: • Alexander Verl
• Michael Seyfarth

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Steuerungstechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Keine besonderen Vorkenntnisse

12. Lernziele:
Die Studierenden kennen und verstehen den Aufbau, die Architekturen und die Funktionsweisen unterschiedlicher Steuerungsarten, wie mechanische Steuerungen, fluidische Steuerungen, Kontaktsteuerungen, Speicherprogrammierbare Steuerungen und bewegungserzeugende Steuerungen. Sie können beurteilen welche Steuerungsart welche Aufgabenbereiche abdeckt und wann welche Steuerungsart eingesetzt werden kann. Sie kennen die Programmierweisen und Programmersprachen für die unterschiedlichen Steuerungsarten und können steuerungstechnische Problemstellungen methodisch lösen. Weiter beherrschen die Studierenden die Grundlagen der in der Automatisierungstechnik vorwiegend verwendeten Antriebsysteme (elektrisch, fluidisch) und können deren Einsatzbereiche und Einsatzgrenzen bestimmen.

13. Inhalt:
• Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotersteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung.
• Darstellung und Lösung steuerungstechnischer Problemstellungen.
• Grundlagen der in der Automatisierungstechnik verwendeten Antriebsysteme (Elektromotoren, fluidische Antriebe).
• Typische praxisrelevante Anwendungsbeispiele.
• Praktikumsversuche zur Programmierung der verschiedenen Steuerungsarten

14. Literatur:
• Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
• 162501 Vorlesung Steuerungstechnik mit Antriebstechnik
• 162502 Übung Steuerungstechnik
• 162503 Praktikum Steuerungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 48 h
Selbststudiumszeit / Nacharbeitszeit: 132 h
Gesamt: 180 h
| 17. Prüfungsnummer/n und -name: | • 16251 Steuerungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,
| | • 16252 Steuerungstechnik Praktikum (USL), schriftlich, eventuell mündlich, 0 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter |
| 19. Medienform: | Beamer, Overhead, Tafelanschrieb |
| 20. Angeboten von: | Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen |
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910003</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Alexander Verl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alexander Verl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kompetenzzfeld II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technologiemanagement, PO 2008, 6. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Pflichtmodule 4 und 5 mit Wahlmöglichkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technologiemanagement, PO 2011, 6. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kompetenzzfeld II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technologiemanagement, PO 2011, 6. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Pflichtmodule mit Wahlmöglichkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technologiemanagement, PO 2011, 6. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Gruppe Mechatronik und Technische Kybernetik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Steuerungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Gruppe Mechatronik und Technische Kybernetik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Steuerungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Gruppe Mikrotechnik, Geräte- und Technische Optik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Elektronikfertigung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Gruppe Werkstoff- und Produktionstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Vertiefungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlmöglichkeit Gruppe 3: Produktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs- und Steuerungstechnik)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Industrieroboter können die Studierenden die Komponenten innerhalb der Steuerung, wie z.B. Lagesollwertbildung oder Adaptive Control-Verfahren interpretieren. Sie können die Auslegung der Antriebstechnik und die zugehörigen Problemstellungen der Regelungs- und Messtechnik verstehen, bewerten und Lösungen erarbeiten.

Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

13. Inhalt:
- Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
- Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
- Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
- Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung.

14. Literatur:
Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
- 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142303 Praktikum 1 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142304 Praktikum 2 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	50h
Nacharbeitszeit:	130h
Gesamt:	180h

17. Prüfungsnummer/n und -name:
14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Overhead, Tafel

20. Angeboten von:
Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 33890 Praktikum Steuerungstechnik

2. Modulkürzel: 072900020

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modulduer: 1 Semester

6. Turnus: jedes Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Alexander Verl

9. Dozenten:
 • Peter Klemm
 • Alexander Verl
 • Sascha Röck

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Steuerungstechnik

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden sind in der Lage theoretische Vorlesungsinhalte der Steuerungstechnik anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 • Konfigurierung einer Motion Control: das Praktikum vermittelt den Einsatz einer Motion Control anhand der Beispielapplikation „Fliegende Säge“.
 • Digitale Lageregelung: im Praktikum werden der Lage- und Geschwindigkeitsregelkreis einer Werkzeugmaschine eingestellt.
 • Simulation mit MATLAB: Im Rahmen dieses Versuchs wird ein Einblick in die Leistungsfähigkeit moderner Simulationssysteme am Beispiel der MATLAB-Programmtools gegeben. Die Aufgabe ist es, mit MATLAB einen Lageregler für eine Werkzeugmaschine zu entwerfen und seine Parameter zu optimieren.
 • Hardware-in-the-Loop Simulation einer Werkzeugmaschine (Kinematik): im Praktikum wird die Vorgehensweise zur Erstellung von kinematischen Modellen am Beispiel einer Werkzeugmaschine erläutert. Das entstandene Modell wird am Ende mit einem realen Steuerungssystem angesteuert.
 • Programmieren einer SPS: Ziel des Praktikums ist es, am Beispiel einer einfachen Maschine, die Grundzüge des Programmierens speicherprogrammierbarer Steuerungen (SPS) kennenzulernen. Zur Programmierung der Steuerungsfunktionen werden dabei...
die Sprache Anweisungsliste (AWL) der IEC 61131-3 und die Zustandsgraphenmethode angewandt.

- Programmierung eines Industrieroboters: In diesem Versuch werden die allgemeinen Konzepte der Roboterprogrammierung vorgestellt und am Beispiel eines realen Roboters gezeigt.
- Programmierung einer Werkzeugmaschine: Der Praktikumsversuch soll die Vorgehensweise bei der manuellen NC-Programmierung nach DIN 66025 aufzeigen und derjenigen bei der rechnerunterstützten mittels EXAPTplus Interaktiv gegenüberstellen. Die Vorgehensweise der manuellen wie der rechnerunterstützten NCProgrammierung wird anhand eines Beispielwerkstücks zur 2.5-achsigen Fräsbearbeitung auf einer fünffachigen Werkzeugmaschine dargestellt.

14. Literatur: Lernmaterialien werden verteilt
15. Lehrveranstaltungen und -formen:
 - 338901 Spezialisierungsfachversuch 1
 - 338902 Spezialisierungsfachversuch 2
 - 338903 Spezialisierungsfachversuch 3
 - 338904 Spezialisierungsfachversuch 4
 - 338905 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
 - 338906 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
 - 338907 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
 - 338908 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 30 Stunden
 - Selbststudium/Nacharbeitszeit: 60 Stunden
 - Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33891 Praktikum Steuerungstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
273 Systemdynamik

Zugeordnete Module:

- 2731 Kernfächer mit 6 LP
- 2732 Kern-/Ergänzungsfächer mit 6 LP
- 2733 Ergänzungsfächer mit 3 LP
- 33880 Praktikum Systemdynamik
2733 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 33850 Automatisierungstechnik
- 33860 Objektorientierte Modellierung und Simulation
- 37000 Prozessführung in der Verfahrenstechnik
Modul: 33850 Automatisierungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711005</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik → Systemdynamik → Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die Regelungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elektrische Signalverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsumdrucke (Vorlesungsfolien)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Übungsblätter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hesse, Schnell: Sensoren für die Prozess- und Fabrikautomation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Janocha: Unkonventionelle Aktoren - eine Einführung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bekannt gegeben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>338501 Vorlesung Automatisierungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 21 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33851 Automatisierungstechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Folien bzw. Vorlesungsumdruck</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tafenananschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemdynamik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33860 Objektorientierte Modellierung und Simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074730002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Eckhard Arnold</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Eckhard Arnold</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Systemdynamik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Einführung in die Regelungstechnik; Systemdynamik; Simulationstechnik |
| 14. Literatur: | • Vorlesungsumdrucke
| 15. Lehrveranstaltungen und -formen: | 338601 Vorlesung Objektorientierte Modellierung und Simulation |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 33861 Objektorientierte Modellierung und Simulation (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Systemdynamik |
Modul: 37000 Prozessführung in der Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710012</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Oliver Sawodny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Birk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Systemdynamik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

- Einführung in die Regelungstechnik; Systemdynamik bzw. Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele:

Die Studierenden können komplexe Problemstellungen der Analyse und Steuerung von dynamischen Systemen an verfahrenstechnischen Anlagen mit den in diesem Modul vorgestellten Methoden lösen.

13. Inhalt:

In dieser Vorlesung werden die spezifischen Methoden für die Prozessführung in der Verfahrenstechnik behandelt. Hierzu zählen der Betrieb von Batchprozessen sowie die Steuerung kontinuierlicher Anlagen. Es werden die verschiedenen Methoden für die Steuerung und Regelung hierzu erläutert.

14. Literatur:

- Skript („Tafelanschrieb“)
- H. Schuler: Prozessführung, Oldenbourg Verlag, München 2000

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Veranstaltung</th>
<th>Hinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>370001</td>
<td>Vorlesung Prozessführung in der Verfahrenstechnik</td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 h
- Nacharbeitszeit: 34 h
- Prüfungsvorbereitung: 35 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Prüfung</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>37001</td>
<td>Prozessführung in der Verfahrenstechnik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

Institut für Systemdynamik
2732 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>KurzBeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12330</td>
<td>Elektrische Signalverarbeitung</td>
</tr>
<tr>
<td>29900</td>
<td>Dynamik verteiltparametrischer Systeme</td>
</tr>
<tr>
<td>33100</td>
<td>Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td>33190</td>
<td>Numerische Methoden der Optimierung und Optimalen Steuerung</td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
</tr>
<tr>
<td>33830</td>
<td>Dynamik ereignisdiskreter Systeme</td>
</tr>
<tr>
<td>33840</td>
<td>Dynamische Filterverfahren</td>
</tr>
</tbody>
</table>
Modul: 33830 Dynamik ereignisdiskreter Systeme

2. Modulkürzel: 074711006
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer
9. Dozenten: • Cristina Tarin Sauer
• Herbert Wehlan
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mechatronik und Technische Kybernetik
 ➞ Systemdynamik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Informatik I, Systemdynamik
14. Literatur: Vorlesungsumdruck, Übungsbildern
 Weitere Literatur wird in der Vorlesung bekannt gegeben.
15. Lehrveranstaltungen und -formen: 338301 Vorlesung und Übung Dynamik ereignisdiskreter Systeme
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
 Selbststudium und Nacharbeit: 138 Stunden
 Gesamt: 180 Stunden
17. Prüfungsnummer/n und -name: 33831 Dynamik ereignisdiskreter Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
18. Grundlage für ...:
19. Medienform:
20. Angeboten von: Institut für Systemdynamik

Stand: 23. Oktober 2012
Modul: 29900 Dynamik verteiltparametrischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel: 074710011</th>
<th>5. Moduldauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Systemdynamik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Systemdynamik
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Vorlesung „Systemdynamik“ bzw. „Systemdynamische Grundlagen der Regelungstechnik“

12. Lernziele:
Die Studierenden können für verteiltparametrische Systeme geeignete Modellgleichungen formulieren und das System basierend auf dem verteiltparametrischen Ansatz analysieren und dessen allgemeine Lösung herleiten.

13. Inhalt:
Die Vorlesung behandelt grundlegende Verfahren zur Behandlung von Systemen mit verteilten Parametern. Es werden die gängigen Modellansätze eingeführt, analysiert und mittels geeigneter Ansätze gelöst. Im Mittelpunkt stehen Methoden zur Lösung von partiellen Differentialgleichungen mit
- Modal-Transformation
- Methode der Greenschen Funktion
- Produktansatz
- Charakteristikenverfahren

Die in der Vorlesung vermittelten Methoden werden in den Übungen anhand konkreter Beispiele u. a. Wärmeleiter, Balkengleichung, Transportsystem und Wellengleichung erläutert.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 2990001 Vorlesung Dynamik verteiltparametrischer Systeme
- 2990002 Übung Dynamik verteiltparametrischer Systeme
16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 Stunden
Selbststudium:	138 Stunden
Summe:	180 Stunden

17. Prüfungsnummer/n und -name:

| 29901 | Dynamik verteiltparametrischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33840 Dynamische Filterverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711007</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik
→ Systemdynamik
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Modul Einführung in die Elektrotechnik, Elektrische Signalverarbeitung, Echtzeitsignalverarbeitung |

12. Lernziele:

13. Inhalt:

- Grundlagen
 - Gesamtkonzept zur Datenübertragung
 - Fourier-Analyse zeitkontinuierlicher Signale und Systeme
 - Fourier-Analyse zeitdiskreter Signale und Systeme
 - Laplace-Transformation
 - Z-Transformation
 - Abtastung
- Filterentwurf
 - Entwurf von zeitdiskreten IIR Filtern
 - Entwurf von zeitdiskreten FIR Filtern
- Frequenzanalyse und Fast Fourier Transformation FFT
 - Fourier-Reihenentwicklung und Fourier-Transformation
 - Die Diskrete Fourier-Transformierte DFT
 - Fast Fourier Transformation FFT
- Wiener Filter
 - Übersicht
 - Problemdefinition
 - Prinzip der Orthogonalität
 - Wiener-Hopf Gleichungen
 - Mehrgrößen lineare Regression
 - Beispiel
- Adaptive Filter
 - Lineare Prädiktion
 - Least-Mean Squares adaptive Filter
 - Beispiele
• Kalman Filter
 - Problemdefinition
 - Innovationsprozess
 - Zustandsschätzung
 - Varianten des Kalman Filters

14. Literatur:
• Vorlesungsumdruck (Vorlesungsfolien)
• Übungsblätter
• Aus der Bibliothek:
 - Oppenheim and Schafer: Discrete-Time Signal Processing
 - Haykin: Adaptive Filter Theory
• Weitere Literatur wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung / Form</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>338401</td>
<td>Vorlesung (inkl. Übungen)</td>
<td>Dynamische Filterverfahren</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 42 Stunden |
| Selbststudium: | 138 Stunden |
| Summe: | 180 Stunden |
| 4 SWS gegliedert in 2 VL und 2 Ü |

17. Prüfungsnummer/n und -name:
<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>33841</td>
<td>Dynamische Filterverfahren (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:
<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer-Präsentation, Tafelanschrieb, Overhead-Projektor</td>
</tr>
</tbody>
</table>

20. Angeboten von:
<table>
<thead>
<tr>
<th>Angebotende Einrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 12330 Elektrische Signalverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711010</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Fahrzeug- und Motorentechnik
- M.Sc. Technologiemanagement, PO 2011 ➔ Kraftfahrzeugmechatronik
- M.Sc. Technologiemanagement, PO 2011 ➔ Kern-/Ergänzungsfächer mit 6 LP
 - Gruppe Mechatronik und Technische Kybernetik
 - Systemdynamik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011 ➔ Vertiefungsmodul
- M.Sc. Technologiemanagement, PO 2011 ➔ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen:
- Modul Einführung in die Elektrotechnik

12. Lernziele:

13. Inhalt:
- Grundlagen
 - Gleichstrom und Wechselstrom
 - Bauelemente: Diode, Transistor, Operationsverstärker
 - Gesamtkonzept zur Datenübertragung
- Signale und Systeme
 - Transformation der unabhängigen Variable
 - Grundsignale
 - LTI-Systeme
- Transformationen
 - Fourier-Analyse zeitkontinuierlicher und zeitdiskreter Signale und Systeme
 - Z-Transformation
 - Abtastung
- Filter
 - Ideale und nichtideale frequenzselektive Filter
 - Zeitkontinuierliche frequenzselektive Filter
 - Filterentwurf
- Analogle Modulationen
 - Amplitudenmodulation
 - Winkelmodulation

14. Literatur:
- Vorlesungsumdruck (Vorlesungsfolien)
- Übungsblätter
• Aus der Bibliothek:
 - Tietze und Schenk: Halbleiter-Schaltungstechnik
 - Oppenheim and Willsky: Signals and Systems
 - Oppenheim and Schafer: Digital Signal Processing
• Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:

123301 Vorlesung Elektrische Signalverarbeitung: Vorlesung mit integrierten Vortragsübungen

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42h
 Nachbereitungszeit: 138h
 Gesamt: 180h

 4 SWS gegliedert in 2 VL und 2 Ü

17. Prüfungsnummer/n und -name:

12331 Elektrische Signalverarbeitung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

• 12350 Echtzeitdatenverarbeitung
• 33840 Dynamische Filterverfahren

19. Medienform:

 Beamer-Präsentation, Tafelnschrieb, Overhead-Projektor

20. Angeboten von:

 Institut für Systemdynamik
Modul: 33820 Flache Systeme

2. Modulkürzel: 074710009
5. Moduldbauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Oliver Sawodny
9. Dozenten: Michael Zeitz
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Systemdynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Systemdynamik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik mit Grundkenntnissen der Zustandsraummethodik

14. Literatur:
 Arbeitsblätter, Umdrucke, Literatur-Links und Videos auf der Homepage

15. Lehrveranstaltungen und -formen: 338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33821 Flache Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

Stand: 23. Oktober 2012
19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33100 Modellierung und Identifikation dynamischer Systeme

2. Modulkürzel:	074710010
5. Modulduauer:	1 Semester
3. Leistungspunkte:	6.0 LP
4. SWS:	4.0
7. Sprache:	Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Oliver Sawodny

9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Systemdynamik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Systemdynamik
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik

14. Literatur:

- Vorlesungsumdrucke
- Pentelon/Schoukens: System identification: a frequency domain approach, IEEE, 2001

15. Lehrveranstaltungen und -formen:

- 331001 Vorlesung Modellierung und Identifikation dynamischer Systeme
- 331002 Übung mit integriertem Rechnerpraktikum Modellierung und Identifikation dynamischer Systeme

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33101 Modellierung und Identifikation dynamischer Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33190 Numerische Methoden der Optimierung und Optimalen Steuerung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074730001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Eckhard Arnold

9. Dozenten: Eckhard Arnold

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
- M.Sc. Technologiemanagement, PO 2011
- Vorgezogene Master-Module
- Gruppe Mechatronik und Technische Kybernetik
- Systemdynamik
- Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
- Einführung in die Regelungstechnik; Systemdynamik; Grundkenntnisse Matlab/Simulink (z.B. Simulationstechnik)

12. Lernziele:
Die Studierenden sind in der Lage, Problemstellungen der Analyse und der Steuerung dynamischer Systeme als Optimierungsproblem zu formulieren und die Optimierungsaufgabe zu klassifizieren. Geeignete numerische Verfahren können ausgewählt und eingesetzt werden. Der praktische Umgang mit entsprechenden Softwarewerkzeugen wird anhand von Übungsaufgaben vermittelt.

13. Inhalt:

14. Literatur:
- Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen:
- 331901 Vorlesung Numerische Methoden der Optimierung und Optimalen Steuerung
- 331902 Übung Numerische Methoden der Optimierung und Optimalen Steuerung

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

Stand: 23. Oktober 2012
17. Prüfungsnummer/n und -name: 33191 Numerische Methoden der Optimierung und Optimalen Steuerung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
2731 Kernfächer mit 6 LP

Zugeordnete Module:

- 29900 Dynamik verteiltparametrischer Systeme
- 33100 Modellierung und Identifikation dynamischer Systeme
- 33820 Flache Systeme
Modul: 29900 Dynamik verteiltparametrischer Systeme

2. Modulkürzel: 074710011
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Oliver Sawodny

9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Systemdynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Systemdynamik
 → Kernfächer mit 6 LP

12. Lernziele:
Die Studierenden können für verteiltparametrische Systeme geeignete Modellgleichungen formulieren und das System basierend auf dem verteiltparametrischen Ansatz analysieren und dessen allgemeine Lösung herleiten.

13. Inhalt:
Die Vorlesung behandelt grundlegende Verfahren zur Behandlung von Systemen mit verteilten Parametern. Es werden die gängigen Modellansätze eingeführt, analysiert und mittels geeigneter Ansätze gelöst. Im Mittelpunkt stehen Methoden zur Lösung von partiellen Differentialgleichungen mit
 • Modal-Transformation
 • Methode der Greenschen Funktion
 • Produktansatz
 • Charakteristikenverfahren

Die in der Vorlesung vermittelten Methoden werden in den Übungen anhand konkreter Beispiele u. a. Wärmeleiter, Balkengleichung, Transportsystem und Wellengleichung erläutert.

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 299001 Vorlesung Dynamik verteiltparametrischer Systeme
 • 299002 Übung Dynamik verteiltparametrischer Systeme
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>29901 Dynamik verteiltparametrischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 33820 Flache Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710009</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Prof.Dr.-Ing. Oliver Sawodny

9. Dozenten:
Michael Zeitz

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Systemdynamik
 - Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Mechatronik und Technische Kybernetik
 - Systemdynamik
 - Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Einführung in die Regelungstechnik mit Grundkenntnissen der Zustandsraummethodik

12. Lernziele:

13. Inhalt:

14. Literatur:
- R. Rothfuß: Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme. VDI-Verlag 1997./
- Arbeitsblätter, Umdrucke, Literatur-Links und Videos auf der Homepage

15. Lehrveranstaltungen und -formen:
338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33821 Flache Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

Stand: 23. Oktober 2012
19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33100 Modellierung und Identifikation dynamischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Mechatronik und Technische Kybernetik ➞ Systemdynamik ➞ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Mechatronik und Technische Kybernetik ➞ Systemdynamik ➞ Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die Regelungstechnik</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsumdrucke</td>
</tr>
<tr>
<td></td>
<td>• Nelles: Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer-Verlag, 2001</td>
</tr>
<tr>
<td></td>
<td>• Pentelon/Schoukens: System identification: a frequency domain approach, IEEE, 2001</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 331001 Vorlesung Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td></td>
<td>• 331002 Übung mit integriertem Rechnerpraktikum Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33101 Modellierung und Identifikation dynamischer Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
</tbody>
</table>
19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33880 Praktikum Systemdynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Cristina Tarin Sauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer A (ING) ➔ Gruppe Mechatronik und Technische Kybernetik ➔ Systemdynamik |
| 11. Empfohlene Voraussetzungen: | Einführung in die Regelungstechnik
Automatisierungstechnik |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | 338801 Praktikum Automatisierungstechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 h
Selbststudium-/Nacharbeit: 60 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 33881 Praktikum Systemdynamik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

Stand: 23. Oktober 2012
274 Technische Dynamik

Zugeordnete Module:

- 2741 Kernfächer mit 6 LP
- 2742 Kern-/Ergänzungsfächer mit 6 LP
- 2743 Ergänzungsfächer mit 3 LP
- 30070 Praktikum Technische Dynamik
2743 Ergänzungsfächer mit 3 LP

Zugeordnete Module:

- 30020 Biomechanik
- 30030 Fahrzeugdynamik
- 30060 Optimization of Mechanical Systems
- 31690 Experimentelle Modalanalyse
- 31710 Ausgewählte Probleme der Mechanik
- 33330 Nichtlineare Schwingungen
Modul: 31710 Ausgewählte Probleme der Mechanik

2. Modulkürzel:	072810022
5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP
6. Turnus:	jedes Semester
4. SWS:	2.0
7. Sprache:	Deutsch

| 8. Modulverantwortlicher: | Prof. Dr.-Ing. Alexander Verl |

| 9. Dozenten: |

| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| B.Sc. Technologiemanagement, PO 2011 |
| → Vorgezogene Master-Module |
| M.Sc. Technologiemanagement, PO 2011 |
| → Gruppe Mechatronik und Technische Kybernetik |
| → Technische Dynamik |
| → Ergänzungsfächer mit 3 LP |

| 11. Empfohlene Voraussetzungen: |

| 12. Lernziele: |

| 13. Inhalt: |

| 14. Literatur: |

| 15. Lehrveranstaltungen und -formen: |
| 317101 Vorlesung Ausgewählte Probleme der Mechanik |

| 16. Abschätzung Arbeitsaufwand: |

| 17. Prüfungsnummer/n und -name: |
| 31711 Ausgewählte Probleme der Mechanik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: |

| 20. Angeboten von: |
Modul: 30020 Biomechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810008</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr.-Ing. Peter Eberhard</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Albrecht Eiber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik</td>
</tr>
<tr>
<td></td>
<td>→ Technische Dynamik</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundlagen in Technischer Mechanik</th>
</tr>
</thead>
</table>

| 12. Lernziele: | Kenntnis und Verständnis biomechanischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Biomechanik |

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>O Einführung und Übersicht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O Skelett</td>
</tr>
<tr>
<td></td>
<td>O Gelenke</td>
</tr>
<tr>
<td></td>
<td>O Knochen</td>
</tr>
<tr>
<td></td>
<td>O Weichgewebe</td>
</tr>
<tr>
<td></td>
<td>O Biokompatible Werkstoffe</td>
</tr>
<tr>
<td></td>
<td>O Muskeln</td>
</tr>
<tr>
<td></td>
<td>O Kreislauf</td>
</tr>
<tr>
<td></td>
<td>O Beispiele</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>O Vorlesungsmitschrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O Vorlesungsunterlagen des ITM</td>
</tr>
</tbody>
</table>

| 15. Lehrveranstaltungen und -formen: | 300201 Vorlesung Biomechanik |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
</tbody>
</table>

| 17. Prüfungsnummer/n und -name: | 30021 Biomechanik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | |

Stand: 23. Oktober 2012
Modul: 31690 Experimentelle Modalanalyse

2. Modulkürzel: 072810019 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Michael Hanss
9. Dozenten: • Michael Hanss
 • Pascal Ziegler

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Dynamik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

12. Lernziele:
 Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.
 Der Studierende ist in der Lage, daraus die modalen Kenngrößen zu identifizieren.

13. Inhalt:
 Die Vorlesung vermittelt die Inhalte in folgender Gliederung:
 • Grundlagen und Anwendungen der experimentellen Modalanalyse
 • Methoden zur Schwingungsanregung, Messverfahren
 • Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung
 • Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
 • Bestimmung modularer Kenngrößen, Modenerkennung und -vergleich
 Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert.
 Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur:
 Vorlesungsmitschrieb,
 Weiterführende Literatur:

15. Lehrveranstaltungen und -formen: 316901 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 31691 Experimentelle Modalanalyse (BSL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 30030 Fahrzeugdynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810009</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Technische Dynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen in Technischer Mechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Kenntnis und Verständnis fahrzeugdynamischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Fahrzeugdynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>O Systembeschreibung und Modellbildung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Fahrzeugmodelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Modelle für Trag- und Führsysteme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Fahrwegmodelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Modelle für Fahrzeug-Fahrweg-Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Beurteilungskriterien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Berechnungsmethoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Longitudinalbewegungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Lateralbewegungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Vertikalbewegungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>O Vorlesungsmitschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O Vorlesungsunterlagen des ITM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>300301 Vorlesung Fahrzeugdynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30031 Fahrzeugdynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33330 Nichtlineare Schwingungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810018</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Michael Hanss

9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011: Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011: Gruppe Mechatronik und Technische Kybernetik, Technische Dynamik, Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

12. Lernziele: Der Studierende ist vertraut mit den Grundlagen von parametererregten und nichtlinearen Schwingungen, ihrer mathematischen Beschreibung, ihrer analytischen und näherungsweisen Lösung sowie ihrer Bedeutung für die ingenieurwissenschaftliche Praxis.

14. Literatur: Skript "Höhere Schwingungslehre"

15. Lehrveranstaltungen und -formen: 333301 Vorlesung Nichtlineare Schwingungen

Selbststudium: 62 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33331 Nichtlineare Schwingungen (BSL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Technische und Numerische Mechanik
Modul: 30060 Optimization of Mechanical Systems

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Modulkürzel: 072810007</td>
</tr>
<tr>
<td>3.</td>
<td>Leistungspunkte: 3.0 LP</td>
</tr>
<tr>
<td>4.</td>
<td>SWS: 2.0</td>
</tr>
<tr>
<td>5.</td>
<td>Modulduer: 1 Semester</td>
</tr>
<tr>
<td>7.</td>
<td>Sprache: Englisch</td>
</tr>
<tr>
<td>8.</td>
<td>Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard</td>
</tr>
<tr>
<td>9.</td>
<td>Dozenten: Robert Seifried</td>
</tr>
<tr>
<td>10.</td>
<td>Zuordnung zum Curriculum in diesem Studiengang:</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Mechatronik und Technische Kybernetik</td>
</tr>
<tr>
<td></td>
<td>→ Technische Dynamik</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>12.</td>
<td>Lernziele: Knowledge of the basics of optimization in engineering systems; Independent, confident, critical and creative application of optimization techniques to mechanical systems</td>
</tr>
<tr>
<td>13.</td>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
<td>Formulation of the optimization problem: optimization criteria, scalar optimization problem, multicriteria optimization</td>
</tr>
<tr>
<td></td>
<td>Sensitivity Analysis: Numerical differentiation, semianalytical methods, automatic differentiation</td>
</tr>
<tr>
<td></td>
<td>Unconstrained parameter optimization: theoretical basics, strategies, Quasi-Newton methods, stochastic methods</td>
</tr>
<tr>
<td></td>
<td>Constrained parameter optimization: theoretical basics, strategies, Lagrange-Newton methods</td>
</tr>
<tr>
<td>14.</td>
<td>Literatur:</td>
</tr>
<tr>
<td></td>
<td>O Lecture notes</td>
</tr>
<tr>
<td></td>
<td>O Lecture materials of the ITM</td>
</tr>
<tr>
<td>15.</td>
<td>Lehrveranstaltungen und -formen: 300601 Lecture Optimization of Mechanical Systems</td>
</tr>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 21 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 30061 Optimization of Mechanical Systems (BSL), schriftlich oder mündlich, Gewichtung: 1.0, schriftlich 90min oder mündlich 20min</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
</tr>
</tbody>
</table>
2742 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>30010</td>
<td>Modellierung und Simulation in der Mechatronik</td>
</tr>
<tr>
<td>30040</td>
<td>Flexible Mehrkörpersysteme</td>
</tr>
<tr>
<td>31700</td>
<td>Ausgewählte Probleme der Dynamik</td>
</tr>
<tr>
<td>33360</td>
<td>Fuzzy Methoden</td>
</tr>
<tr>
<td>41080</td>
<td>Nichtlineare Schwingungen und Experimentelle Modalanalyse</td>
</tr>
</tbody>
</table>
Modul: 31700 Ausgewählte Probleme der Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Peter Eberhard</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Peter Eberhard
• Michael Hanss
• Robert Seifried |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Technische Dynamik
→ Kern-/Ergänzungsfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Technischer Mechanik, Maschinendynamik, Numerik |
| 15. Lehrveranstaltungen und -formen: | 317001 Vorlesung Ausgewählte Probleme der Dynamik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 31701 Ausgewählte Probleme der Dynamik (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 30040 Flexible Mehrkörpersysteme

2. Modulkürzel: 072810011
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul dauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard
9. Dozenten: Robert Seifried
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Dynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Dynamik
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik
12. Lernziele:
 Kenntnis und Verständnis der Modellierung, Simulation und Analyse
 komplexer starrer und flexibler
 Mehrkörpersysteme; selbständige, sichere, kritische und kreative
 Anwendung Methoden der
 Flexiblen Mehrkörperdynamik zur Lösung dynamischer
 Problemstellungen.
13. Inhalt:
 O Einleitung
 O Grundlagen der Mehrkörperdynamik: Grundgleichungen, holonome
 und nicht-holonome Mehrkörpersysteme in Minimalkoordinaten, Systeme
 mit kinematischen Schleifen, Differential-Algebraischer Ansatz
 O Grundlagen zur Beschreibung eines elastischen Körpers:
 Grundlagen der Kontinuumsmechanik und linearen Finiten Elemente
 Methode, lineare Modellreduktion
 O Ansatz des mitbewegten Referenzsystems für einen elastische
 Körper: Kinematik, Diskretisierung, Kinetik, Wahl des Referenzsystems,
 Geometrische Steifigkeiten, Standard Input Data
 O Beschreibung flexibler Mehrkörpersysteme: DAE Formulierung, ODE
 Formulierung, Programmtechnische Umsetzung, Einführung in das MKS-
 Programm Neweu-M²
 O Ansätze zur Regelung starrer und flexibler Mehrkörpersysteme:
 Inverse Kinmatik und Dynamik, quasi-statische Deformations-
 kompensation, exakte Inversion, Servo-Bindungen
 O Kontaktprobleme in Mehrkörpersystemen: kontinuierliche
 Kontaktmodelle, Mehrskalensimulation, Diskrete-Elemente-Simulation
14. Literatur:
 O Vorlesungsmitschrieb
 O Vorlesungsunterlagen des ITM
 O Schwertassek, R. and Wallrapp, O.: Dynamik flexibler
 O Shabana, A.A.: Dynamics of Multibody Systems. Cambridge :
15. Lehrveranstaltungen und -formen: 300401 Vorlesung Flexible Mehrkörpersysteme
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30041 Flexible Mehrkörpersysteme (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33360 Fuzzy Methoden

2. Modulkürzel: 072810017
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Michael Hanss
9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Dynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Regelungstechnik 1 und 2

15. Lehrveranstaltungen und -formen: 333601 Vorlesung + Übungen Fuzzy Methoden

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33361 Fuzzy Methoden (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Technische und Numerische Mechanik
Modul: 30010 Modellierung und Simulation in der Mechatronik

2. Modulkürzel: 072810006 5. Moduldauber: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard
9. Dozenten:
• Albrecht Eiber
• Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
➞ Gruppe Mechatronik und Technische Kybernetik
➞ Technische Dynamik
➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
➞ Vertiefungsmodule
➞ Wahlmöglichkeit Gruppe 3: Produktion

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik

12. Lernziele:
Kenntnis und Verständnis mechatronischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung und Kombination verschiedenster mechatronischer Methoden und Prinzipien

13. Inhalt:
• Einführung und Übersicht
• Grundgleichungen mechanischer Systeme
• Sensorik, Signalverarbeitung, Aktorik
• Regelungskonzepte
• Numerische Integration
• Signalanalyse
• Ausgewählte Schwingungssysteme, Freie Schwingungen, Erzwungene Schwingungen
• Experimentelle Modalanalyse
• Anwendungen

14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
• 300101 Vorlesung Modellierung und Simulation in der Mechatronik
• 300102 Übung Modellierung und Simulation in der Mechatronik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30011 Modellierung und Simulation in der Mechatronik (PL),
schriftlich oder mündlich, Gewichtung: 1,0, Modellierung und
Simulation in der Mechatronik, 1,0, schriftlich 90 min oder 30
min mündlich, Bekanntgabe in der Vorlesung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Modul: 41080 Nichtlineare Schwingungen und Experimentelle Modalanalyse

2. Modulkürzel: 072810020
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul dauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Michael Hanss
9. Dozenten: • Michael Hanss
 • Pascal Ziegler
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Technische Dynamik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre
12. Lernziele:
 Der Studierende ist vertraut mit den Grundlagen von parametererregten und nichtlinearen Schwingungen, ihrer mathematischen Beschreibung, ihrer analytischen und näherungsweisen Lösung sowie ihrer Bedeutung und Anwendung in der ingenieurwissenschaftlichen Praxis.
 Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.
 Der Studierende ist in der Lage, daraus die modalen Kenngrößen zu identifizieren.
13. Inhalt:
 Die Vorlesung „Nichtlineare Schwingungen“ vermittelt die Grundlagen der parametererregten und nichtlinearen Schwingungen in folgender Gliederung:
 Parametererregte Schwingungen,
 Nichtlineare Schwingungen mit einem Freiheitsgrad:
 konservative und gedämpfte Eigenschwingungen, selbsterregte Schwingungen, erzwungene Schwingungen;
 Näherungsverfahren und numerische Verfahren zur Behandlung nichtlinearer Schwingungen.
 Es werden zudem zahlreiche konkrete Anwendungen gezeigt und Versuche vorgeführt.

 Die Vorlesung „Experimentelle Modalanalyse“ vermittelt die Inhalte in folgender Gliederung:
 • Grundlagen und Anwendungen der experimentellen Modalanalyse
 • Methoden zur Schwingungsanregung, Messverfahren
 • Signalanalyse und -verarbeitung,
 • Zeit- und Frequenzbereichs darstellung
 • Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
 • Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich

 Es werden zudem Anwendungen auf Problem-stellungen der industriellen Praxis demonstriert.

 Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.
14. Literatur:
 Vorlesungsskript, und Vorlesungsmitschrieb,
Weiterführende Literatur:

15. Lehrveranstaltungen und -formen:
- 410801 Vorlesung Nichtlineare Schwingungen
- 410802 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
41081 Nichtlineare Schwingungen und experimentelle Modalanalyse (PL), schriftlich, eventuell mündlich, 180 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 12250 Numerische Methoden der Dynamik

| 2. Modulkürzel: | 072810005 | 5. Modulduer: | 1 Semester |
| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Prof. Dr. Ing. Peter Eberhard
9. Dozenten: Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2008, 4. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2008, 4. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 4. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
- B.Sc. Technologiemanagement, PO 2011, 4. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahlmöglichkeit
- B.Sc. Technologiemanagement, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Technische Dynamik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Grundlagen in Mathematik und Mechanik

12. Lernziele:

13. Inhalt:
- Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme
- Grundlagen der numerischen Mathematik: Numerische Prinzipien, Maschinenzahlen, Fehleranalyse
- Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Verfahren, iterative Methoden bei quadratischer Koeffizientenmatrix, Lineares Ausgleichsproblem
- Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren
- Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta-Verfahren)
- Werkzeuge und numerische Bibliotheken: für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich
14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
• 122501 Vorlesung Numerische Methoden der Dynamik
• 122502 Übung Numerische Methoden der Dynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit bzw. Versuche: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
12251 Numerische Methoden der Dynamik (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Beamer, Tablet-PC, Computervorführungen

20. Angeboten von:
Institut für Technische und Numerische Mechanik
2741 Kernfächer mit 6 LP

Zugeordnete Module: 30040 Flexible Mehrkörpersysteme
Modul: 30040 Flexible Mehrkörpersysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Peter Eberhard</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Robert Seifried</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Technische Dynamik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Mechatronik und Technische Kybernetik
→ Technische Dynamik
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Technischer Mechanik |
| 12. Lernziele: | Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme; selbständige, sichere, kritische und kreative Anwendung Methoden der Flexiblen Mehrkörperdynamik zur Lösung dynamischer Problemstellungen. |
| 13. Inhalt: | O Einleitung
O Grundlagen der Mehrkörperdynamik: Grundgleichungen, holonome und nicht-holonome Mehrkörpersysteme in Minimalkoordinaten, Systeme mit kinematischen Schleifen, Differential-Algebraischer Ansatz
O Grundlagen zur Beschreibung eines elastischen Körpers: Grundlagen der Kontinuumsmechanik und linearen Finiten Elemente Methode, lineare Modellreduktion
O Ansatz des mitbewegten Referenzsystems für einen elastische Körper: Kinematik, Diskretisierung, Kinetik, Wahl des Referenzsystems, Geometrische Steifigkeiten, Standard Input Data
O Beschreibung flexibler Mehrkörpersysteme: DAE Formulierung, ODE Formulierung, Programmtechnische Umsetzung, Einführung in das MKS-Programm Neweul-M²
O Ansätze zur Regelung starrer und flexibler Mehrkörpersysteme: Inverse Kinematik und Dynamik, quasi-statische Deformations-kompensation, exakte Inversion, Servo-Bindungen
O Kontaktprobleme in Mehrkörpersystemen: kontinuierliche Kontaktmodelle, Mehrskalensimulation, Diskrete-Elemente-Simulation |
| 14. Literatur: | O Vorlesungsmitschrieb
O Vorlesungsunterlagen des ITM
| 15. Lehrveranstaltungen und -formen: | 300401 Vorlesung Flexible Mehrkörpersysteme |
16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

30041 Flexible Mehrkörpersysteme (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30070 Praktikum Technische Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaeufer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Peter Eberhard

9. Dozenten: • Peter Eberhard
• Robert Seifried

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Dynamik

11. Empfohlene Voraussetzungen: Die Studierenden sind in der Lage Vorlesungsinhalte an praktischen Beispielen umzusetzen

12. Lernziele: Die Studierenden sind in der Lage Vorlesungsinhalte an praktischen Beispielen umzusetzen

Beispiel Spezialisierungsfachversuche:

- Modellierung und Simulation eines starren 2-Arm-Roboterarms: Erstellen der Bewegungsgleichungen mit der Matlab Symbolic Toolbox, Zeitsimulation des Bewegungsverhaltens unter Eigengewicht in Matlab, Auswertung
- etc.

Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

14. Literatur: Praktikumsunterlagen des ITM

15. Lehrveranstaltungen und -formen: 300701 Praktikum Technische Dynamik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 30 Stunden
Selbststudium/Nacharbeitzeit: 60 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 30071 Praktikum Technische Dynamik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
275 Technische Mechanik

Zugeordnete Module:
- 2751 Kernfächer mit 6 LP
- 2752 Kern-/Ergänzungsfächer mit 6 LP
- 2753 Ergänzungsfächer mit 3 LP
- 33380 Praktikum Technische Mechanik
2753 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 33370 Structure-Borne Sound
Modul: 33370 Structure-Borne Sound

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010610</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof.Dr.-Ing. Lothar Gaul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenter:</td>
<td>• Lothar Gaul</td>
<td>• Max Kraus</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Technische Schwingungslehre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>333701 Vorlesung Körperschall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33371 Structure-Borne Sound (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2752 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>25120</td>
<td>Dynamik mechanischer Systeme</td>
</tr>
<tr>
<td>33200</td>
<td>Optimierungsverfahren mit Anwendungen</td>
</tr>
<tr>
<td>33320</td>
<td>Smart Structures</td>
</tr>
<tr>
<td>33340</td>
<td>Methode der finiten Elemente in Statik und Dynamik</td>
</tr>
<tr>
<td>33360</td>
<td>Fuzzy Methoden</td>
</tr>
<tr>
<td>33630</td>
<td>Boundary Element Methods in Statics and Dynamics</td>
</tr>
</tbody>
</table>
Modul: 33630 Boundary Element Methods in Statics and Dynamics

2. Modulkürzel: 074010720
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe

8. Modulverantwortlicher: Prof. Dr.-Ing. Lothar Gaul
9. Dozenten: Lothar Gaul

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP

12. Lernziele:
Die Studierenden kennen die Grundlagen der Randelemente Methode (Boundary Element Method, BEM). Sie sind in der Lage, einfache analytische Berechnungen durchzuführen und verstehen Stärken und Schwächen der Methode im Vergleich zu anderen numerischen Verfahren.

13. Inhalt:
Das Konzept der BEM: Vergleich mit der Finiten Elemente Methode (FEM), Grundlagen der BEM, Prinzip der gewichteten Residuen, Reziprozitäts-Theorem, Transformation auf den Rand, eindimensionale Beispiele, Balken und Stäbe.

Ausblick auf fortgeschrittene Themengebiete: dual reciprocity BEM, hybride BE Formulierungen, Kopplung zwischen BEM und FEM.

14. Literatur:
Gaul, Fiedler: Methode der Randelemente, Vieweg (1997)
100 online lecture: www.bem.uni-stuttgart.de

15. Lehrveranstaltungen und -formen:

• 336301 Vorlesung Boundary Element Methods in Statics and Dynamics
• 336302 Übung Boundary Element Methods in Statics and Dynamics

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 33631 Boundary Element Methods in Statics and Dynamics (PL),
 mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 Beamer, Tafel, PC, Internet

20. Angeboten von:
Modul: 25120 Dynamik mechanischer Systeme

2. Modulkürzel: 074010730
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Lothar Gaul
9. Dozenten: • Lothar Gaul
 • Urs Miller
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: TM I-IV
12. Lernziele: Die Studierenden verstehen die Darstellung und Behandlung komplexer dynamischer Systeme der höheren Mechanik.
13. Inhalt:
14. Literatur:
 Skript zur Vorlesung
15. Lehrveranstaltungen und -formen: • 251201 Vorlesung Dynamik mechanischer Systeme
 • 251202 Übung Dynamik mechanischer Systeme
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>25121 Dynamik mechanischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Angewandte und Experimentelle Mechanik</td>
</tr>
</tbody>
</table>
Modul: 33360 Fuzzy Methoden

2. Modulkürzel: 072810017 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Dr.-Ing. Michael Hanss
9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mechatronik und Technische Kybernetik
 ➞ Technische Dynamik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➞ Gruppe Mechatronik und Technische Kybernetik
 ➞ Technische Mechanik
 ➞ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Regelungstechnik 1 und 2

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: 333601 Vorlesung + Übungen Fuzzy Methoden

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33361 Fuzzy Methoden (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Technische und Numerische Mechanik
Modul: 33340 Methode der finiten Elemente in Statik und Dynamik

2. Modulkürzel: 070410740
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Lothar Gaul

9. Dozenten: Lothar Gaul

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Mechatronik und Technische Kybernetik
 ➔ Technische Mechanik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: TM I, TM II+III, TM IV

12. Lernziele:
Die Studierenden können Aufgabenstellungen der Statik und Dynamik mit Hilfe der Finite Elemente Methode (FEM) selbständig lösen. Sie verstehen die theoretischen Grundlagen der FEM sowie ihrer rechentechnischen Implementierung.

13. Inhalt:
Grundlagen der Kontinuumsmechanik; Methode der gewichteten Residuen, Prinzip der virtuellen Verschiebungen; Herleitung der Elementmatrizen für Stäbe, Balken und Scheiben, Wahl der Formfunktionen, Assemblierung, Einbau von Randbedingungen; Numerische Umsetzung: Quadratur-Verfahren zur Integration der Elementmatrizen, Lösung des linearen Gleichungssystems, Lösung von Eigenwertproblemen, Zeitschrittintegration

14. Literatur:
- Manuskript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 333401 Vorlesung Methode der finiten Elemente in Statik und Dynamik
- 333402 Übung Methode der finiten Elemente in Statik und Dynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33341 Methode der finiten Elemente in Statik und Dynamik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Overhead, Tafel, Beamer

20. Angeboten von:
Modul: 33200 Optimierungsverfahren mit Anwendungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

 332001 Vorlesung + Übungen Optimierungsverfahren mit Anwendungen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

 33201 Optimierungsverfahren mit Anwendungen (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33320 Smart Structures

2. Modulkürzel: 074010710
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Lothar Gaul
9. Dozenten: Helge Sprenger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen: Regelungstechnik I
12. Lernziele: Die Studierenden kennen die mechanischen und regelungstechnischen Grundlagen von adaptiven Strukturen, Wirkprinzipien der typischen Aktuatoren und Sensoren, sowie Anwendungen von adaptiven Strukturen
13. Inhalt:
 • Dynamik intelligenter Strukturen (Modellierungsmethoden, Wellenausbreitung, Schwingungen)
 • Materialgesetze intelligenter Materialien (elektrostriktive, magnetostriktive, piezoelektrische Materialien, etc.)
 • Messtechnik und Sensoren
 • Signalverarbeitung
 • Regelungskonzepte
 • Anwendungen
14. Literatur: Skript
15. Lehrveranstaltungen und -formen:
 • 333201 Vorlesung Smart Structures
 • 333202 Übung Smart Structures
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
17. Prüfungsnummer/n und -name: 33321 Smart Structures (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
2751 Kernfächer mit 6 LP

Zugeordnete Module:
- 25120 Dynamik mechanischer Systeme
- 33320 Smart Structures
Modul: 25120 Dynamik mechanischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010730</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Lothar Gaul

9. Dozenter: • Lothar Gaul • Urs Miller

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP
 - M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: TM I-IV

12. Lernziele: Die Studierenden verstehen die Darstellung und Behandlung komplexer dynamischer Systeme der höheren Mechanik.

13. Inhalt:
 - Vektoren und Tensoren: Vektoren, Satz von Euler, Begriff des Tensors.

14. Literatur:
 - Skript zur Vorlesung

15. Lehrveranstaltungen und -formen: • 251201 Vorlesung Dynamik mechanischer Systeme • 251202 Übung Dynamik mechanischer Systeme

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 42 Stunden
 - Selbststudium: 138 Stunden
 - Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>25121</th>
<th>Dynamik mechanischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung: Laptop, Beamer, Experimente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: Tafel</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Angewandte und Experimentelle Mechanik</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33320 Smart Structures

2. Modulkürzel: 074010710 5. Modulduer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Lothar Gaul
9. Dozenten: Helge Sprenger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Mechatronik und Technische Kybernetik
 → Technische Mechanik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Regelungstechnik I

12. Lernziele: Die Studierenden kennen die mechanischen und regelungstechnischen Grundlagen von adaptiven Strukturen, Wirkprinzipien der typischen Aktuatoren und Sensoren, sowie Anwendungen von adaptiven Strukturen

13. Inhalt:
 • Dynamik intelligenter Strukturen (Modellierungsmethoden, Wellenausbreitung, Schwingungen)
 • Materialgesetze intelligenter Materialien (elektrostriktive, magnetostriktive, piezoelektrische Materialien, etc.)
 • Messtechnik und Sensoren
 • Signalverarbeitung
 • Regelungskonzepte
 • Anwendungen

14. Literatur: Skript

15. Lehrveranstaltungen und -formen:
 • 333201 Vorlesung Smart Structures
 • 333202 Übung Smart Structures

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33321 Smart Structures (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33380 Praktikum Technische Mechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010810</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Lothar Gaul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Lothar Gaul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer A (ING) ➔ Gruppe Mechatronik und Technische Kybernetik ➔ Technische Mechanik | | |

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

- Experimentelle Modalanalyse I: Es werden die Grundlagen der rechnerischen und der experimentellen Modalanalyse erarbeitet.
- Wellenausbreitung: Grundlagen der Ausbreitung von ebenen und räumlichen Wellen werden erarbeitet und experimentell verifiziert.
- Zerstörungsfreie Prüfung: Prinzipien der zerstörungsfreien Prüfung auf der Basis von Wellenausbreitungsfähnomenen werden erarbeitet und in Experimenten an ungeschädigten und gezielt geschädigten Testobjekten verifiziert.

14. Literatur:
Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:

- 333801 Spezialisierungsfachversuch 1
- 333802 Spezialisierungsfachversuch 2
- 333803 Spezialisierungsfachversuch 3
- 333804 Spezialisierungsfachversuch 4
- 333805 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 333806 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 333807 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 333808 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden
17. Prüfungsnummer/n und -name: 33381
Praktikum Technische Mechanik (USL), schriftlich, eventuell mündlich. Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
280 Gruppe Verfahrenstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>281</td>
<td>Angewandte Thermodynamik</td>
</tr>
<tr>
<td>282</td>
<td>Biomedizinische Verfahrenstechnik</td>
</tr>
<tr>
<td>283</td>
<td>Chemische Verfahrenstechnik</td>
</tr>
<tr>
<td>284</td>
<td>Faser- und Textiltechnik</td>
</tr>
<tr>
<td>285</td>
<td>Mechanische Verfahrenstechnik</td>
</tr>
</tbody>
</table>
281 Angewandte Thermodynamik

Zugeordnete Module:

2811 Kernfächer mit 6 LP
2812 Kern-/Ergänzungsfächer mit 6 LP
2813 Ergänzungsfächer mit 3 LP
33210 Praktikum Angewandte Thermodynamik
2813 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
33180 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport
36900 Molekulare Thermodynamik
Modul: 36900 Molekulare Thermodynamik

2. Modulkürzel: 042100008
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: inhaltlich: Technische Thermodynamik I und II, Technische Mechanik, Höhere Mathematik
 formal: Bachelor-Abschluss
12. Lernziele:
 Die Studierenden
 • können molekulare Modelle und in den Ingenieurwissenschaften erforderlichen makroskopischen Stoffeigenschaften kombinieren und dieses Wissen in die Gestaltung optimaler Prozesse einfließen lassen.
 • können die grundlegenden Arbeitsmethoden der molekularen Thermodynamik anwenden, beurteilen und bewertend miteinander vergleichen.
 • können die Auswirkungen molekularer Parameter auf makroskopische, thermodynamische Größen beschreiben und identifizieren und sind damit befähigt Methoden aus der angrenzenden Disziplin der theoretischen Physik anzuwenden um daraus eigene Lösungsansätze für thermodynamische Ingenieursprobleme zu generieren.
 • können, ausgehend von den verschiedenen intermolekularen Wechselwirkungstypen, wie Repulsion, Dispersion und Elektrostatik, durch Analyse und Beschreibung dieser Wechselwirkungen auch komplexe Probleme der theoretischen und angewandten Verfahrenstechnik und angrenzender Fachgebiete abstrahieren und diese darauf aufbauend modellieren, z.B. zur Entwicklung physikalisch-basierter Zustandsgleichungen, Beschreibung von Grenzflächen, Modellierung von Flüssigkristallen oder Polymerlösungen.
13. Inhalt:
14. Literatur:
15. Lehrveranstaltungen und -formen: 369001 Vorlesung Molekulare Thermodynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 36901 Molekulare Thermodynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: (USL-V), schriftliche Prüfung

18. Grundlage für ...

20. Angeboten von:
Modul: 33180 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport

2. Modulkürzel: 042100006 5. Moduldaurer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik → Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: inhaltlich: Technische Thermodynamik I und II, Technische Mechanik, Höhere Mathematik
 formal: Bachelor-Abschluss
12. Lernziele: Die Studierenden
 • können kinetisch limitierte Prozesse der Verfahrenstechnik
 (insbesondere im Bereich der thermischen Trenntechnik, der Reaktionstechnik, aber auch in der Bioverfahrens- und Polymertechnik)
 beurteilen und deren Auswirkung auf allgemeine Gestaltungsregeln
 technischer Trennanlagen bewerten.
 • können für kinetisch limitierte Prozesse Modelle der
 Nichtgleichgewichtsthermodynamik aufstellen und in thermodynamisch
 konsistenten Formulierungen von Transportgesetzen eine systematische
 (Funktional)optimierung von Prozessen durchführen.
 • sind in der Lage selbständige Lösungen von
 Mehrkomponentendiffusionsproblemen zu entwickeln (auch im Druck-
 und elektrischen Feld).
 • verinnerlichen die durch die Thermodynamik vorgeschriebenen
 treibenden Kräfte für Transportvorgänge und deren Kopplung
 untereinander und können diesbezüglich reale Teilprozesse abstrahieren.
 • können, mit dem vertieften Verständnis für diffusive
 Stoffübertragungsprozesse, Beschreibungsmethoden kinetisch limitierter
 Prozesse entwickeln und mit diesen Methoden zur praxisbezogenen
 Prozesse optimieren.
 • können die thermodynamische Nachhaltigkeit technischer Prozesse
 über deren Entropieproduktion ausdrücken und bewerten.
13. Inhalt: Zunächst werden die Bilanzgleichungen besprochen und die
 Entropiebilanz eingeführt. Die Minimierung der Entropieproduktion
 führt zur maximalen energetischen Nachhaltigkeit von Prozessen. Die
 Anwendung dieser (funktionalen) Prozessoptimierung wird anhand
 von Beispielen illustriert. Die tatsächlichen treibenden Kräfte für
 Transportvorgänge (Stoff, Wärme, Reaktion, viskos Drucktensor) und
 deren Kopplung werden aus dem Ausdruck für die Entropieproduktion
 identifiziert. Die Limitierung des klassischen Fickschen
 Diffusionsansatzes wird besprochen. Die Grundlagen der
 Diffusionsmodellierung nach Maxwell-Stefan werden
 eingehend vermittelt. Auch die Diffusion im Druck- und elektrischen Feld
 sind Anwendungen dieses Ansatzes.
14. Literatur:
 - R. Haase: Thermodynamik der irreversiblen Prozesse, Dr. Dietrich Steinkopff Verlag

15. Lehrveranstaltungen und -formen:
 331801 Vorlesung Nichtgleichgewichts- Thermodynamik: Diffusion und Stofftransport

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudiumszeit / Nacharbeitszeit: 62 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name:
 33181 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Entwicklung des Vorlesungsinhalts als Tafelanschrieb unterstützt durch Präsentationsfolien; Beiblätter werden als Ergänzung zum Tafelanschrieb ausgegeben; Übungen als Tafelanschrieb.

20. Angeboten von:
2812 Kern-/Ergänzungsfächer mit 6 LP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>11320</th>
<th>Thermodynamik der Gemische I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15890</td>
<td>Thermische Verfahrenstechnik II</td>
</tr>
<tr>
<td></td>
<td>24590</td>
<td>Thermische Verfahrenstechnik I</td>
</tr>
<tr>
<td></td>
<td>26410</td>
<td>Molekularsimulation</td>
</tr>
</tbody>
</table>

Modul: 26410 Molekularsimulation

2. Modulkürzel: 042100004
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Joachim Groß

9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: inhaltlich: Technische Thermodynamik I und II, Molekulare Thermodynamik
 formal: Bachelor-Abschluss

12. Lernziele:
 Die Studierenden
 • können mit Hilfe von Computersimulationen thermodynamische Stoffeigenschaften einzig aus zwischenmolekularen Kräften ableiten.
 • können etablierte Methoden im Bereich der 'Molekulardynamik' und der 'Monte-Carlo-Simulation' anwenden und haben darüber hinaus vertiefte Kenntnisse um eigene Programme zur Berechnung verschiedener Stoffeigenschaften wie beispielsweise Diffusionskoeffizienten zu entwickeln.
 • können durch die Simulationen unterstützt eine optimale Auswahl von Fluiden für eine verfahrenstechnische Anwendung generieren, so beispielsweise ein prozessoptimiertes Lösungsmittel.
 • haben die Fähigkeit bestehende Berechnungsmethoden bezüglich ihrer physikalischen Grundannahmen, der Genauigkeit der Ergebnisse und der Recheneffizienz zu bewerten und weiter zu entwickeln.

13. Inhalt:

14. Literatur:
 • M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids, Oxford University Press
 • D.C. Rapaport: The Art of Molecular Dynamics Simulation, Cambridge University Press

15. Lehrveranstaltungen und -formen:
 • 264101 Vorlesung Molekularsimulation
16. Abschätzung Arbeitsaufwand:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td>56 h</td>
</tr>
<tr>
<td>Nachbearbeitungszeit:</td>
<td>124 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26411</td>
<td>Molekularsimulation (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: (USL-V), schriftliche Prüfung</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

Entwicklung des Vorlesungsinhaltes als Tafelanschrieb. Die Übung wird als Rechnerübung gehalten.

20. Angeboten von:
Modul: 24590 Thermische Verfahrenstechnik I

2. Modulkürzel: 042100015
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Angewandte Thermodynamik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Angewandte Thermodynamik
→ Kernfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Vertiefungsmodule
→ Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:
Thermodynamik I + II
Thermodynamik der Gemische (empfohlen, nicht zwingend)

12. Lernziele:
Die Studierenden

• verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik.

• können dieses Wissen selbstständig anwenden, um konkrete Fragestellungen der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren.

• sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen.

• können das erworbenen Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen.

• können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung identifizieren.

13. Inhalt:
Aufgabe der Thermischen Verfahrenstechnik ist die Trennung fluider Mischungen. Thermische Trennverfahren wie die Destillation, Absorption oder Extraktion spielen in vielen verfahrens- und umwelttechnischen Prozessen eine zentrale Rolle.
In der Vorlesung werden aufbauend auf den Grundlagen aus der Thermodynamik der Gemische und der Wärme- und Stoffübertragung die genannten Prozesse behandelt (Modellierung, Auslegung, Realisierung).
Daneben werden allgemeine Grundlagen wie das Gegenstromprinzip und Unterschiede zwischen Gleichgewichts- und kinetisch kontrollierten Prozessen erläutert. Im Rahmen der Veranstaltung wird das theoretische Wissen anhand einer ausgewählten Technikumsanlage (Destillation und/ oder Absorption) praktisch vertieft.

14. Literatur:

- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedecke, Fluidverfahrenstechnik, Band 1 & 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:

- 245901 Vorlesung Thermische Verfahrenstechnik I
- 245902 Übung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	**180 h**

17. Prüfungsnummer/n und -name:

- 24591 Thermische Verfahrenstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 15890 Thermische Verfahrenstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042100005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof.Dr.-Ing. Joachim Groß</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Groß</td>
</tr>
</tbody>
</table>
M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik
→ Angewandte Thermodynamik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik
→ Angewandte Thermodynamik
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | inhaltlich: Technische Thermodynamik I und II, Thermodynamik der Gemische, Thermische Verfahrenstechnik
formal: Bachelor-Abschluss |
| 12. Lernziele: | Die Studierenden
• beherrschen die Methoden der Prozesssynthese und Energieintegration und sind in der Lage diese anzuwenden und zur Analyse von Gesamtprozessen zu benutzen.
• besitzen die Fähigkeit, praktische Projektierungsaufgaben rechnergestützt mit einem in der Industrie weit verbreiteten Prozesssimulationswerkzeug zu lösen.
• sind Sie in der Lage die Wirksamkeit eines Verfahrens in komplexer Verschaltung durch Abstraktion des jeweiligen Trennproblems zu beurteilen und Alternativen vorzuschlagen.
• können verallgemeinerte systematische Ansätze zur Lösung komplexer Trennprobleme generieren, insbesondere für praktisch hochrelevante Anwendung wie z.B. destillative Trennung von Mehrkomponentengemischen, Azeotrop- und Extraktivdestillation, Absorption/Desorption.
• können die erlernten Systematiken zur Generierung von Lösungsansätzen für neuartige komplexe Trennaufgaben verwenden.
• können durch eingebettete praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung selbstständig erkennen und diese bereits im Vorfeld der technischen Realisierung abschätzen. |
14. Literatur:

- E. Blaß: Entwicklung verfahrenstechnischer Prozesse: Methoden, Zielsuche, Lösungssuche, Lösungsauswahl, Springer
- M.F. Doherty, M.F. Malone: Conceptual design of distillation systems, McGraw-Hill
- K. Sattler: Thermische Trennverfahren: Grundlagen, Auslegung, Apparate, Weinheim VCH.
- H. Schuler: Prozesssimulation, Weinheim VCH
- Prozesssimulatoren: Aspen Plus

15. Lehrveranstaltungen und -formen:

- 158901 Vorlesung Thermische Verfahrenstechnik II
- 158902 Übung Thermische Verfahrenstechnik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

15891 Thermische Verfahrenstechnik II (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: (USL-V) schriftliche Prüfung

18. Grundlage für ... :

19. Medienform:

Entwicklung des Vorlesungsinhalts als Tafelanschrieb unterstützt durch Präsentationsfolien; Beiblätter werden als Ergänzung zum Tafelanschrieb ausgegeben; Die rechnergestützte Prozessauslegung wird in Gruppen von 4-6 Studierenden vom Betreuer direkt unterstützt.

20. Angeboten von:

Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Modul: 11320 Thermodynamik der Gemische I

2. Modulkürzel: 042100001 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Inhaltlich: Thermodynamik I / II
 Formal: keine

12. Lernziele:
 Die Studierenden
 • besitzen ein eingehendes Verständnis der Phänomenologie der Phasengleichgewichte von Mischungen und verstehen, wie diese mit Zustandsgleichungen und GE-Modellen modelliert werden.
 • sind in der Lage die Grundlagen von nichtidealem Verhalten realer, fluider Gemische zu erkennen und deren Einflüsse auf thermodynamische Größen zu identifizieren und zu interpretieren.
 • kennen und verstehen die Besonderheiten der thermodynamischen Betrachtung von Gemischen mehrerer Komponenten und können damit verbundene Konsequenzen für technische Auslegung von thermischen Trenneinrichtungen identifizieren.
 • können eine geeignete Berechnungsmethode zur Beschreibung der Lage von Phasen- und Reaktionsgleichgewichten auswählen und diese Berechnungen durchführen.
 • sind durch das erworbene Verständnis der grundlegenden Modellierung thermodynamischer Nichtidealitäten zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:
 • Grundlagen: Einstufige thermische Trennprozesse, Gleichgewicht, partielle molare Zustandsgrößen
 • Thermische und kalorische Eigenschaften von Mischungen: Exzessvolumen, Exzessenthapie, Thermische Zustandsgleichungen
 • Phasengleichgewichte (Phänomenologie): Phasendiagramme, Zweiphasen- und Mehrphasengleichgewichte, Azeotropie, Heteroazeotropie, Hochdruckphasengleichgewichte
 • Phasengleichgewichte (Berechnung): Fundamentalgleichung, Legendre-Transformation, Gibbssche Energie, Fugazität, Fugazitätskoeffizient, Aktivität, Aktivitätskoeffizient, GE-Modelle, Dampf-Flüssigkeits Gleichgewicht (Raoultsches Gesetz), Gaslöslichkeit (Henrysches Gesetz), Flüssig-Flüssig-, Fest-Flüssig-, Hochdruckgleichgewichte, Stabilität von Mischungen
 • Reaktionsgleichgewichte für unterschiedliche Referenzzustände, Standardbildungsenergien und Temperaturverhalten

Stand: 23. Oktober 2012
14. Literatur:

- J. Gmehling, B. Kolbe, Thermodynamik, VCH Verlagsgesellschaft mbH, Weinheim
- J.W. Tester, M. Modell, Thermodynamics and its applications, Prentice-Hall, Englewoods Cliffs-S.M. Walas, Phase Equilibria in Chemical Engineering, Butterworth
- A. Pfennig, Thermodynamik der Gemische, Springer-Verlag, Berlin

15. Lehrveranstaltungen und -formen:

- 113201 Vorlesung Thermodynamik der Gemische
- 113202 Übung Thermodynamik der Gemische

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnr. und -name:

- 11321 Thermodynamik der Gemische (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

- 15880 Thermodynamik der Gemische II
- 15890 Thermische Verfahrenstechnik II
- 15900 Nichtgleichgewichts-Thermodynamik: Diffusion und Stofftransport

19. Medienform:

Entwicklung des Vorlesungsinhalts als Tafelanschrieb; ergänzend werden Beiblätter ausgegeben.

20. Angeboten von:

Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
2811 Kernfächer mit 6 LP

Zugeordnete Module:

11320 Thermodynamik der Gemische I
15890 Thermische Verfahrenstechnik II
24590 Thermische Verfahrenstechnik I
Modul: 24590 Thermische Verfahrenstechnik I

2. Modulkürzel: 042100015 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

 Thermodynamik I + II
 Thermodynamik der Gemische (empfohlen, nicht zwingend)

12. Lernziele:

 Die Studierenden
 • verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik.
 • können dieses Wissen selbstständig anwenden, um konkrete Fragestellung der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren.
 • sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen.
 • können das erworbbene Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen.
 • können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung identifizieren.

13. Inhalt:

 Aufgabe der Thermischen Verfahrenstechnik ist die Trennung flüider Mischungen. Thermische Trennverfahren wie die Destillation, Absorption oder Extraktion spielen in vielen verfahrens- und umwelttechnischen Prozessen eine zentrale Rolle.
 In der Vorlesung werden aufbauend auf den Grundlagen aus der Thermodynamik der Gemische und der Wärme- und Stoffübertragung die genannten Prozesse behandelt (Modellierung, Auslegung, Realisierung).
Daneben werden allgemeine Grundlagen wie das Gegenstromprinzip und Unterschiede zwischen Gleichgewichts- und kinetisch kontrollierten Prozessen erläutert. Im Rahmen der Veranstaltung wird das theoretische Wissen anhand einer ausgewählten Technikumsanlage (Destillation und/oder Absorption) praktisch vertieft.

14. Literatur:
- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedcke, Fluidverfahrenstechnik, Band 1 & 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:
- 245901 Vorlesung Thermische Verfahrenstechnik I
- 245902 Übung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
24591 Thermische Verfahrenstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 15890 Thermische Verfahrenstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042100005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Joachim Groß</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Groß</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kern-/Ergänzungsfächer mit 6 LP
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen:

inhaltlich: Technische Thermodynamik I und II, Thermodynamik der Gemische, Thermische Verfahrenstechnik

formal: Bachelor-Abschluss

12. Lernziele:

Die Studierenden
- beherrschen die Methoden der Prozesssynthese und Energieintegration und sind in der Lage diese anzuwenden und zur Analyse von Gesamtprozessen zu benutzen.
- besitzen die Fähigkeit, praktische Projektierungsaufgaben rechnergestützt mit einem in der Industrie weit verbreiteten Prozesssimulationswerkzeug zu lösen.
- sind Sie in der Lage die Wirksamkeit eines Verfahrens in komplexer Verschaltung durch Abstraktion des jeweiligen Trennproblems zu beurteilen und Alternativen vorzuschlagen.
- können verallgemeinerte systematische Ansätze zur Lösung komplexer Trennprobleme generieren, insbesondere für praktisch hochrelevante Anwendung wie z.B. destillative Trennung von Mehrkomponentengemischen, Azeotrop- und Extraktivdestillation, Absorption/Desorption.
- können die erlernten Systematiken zur Generierung von Lösungsansätzen für neuartige komplexe Trennaufgaben verwenden.
- können durch eingebettete praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung selbstständig erkennen und diese bereits im Vorfeld der technischen Realisierung abschätzen.

13. Inhalt:

14. Literatur:

- E. Blaß: Entwicklung verfahrenstechnischer Prozesse: Methoden, Zielsuche, Lösungssuche, Lösungsauswahl, Springer
- M.F. Doherty, M.F. Malone: Conceptual design of distillation systems, McGraw-Hill
- K. Sattler: Thermische Trennverfahren: Grundlagen, Auslegung, Apparate, Weinheim VCH.
- H. Schuler: Prozesssimulation, Weinheim VCH
- Prozesssimulatoren: Aspen Plus

15. Lehrveranstaltungen und -formen:

- 158901 Vorlesung Thermische Verfahrenstechnik II
- 158902 Übung Thermische Verfahrenstechnik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

- 15891 Thermische Verfahrenstechnik II (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: (USL-V) schriftliche Prüfung

18. Grundlage für ...:

19. Medienform:

Entwicklung des Vorlesungsinhalts als Tafelanschrieb unterstützt durch Präsentationsfolien; Beilätter werden als Ergänzung zum Tafelanschrieb ausgegeben; Die rechnergestützte Prozessauslegung wird in Gruppen von 4-6 Studierenden vom Betreuer direkt unterstützt.

20. Angeboten von:

Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Modul: 11320 Thermodynamik der Gemische I

2. Modulkürzel: 042100001
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik
 → Kernfächer mit 6 LP
11. Empfohlene Voraussetzungen: Inhaltlich: Thermodynamik I / II
Formal: keine
12. Lernziele:
 Die Studierenden
 • besitzen ein eingehendes Verständnis der Phänomenologie der Phasengleichgewichte von Mischungen und verstehen, wie diese mit Zustandsgleichungen und GE-Modellen modelliert werden.
 • sind in der Lage die Grundlagen von nichtidealem Verhalten realer, fluider Gemische zu erkennen und deren Einflüsse auf thermodynamische Größen zu identifizieren und zu interpretieren.
 • kennen und verstehen die Besonderheiten der thermodynamischen Betrachtung von Gemischen mehrerer Komponenten und können damit verbundene Konsequenzen für technische Auslegung von thermischen Trenneinrichtungen identifizieren.
 • können eine geeignete Berechnungsmethode zur Beschreibung der Lage von Phasen- und Reaktionsgleichgewichten auswählen und diese Berechnungen durchführen.
 • sind durch das erworbene Verständnis der grundlegenden Modellierung thermodynamischer Nichtidealitäten zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.
13. Inhalt:
 • Grundlagen: Einstufige thermische Trennprozesse, Gleichgewicht, partielle molare Zustandsgrößen
 • Thermische und kalorische Eigenschaften von Mischungen: Exzessvolumen, Exzessenthapie, Thermische Zustandsgleichungen
 • Phasengleichgewichte (Phänomenologie): Phasendiagramme, Zweiphasen- und Mehrphasengleichgewichte, Azeotropie, Heteroazeotropie, Hochdruckphasengleichgewichte
 • Phasengleichgewichte (Berechnung): Fundamentalgleichung, Legendre-Transformation, Gibbssche Energie, Fugazität, Fugazitätskoeffizient, Aktivität, Aktivitätskoeffizient, GE-Modelle, Dampf-Flüssigkeits Gleichgewicht (Raoultsches Gesetz), Gaslöslichkeit (Henrysches Gesetz), Flüssig-Flüssig-, Fest-Flüssig-, Hochdruckgleichgewichte, Stabilität von Mischungen
 • Reaktionsgleichgewichte für unterschiedliche Referenzzustände, Standardbildungsenergien und Temperaturverhalten

Stand: 23. Oktober 2012
<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• J. Gmehling, B. Kolbe, Thermodynamik, VCH Verlagsgesellschaft mbH, Weinheim</td>
</tr>
<tr>
<td>• J.W. Tester, M. Modell, Thermodynamics and its applications, Prentice-Hall, Englewoods Cliffs-S.M. Walas, Phase Equilibria in Chemical Engineering, Butterworth</td>
</tr>
<tr>
<td>• A. Pfennig, Thermodynamik der Gemische, Springer-Verlag, Berlin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 113201 Vorlesung Thermodynamik der Gemische</td>
</tr>
<tr>
<td>• 113202 Übung Thermodynamik der Gemische</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 56 h</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit: 124 h</td>
</tr>
<tr>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11321 Thermodynamik der Gemische (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ...:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 15880 Thermodynamik der Gemische II</td>
</tr>
<tr>
<td>• 15890 Thermische Verfahrenstechnik II</td>
</tr>
<tr>
<td>• 15900 Nichtgleichgewichts-Thermodynamik: Diffusion und Stofftransport</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entwicklung des Vorlesungsinhalts als Tafelanschrieb; ergänzend werden Beiblätter ausgegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Technische Thermodynamik und Thermische Verfahrenstechnik</td>
</tr>
</tbody>
</table>
Modul: 33210 Praktikum Angewandte Thermodynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042100007</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß

9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Verfahrenstechnik
 → Angewandte Thermodynamik

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden sind in der Lage theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Beispiele:

 - etc.

14. Literatur: Praktikums-Unterlagen

15. Lehrveranstaltungen und -formen:
- 332101 Spezialisierungsfachversuch 1
- 332102 Spezialisierungsfachversuch 2
- 332103 Spezialisierungsfachversuch 3
- 332104 Spezialisierungsfachversuch 4
- 332105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 332106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 Stunden
Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name: | 33211 Praktikum Angewandte Thermodynamik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2821</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>2822</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2823</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>33250</td>
<td>Praktikum Medizinische Verfahrenstechnik</td>
</tr>
</tbody>
</table>
2823 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
33220 Biomaterialien für Implantate
33230 Implantate und Organersatz
Modul: 33220 Biomaterialien für Implantate

2. Modulkürzel: 049900211 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck
9. Dozenten: Heinrich Planck

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Biomedizinische Verfahrenstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

13. Inhalt: Lerninhalte sind die Grundlagen der Werkstoffe:
 Polymere, Keramiken, Metalle, Verbundwerkstoffe und die grundlegenden Anforderungen bzgl. der Anwendung in der Medizin
 Vermittelt werden Kenntnisse über folgende Bereiche
 - die Systematik und spezifische Charakteristika der Biomaterialien, Definitionen
 - gesetzliche und medizinische Anforderungen, Biokompatibilität
 - Grenzflächenphysikalische und strukturelle Einflüsse
 - die Grundlagen der chemischen Bindungen und deren Einfluss auf Materialeigenschaften
 - wichtigste Fertigungsverfahren für Massiv und Verbundwerkstoffe
 - Textilien, Faserverbundmaterialien, Membranen
 - der relevanten Verschleißmechanismen bei Implantaten, Degradation
 - Materialien im Blutkontakt

14. Literatur:
 • Vorlesungsskripte
 • Heinrich Planck: Kunststoffe und Elastomere in der Medizin, Kohlhammer Verlag, 1993, Signatur: ISBN 3-17-009602-8
 • Loy, W., Textile Produkte für Medizin, Hygiene und Wellness, Deutscher Fachverlag 2006, Signatur: O 156 10/06

15. Lehrveranstaltungen und -formen:
 • 332201 Vorlesung Endoprothesen I
 • 332202 Übung Endoprothesen I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
 33221 Biomaterialien für Implantate (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: PPT
20. Angeboten von:
Modul: 33230 Implantate und Organersatz

2. Modulkürzel: 049900212
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck

9. Dozenten: Heinrich Planck

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorzeigene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Verfahrenstechnik
 ➔ Biomedizinische Verfahrenstechnik
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden haben grundlegende Kenntnisse über die Herstellung und Verwendung von Implantaten als Ersatz von Organen und Geweben

13. Inhalt: Lerninhalte sind die Grundlagen der Entwicklung, Herstellung und Zulassung von Implantaten

Vermittelt werden Kenntnisse über folgende Bereiche
- Knochen- und Gelenkersatz, Osteosynthese
- Sehnen- und Bandersatz
- Gefäßersatz und Stents
- Hernien
- Biohybride Organe
- Herstellungs- und Fertigungsverfahren
- die Möglichkeiten der Oberflächenmodifikation durch Beschichtungen
- Analyse der Belastungsfälle und Versagensmechanismen (mech., therm., chem.)
- Bewertung der Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen
- Regulatorische Anforderungen

14. Literatur:
• Vorlesungsnotizen
• Heinrich Planck: Kunststoffe und Elastomere in der Medizin, Kohlhammer Verlag, 1993, Signatur: ISBN 3-17-009602-8
• Loy, W., Textile Produkte für Medizin, Hygiene und Wellness, Deutscher Fachverlag 2006, Signatur:O 156 10/06

15. Lehrveranstaltungen und -formen:
• 332301 Vorlesung Endoprothesen II
• 332302 Übungen Endoprothesen II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33231 Implantate und Organersatz (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

Stand: 23. Oktober 2012
19. Medienform: PPT

20. Angeboten von:
2822 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:

- 32990 Grenzflächenverfahrenstechnik und Nanotechnologie - Chemie und Physik der Grenzflächen und Nanomaterialien
- 33240 Medizinische Verfahrenstechnik
Modul: 32990 Grenzflächenverfahrenstechnik und Nanotechnologie - Chemie und Physik der Grenzflächen und Nanomaterialien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041400202</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Prof. Dr. Thomas Hirth

9. Dozenten:
- Günter Tovar
- Thomas Hirth

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Verfahrenstechnik
 ➔ Biomedizinische Verfahrenstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Grundlagen der Grenzflächenverfahrenstechnik und Grundlagen der Physikalischen Chemie

12. Lernziele:

Die Studierenden beherrschen die Theorie der nanostrukturierten Materie, verstehen die physikalisch-chemischen Eigenschaften von Nanomaterialien und ihre Analysemethoden und wissen um die Bedeutung der Chemie und Physik von Nanomaterialien für deren Anwendung.

13. Inhalt:
- Thermodynamik von Grenzflächenerscheinungen
- Grenzflächenkombination flüssig-gasförmig (Oberflächenspannung, Schäume)
- Grenzflächenkombination flüssig-flüssig (Emulsionen, Grenzflächenspannung)
- Grenzflächenkombination fest-gasförmig (Adsorption, Gaschromatographie, Aerosole)
- Grenzflächenkombination fest-flüssig (Benetzung, Reinigung, Flüssigkeitschromatographie)
- Grenzflächenkombination fest-fest (Adhäsion, Schmierung)
- Analytik und Charakterisierung von Grenzflächen
 - Aufbau und Struktur von Nanomaterialien
 - Synthese und Verarbeitung von Nanomaterialien
 - Mechanische, chemische, elektrische, optische, magnetische, biologische Eigenschaften von Nanomaterialien

14. Literatur:
- Hirth, Thomas und Tovar, Günter, Nanotechnologie - Chemie und Physik der Nanomaterialien, Vorlesungsmanuskript.
15. Lehrveranstaltungen und -formen:

- 329901 Vorlesung Grenzflächenverfahrenstechnik - Chemie und Physik der Grenzflächen
- 329902 Vorlesung Nanotechnologie - Chemie und Physik der Nanomaterialien

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

32991 Grenzflächenverfahrenstechnik und Nanotechnologie - Chemie und Physik der Grenzflächen und Nanomaterialien (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Beamer und Overhead-Präsentation, Tafelanschrieb

20. Angeboten von:
Modul: 33240 Medizinische Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041400201</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Thomas Hirth</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Heinrich Planck
• Günter Tovar
• Michael Doser
• Thomas Hirth |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Biomedizinische Verfahrenstechnik
→ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Biomedizinische Verfahrenstechnik
→ Kernfächer mit 6 LP |
| 11. Empfohlene Voraussetzungen: | - |
| 12. Lernziele: | Die Studierenden haben vertieftes Wissen im Bereich der Entwicklung, Herstellung und Anwendung von Medizinprodukten |
| 13. Inhalt: | - Biologische und medizinische Grundlagen
- Grenzflächen in der Medizintechnik
- Aspekte der Herstellung v. Medizinprodukten
- Analytik in der Medizintechnik
- Künstliche Organe
- Wundbehandlungsverfahren
- Prüfung und Zulassung von Medizinprodukten |
| 14. Literatur: | • Doser, Michael; Hirth, Thomas; Planck, Heinrich und Tovar, Günter: Medizinische Verfahrenstechnik, Vorlesungsskript.
• Van Langenhove, L. (ed.): Smart textiles for medicine and healthcare, Woodhead Publishing, 2007, Signatur: O 163, 03/08
• Loy, W., Textile Produkte für Medizin, Hygiene und Wellness, Deutscher Fachverlag 2006, Signatur: O 156 10/06
• Hipler, U.-C., Elsner, P., Biofunctional Textiles and the Skin, Karger 2006, Signatur: O155 09/06
• Stokes, Robert und Evans, D. Fenell, Fundamentals of Interfacial Engineering, Wiley-VCH.
• Dörfler, Hans-Dieter, Grenzflächen- und Kolloidchemie, Wiley-VCH. |
| 15. Lehrveranstaltungen und -formen: | • 332401 Vorlesung Medizinische Verfahrenstechnik I
• 332402 Vorlesung Medizinische Verfahrenstechnik II
• 332403 Exkursion (2x1Tag) |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzzeit: 54 h |
Selbststudium / Nacharbeitszeit: 126 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
• 33241 Medizinische Verfahrenstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Medizinische Verfahrenstechnik I, 0.5, schriftlich, 60 min Medizinische Verfahrenstechnik II, 0.5, schriftlich, 60 min
• 33242 Medizinische Verfahrenstechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer und Overhead-Präsentation, Tafelanschrieb

20. Angeboten von:
2821 Kernfächer mit 6 LP

Zugeordnete Module: 33240 Medizinische Verfahrenstechnik
Modul: 33240 Medizinische Verfahrenstechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Thomas Hirth
9. Dozenten: • Heinrich Planck
• Günter Tovar
• Michael Doser
• Thomas Hirth

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➞ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Verfahrenstechnik
 ➞ Biomedizinische Verfahrenstechnik
 ➞ Kern-/Ergänzungsfächer mit 6 LP
M.Sc. Technologiemanagement, PO 2011 ➞ Gruppe Verfahrenstechnik
 ➞ Biomedizinische Verfahrenstechnik
 ➞ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: -

12. Lernziele:
Die Studierenden haben vertieftes Wissen im Bereich der Entwicklung, Herstellung und Anwendung von Medizinprodukten

13. Inhalt:
- Biologische und medizinische Grundlagen
- Grenzflächen in der Medizintechnik
- Aspekte der Herstellung v. Medizinprodukten
- Analytik in der Medizintechnik
- Künstliche Organe
- Wundbehandlungsverfahren
- Prüfung und Zulassung von Medizinprodukten

14. Literatur:
• Doser, Michael; Hirth, Thomas; Planck, Heinrich und Tovar, Günter: Medizinische Verfahrenstechnik, Vorlesungsskript.
• Van Langenhove, L. (ed.): Smart textiles for medicine and healthcare, Woodhead Publishing, 2007, Signatur: O 163, 03/08
• Loy, W., Textile Produkte für Medizin, Hygiene und Wellness, Deutscher Fachverlag 2006, Signatur: O 156 10/06
• Hipler, U.-C., Elsner, P., Biofunctional Textiles and the Skin, Karger 2006, Signatur: O155 09/06
• Stokes, Robert und Evans, D. Fenell, Fundamentals of Interfacial Engineering, Wiley-VCH.
• Dörfler, Hans-Dieter, Grenzflächen- und Kolloidchemie,Wiley-VCH.

15. Lehrveranstaltungen und -formen:
• 332401 Vorlesung Medizinische Verfahrenstechnik I
• 332402 Vorlesung Medizinische Verfahrenstechnik II
• 332403 Exkursion (2x1Tag)

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 54 h
Selbststudium / Nacharbeitszeit: 126 h
Summe: 180 h

| 17. Prüfungsnummer/n und -name: | • 33241 Medizinische Verfahrenstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Medizinische Verfahrenstechnik I, 0.5, schriftlich, 60 min
| | • 33242 Medizinische Verfahrenstechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : | Beamer und Overhead-Präsentation, Tafelanschrieb |

| 20. Angeboten von: |
Modul: 33250 Praktikum Medizinische Verfahrenstechnik

2. Modulkürzel: 041400220
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Thomas Hirth
9. Dozenten:
 • Heinrich Planck
 • Günter Tovar
 • Michael Doser
 • Thomas Hirth
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Verfahrenstechnik
 → Biomedizinische Verfahrenstechnik
11. Empfohlene Voraussetzungen:
 -
12. Lernziele:
 Die Studierenden sind in der Lage theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.
13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 Beispiele:
 • Herstellung von Membranen: Die Praktikanten bekommen Grundlagen der Membranherstellung vermittelt, setzen unterschiedliche Polymerlösungen an und rakeln Flachmembranen aus, die anschließend gefällt werden.
 • DNA-Visualisierung mittels Gelelektrophorese: Die Praktikanten stellen Agarosegele her und nutzen diese zur Gelelektrophorese und visualisieren damit Plasmid-DNA.
14. Literatur:
 Skripte, Praktikums-Unterlagen, Präsentationen
15. Lehrveranstaltungen und -formen:
 • 332501 Spezialisierungsfachversuch1
 • 332502 Spezialisierungsfachversuch2
 • 332503 Spezialisierungsfachversuch3
 • 332504 Spezialisierungsfachversuch4
 • 332505 Praktische Übungen: Allgemeines Praktikum Maschinenbau
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 Stunden
 Selbststudium: 62 Stunden
 Summe: 90 Stunden
17. Prüfungsnr/n und -name: 33251 Praktikum Medizinische Verfahrenstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang wird zu Beginn des Moduls bekannt gegeben
18. Grundlage für ...:
19. Medienform:
20. Angeboten von:
283 Chemische Verfahrenstechnik

Zugeordnete Module:
- 2831 Kernfächer mit 6 LP
- 2832 Kern-/Ergänzungsfächer mit 6 LP
- 2833 Ergänzungsfächer mit 3 LP
- 33080 Praktikum Verfahrenstechnik
2833 Ergänzungsfächer mit 3 LP
<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Kennzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>13910 Chemische Reaktionstechnik I</td>
<td></td>
</tr>
<tr>
<td>15570 Chemische Reaktionstechnik II</td>
<td></td>
</tr>
<tr>
<td>15580 Membrantechnik und Elektromembran-Anwendungen</td>
<td></td>
</tr>
<tr>
<td>15910 Modellierung verfahrenstechnischer Prozesse</td>
<td></td>
</tr>
<tr>
<td>15930 Prozess- und Anlagentechnik</td>
<td></td>
</tr>
<tr>
<td>18090 Numerische Methoden II</td>
<td></td>
</tr>
<tr>
<td>18100 CAD in der Apparatechnik</td>
<td></td>
</tr>
<tr>
<td>18110 Festigkeitsberechnung (FEM) in der Apparatechnik</td>
<td></td>
</tr>
<tr>
<td>18260 Polymer-Reaktionstechnik</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 18100 CAD in der Apparatetechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041111016</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Clemens Merten

9. Dozenten: Clemens Merten

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011</td>
</tr>
<tr>
<td>Gruppe Verfahrenstechnik</td>
</tr>
<tr>
<td>Chemische Verfahrenstechnik</td>
</tr>
<tr>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Konstruktionstechnische Grundlagen des BSc-Grundstudiums

12. Lernziele:

Die Studierenden

- verstehen die komplexen Anforderungen und Grundlagen der räumlichen Darstellung und normgerechter technischer Zeichnungen verfahrenstechnischer Maschinen und Apparate,
- können die Anwendungsprogramme zur rechnergestützten Konstruktion von Maschinen, Apparaten und Anlagen problemorientiert auswählen, vergleichen und beurteilen,
- beherrschen die grundlegenden Methodiken und die Handhabung des CAD-Programms Pro/ENGINEER für den Entwurf von Bauteilen und Baugruppen sowie für die Erstellung technischer Zeichnungen und Dokumentationen,
- können neue Produkte (Konstruktionen) mittels CAD entwerfen, analysieren, prüfen und bewerten,
- können das CAD-Programm in einer integrierten Entwicklungsumgebung anwenden.

13. Inhalt:

Das Modul erweitert Lehrinhalte der Lehrveranstaltung Maschinen- und Apparatekonstruktion - der Einsatz der rechnergestützten Konstruktion beim Bauteil- und Baugruppentwurf wird behandelt.

- Einführung und Anleitung zum konstruktiven Entwurf und zur Darstellung verfahrenstechnischer Apparate.
- Überblick zu allgemeinen und branchenspezifischen CAD-Systemen.
- Integration und Schnittstellen des CAD im Produktentwicklungsprozess (Berechnungsprogramme, CAE).
- Übung: Eigenständige Konstruktion eines Apparates mit CAD.

14. Literatur:

- Merten, C.: Skript zur Vorlesung, Übungsunterlagen
- Nutzerhandbuch Pro/ENGINEER

Ergänzende Lehrbücher:

- Köhler, P.: Pro/ENGINEER Praktikum. Vieweg-Verlag

15. Lehrveranstaltungen und -formen:

- 181001 Vorlesung CAD in der Apparatetechnik
- 181002 Übung CAD in der Apparatetechnik
16. Abschätzung Arbeitsaufwand:

Präsentzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

| 18101 | CAD in der Apparatetechnik (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

Vorlesungsskript, Übungsunterlagen, kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien

20. Angeboten von:

Institut für Chemische Verfahrenstechnik
Modul: 13910 Chemische Reaktionstechnik I

2. Modulkürzel:	041110001	5. Modulduauer:	1 Semester
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:	Prof.Dr.-Ing. Ulrich Nieken		
9. Dozenten:	Ulrich Nieken		

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzenfeld II

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kompetenzenfeld II

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit

- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Verfahrenstechnik
 - Chemische Verfahrenstechnik
 - Kern-/Ergänzungsfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Verfahrenstechnik
 - Chemische Verfahrenstechnik
 - Kernfächer mit 6 LP

- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

- Vorlesung:
 - Grundlagen Thermodynamik
 - Höhere Mathematik

- Übungen: keine

12. Lernziele:

13. Inhalt:

Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches...
Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten

14. Literatur:
Skript

empfohlene Literatur:
- Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
- Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, 1999

15. Lehrveranstaltungen und -formen:
- 139101 Vorlesung Chemische Reaktionstechnik I
- 139102 Übung Chemische Reaktionstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13911 Chemische Reaktionstechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:
15570 Chemische Reaktionstechnik II

19. Medienform:
Vorlesung: Tafelanschrieb, Beamer
Übungen: Tafelanschrieb, Rechnerübungen

20. Angeboten von:
Institut für Chemische Verfahrenstechnik
Modul: 15570 Chemische Reaktionstechnik II

2. Modulkürzel: 041110011 5. Modulsdauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. -Ing. Ulrich Nieken
9. Dozenten: Ulrich Nieken
 M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik → Chemische Verfahrenstechnik → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: Chemische Reaktionstechnik I

13. Inhalt: Modellbildung und Betriebsverhalten von Mehrphasenreaktoren; Molekulare Vorgänge an Oberflächen; Heterogen-katalytische Gasreaktionen; Charakterisierung poröser Feststoffe; Effektive Beschreibung des Wärme- und Stofftransports in porösen Feststoffen; Einzelkornmodelle und Zweiphasenmodell des Festbettreaktors; Stofftransport und Reaktion in Gas-Flüssigkeitsreaktoren; Hydrodynamik von Gas-Flüssigkeits-Reaktoren;

14. Literatur: Skript

15. Lehrveranstaltungen und -formen:
 • 155701 Vorlesung Chemische Reaktionstechnik II
 • 155702 Übung Chemische Reaktionstechnik II

16. Abschätzung Arbeitsaufwand:
 Präsenz: 56 h
 Vor- und Nachbereitung: 35 h
 Prüfungsvorbereitung und Prüfung: 89 h
 Summe: 180 h

17. Prüfungsnummer/n und -name: 15571 Chemische Reaktionstechnik II (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Vorlesung: Tafelanschrieb, Beamer
Übungen: Rechnerübungen

20. Angeboten von: Institut für Chemische Verfahrenstechnik
Modul: 18110 Festigkeitsberechnung (FEM) in der Apparatetechnik

2. Modulkürzel: 041111018
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Clemens Merten
9. Dozenten: Clemens Merten

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Chemische Verfahrenstechnik
→ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

Konstruktionstechnische Grundlagen des BSc-Grundstudiums, Technische Mechanik

12. Lernziele:

Die Studierenden

• verstehen die komplexen Aufgabenstellungen und Anforderungen an die Festigkeitsanalyse verfahrenstechnischer Apparate und Bauteile,
• verstehen die theoretischen Grundlagen der FEM,
• können die Anwendungen der FEM problemorientiert auswählen, vergleichen und beurteilen,
• beherrschen die Berechnungsmethodik und die praktische Handhabung des FEM-Programms ANSYS zur Bauteilanalyse,
• können die Berechnungsergebnisse für Bauteile bei mechanischer und thermischer Beanspruchung auswerten, analysieren und deren Qualität einschätzen,
• können das FEM-Programm in einer integrierten Entwicklungsumgebung anwenden.

13. Inhalt:

Das Modul erweitert Lehrinhalte der Maschinen- und Apparatekonstruktion - der Einsatz der Finite-Elemente-Methode beim Bauteilentwurf wird behandelt.

• Übersicht zur Festigkeitsberechnung verfahrenstechnischer Apparate.
• Anwendungsbereiche bauteilunabhängiger Berechnungsverfahren.
• Finite-Elemente-Methode: Grundlagen; Einführung in FEM-Programm ANSYS; FEM-Analyseschritte (Erstellen von Geometrie-, Werkstoff- und Belastungsmodell, Berechnung und Ergebnisbewertung); Datenaustausch mit CAD; Bauteil-Optimierung.
• Gruppenübung mit FEM-Programm und eigenständige Festigkeitsberechnung.

14. Literatur:

• Merten, C.: Skript zur Vorlesung, Übungsunterlagen
• Nutzerhandbuch ANSYS CFX

Ergänzende Lehrbücher:

• Klein, B.: FEM. Grundlagen und Anwendungen der Finite-Elemente-Methode. Vieweg-Verlag

15. Lehrveranstaltungen und -formen:

• 181101 Vorlesung Festigkeitsberechnung (FEM) in der Apparatetechnik
• 181102 Übung Festigkeitsberechnung (FEM) in der Apparatetechnik
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
<td>Präsenz: 56 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 77 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung und Prüfung: 47 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
</tr>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 18111 Festigkeitsberechnung (FEM) in der Apparatentechnik (PL),</td>
</tr>
<tr>
<td></td>
<td>mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: Vorlesungsskript, Übungsunterlagen, kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 15580 Membrantechnik und Elektromembran-Anwendungen

2. Modulkürzel: 041110012
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulprüfung: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr. Jochen Kerres
9. Dozenten: Jochen Kerres
 ➔ M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Verfahrenstechnik
 ➔ Chemische Verfahrenstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: Vorlesung: Thermodynamik
 Grundlagen der Makromolekularen Chemie
 Grundlagen der Anorganischen Chemie
 Grundlagen der Physikalischen Chemie
 Übungen: keine
12. Lernziele: Die Studierenden
 • verstehen die komplexen physikochemischen Grundlagen
 (insbesondere Thermodynamik und Kinetik) von
 membrandynamischen Prozessen (molekulare Grundlagen
 der Transport von Permeanden durch eine Membranmatrix und
 molekulare Grundlagen der Wechselwirkung zwischen Permeanden
 und Membranmatrix)
 • verstehen, wie eine Separation zwischen verschiedenen Komponenten
 einer Stoffmischung mittels des jeweiligen Membranprozesses erreicht
 werden kann (Separationsmechanismus, ggf. Kopplung verschiedener
 Mechanismen)
 • verstehen die materialwissenschaftlichen Grundlagen des
 nanoskopischen, mikroskopischen und makroskopischen Aufbaus und
 der Herstellung der unterschiedlichen Membrantypen (für organische
 Polymermembranen ist vertieftes polymerwissenschaftliches
 Verständnis erforderlich, für anorganische Membranen Verständnis der
 anorganischen und elementorganischen Chemie, z. B. das Sol-Gel-
 Prinzip)
 • sind in der Lage, für ein bestehendes Separationsproblem
 den dafür geeigneten Membrantrennprozess, ggf. auch
 eine Kombination verschiedener Membranverfahren,
 anzuwenden, - können grundlegende Berechnungen von
 Membrantrennprozessen durchführen (Permeationsfluß, Permeation
 und Permeationskoeffizient, Diffusion und Diffusionskoeffizient,
 Löslichkeit und Löslichkeitskoeffizient, Trennfaktor, Selektivität,
 Abschätzung der Wirtschaftlichkeit von Membrantrennprozessen)
13. Inhalt:

- Physikochemische Grundlagen der Membrantechnologie, einschließlich Grundlagen der Elektrochemie

- Grundlagen und Anwendungsfelder der wichtigsten Membrantrennprozesse (Mikrofiltration, Ultrafiltration, Nanofiltration, Umkehrosmose, Elektrodialyse, Dialyse, Gastrennung, Pervaporation, Perstraktion)

- Grundlagen von Elektrolyse, Brennstoffzellen und Batterien, einschließlich der in diesen Prozessen zur Verwendung kommenden Materialien

- Grundlagen der Membranbildung (z. B. Phaseninversionsprozeß)

- Klassifizierung der unterschiedlichen Membrantypen nach verschiedenen Kriterien (z. B. poröse Membranen - dichte Membranen, oder geladene Membranen (Ionen austauschmembranen) - ungeladene Membranen oder organische Membranen - mixed-matrix-Membranen - anorganische Membranen)

- Herstellungprozesse für die und Aufbau der unterschiedlichen Membrantypen

- Charakterisierungsmethoden für Membranen und Membrantrennprozesse

14. Literatur:

- Kerres, J.: Vorlesungsfolien und weitere Materialien
- H. Strathmann und E. Drioli: An Introduction to Membrane Science and Technology
- M. Mulder: Basic Principles of Membrane Technology
- Hamann-Vielstich: Elektrochemie

15. Lehrveranstaltungen und -formen:

155801 Vorlesung Membrantechnik und Elektromembran-Anwendungen

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

15581 Membrantechnik und Elektromembran-Anwendungen (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

kombinierter Einsatz von Tafelanschrieb und Beamer,
Ausstellung der Präsentationsfolien

20. Angeboten von:

Institut für Chemische Verfahrenstechnik
Modul: 15910 Modellierung verfahrenstechnischer Prozesse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041110010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Ulrich Nieken
9. Dozenten: Ulrich Nieken

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 - M.Sc. Technologiemanagement, PO 2011

11. Empfohlene Voraussetzungen:
 - Vorlesung: Höhere Mathematik I-III
 - Übungen: keine

12. Lernziele:
 Die Studierende besitzen vertiefte Kenntnisse über die Modellierung verfahrenstechnischer Prozesse und können Prozeßmodelle auf unterschiedlichen Skalen und mit unterschiedlichem Detaillierungsgrad synthetisieren und hinsichtlich ihrer Eignung beurteilen. Sie ermitteln geeignete Vorstellung und Vereinfachungen und können diese im Hinblick auf eine geforderte Nutzung kritisch beurteilen und bewerten. Sie können Modelle für neuartige Fragestellungen selbstständig aufbauen, bewerten und validieren.

13. Inhalt:

14. Literatur:
 - Stephan, Mayinger. Thermodynamik Band 2, 12.te Auflage, Springer, Berlin

15. Lehrveranstaltungen und -formen:
 - 159101 Vorlesung Modellierung verfahrenstechnischer Prozesse
 - 159102 Übung Modellierung verfahrenstechnischer Prozesse

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium / Nacharbeitszeit: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 15911 Modellierung verfahrenstechnischer Prozesse (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Vorlesung, Übungen: Tafelanschrieb, Beamer

20. Angeboten von:
 Institut für Chemische Verfahrenstechnik
Modul: 18090 Numerische Methoden II

2. Modulkürzel: 041100017
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Gheorghe Sorescu

9. Dozenten: Gheorghe Sorescu

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module

 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Chemische Verfahrenstechnik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:

 Höhere Mathematik I - III, Numerische Methoden I

12. Lernziele:

 Aufbauend auf die Lehrveranstaltung „Numerische Methoden I“ erwerben die Studenten die Fähigkeit

 • Algorithmen zur Lösung numerischer Probleme zu bewerten (Genaugkeit, Stabilität, Komplexität, Einsatzbereich).

 • komplexere Probleme der Verfahrenstechnik mit geeigneten Algorithmen zu lösen

 • Die Studierenden können komplexe Aufgabenstellung eigenständig umsetzen und die Simulationsergebnisse kritisch analysieren und bewerten.

13. Inhalt:

 • Effiziente Lösungsverfahren für große und dünn besetzte lineare Gleichungssysteme (direkte und iterative Verfahren).

 • Nicht lineare Gleichungssysteme, Quasi-Newton-Verfahren, Nichtlineare Ausgleichsprobleme.

 • Numerische Lösung von Anfangswertaufgaben von gewöhnlichen Differentialgleichungen, Einschritt- und Mehrschrittmethoden, Lösung von Differentialalgebraischen Aufgaben (DAE)

 • Verfahren zur Lösung partieller Differentialgleichungen

14. Literatur:

 • Schwarz, H. R.: Numerische Mathematik, Teubner-Verlag, 2004

15. Lehrveranstaltungen und -formen:

 • 180901 Vorlesung Numerische Methoden II
 • 180902 Übung Numerische Methoden II

16. Abschätzung Arbeitsaufwand:

 Präsenz 56 h
 Vor- und Nachbereitung 35 h
 Prüfungsvorbereitung und Prüfung 89 h
 Summe: 180 h

17. Prüfungsnummer/n und -name:

 • 18091 Numerische Methoden II schriftlich (PL), schriftliche Prüfung, Gewichtung: 1.0
• 18092 Numerische Methoden II mündlich (PL), mündliche Prüfung,
 Gewichtung: 1.0

| 18. Grundlage für ... : | • 15930 Prozess- und Anlagentechnik
| | • 18050 Molekulare Theorie der Materie

| 19. Medienform: | Kombinierter Einsatz von Tafelschrieb, Beamer und Präsentationsfolien;
| | Betreute Gruppenübungen

| 20. Angeboten von: | Institut für Chemische Verfahrenstechnik |
Modul: 18260 Polymer-Reaktionstechnik

2. Modulkürzel: 041110013
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulbeginn: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof.Dr.-Ing. Ulrich Nieken
9. Dozenten: • Ulrich Nieken
 • Jochen Kerres
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Chemische Verfahrenstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
11. Empfohlene Voraussetzungen: • Chemische Reaktionstechnik I
 • Chemie für Ingenieure
12. Lernziele: Vorlesungsteil Grundlagen der Polymerchemie:
 • die Studierenden kennen und verstehen die grundlegenden
 chemischen Mechanismen der Polyreaktionen
 Stufenwachstumsreaktionen (Polykondensation, Polyaddition) und
 Kettenwachstumsreaktion (Radikalische Polymerisation, ionische
 Polymerisation, koordinative Polymerisation)
 • die Studierenden können Einflußfaktoren auf Polyreaktionen wie
 Monomerstruktur, Initiator/Katalysator, Temperatur, Lösungsmittel
 und (bei Stufenwachstumsreaktionen sowie bei Copolymerisationen)
 Monomerverhältnis beschreiben, vergleichend analysieren, bewerten
 und auf konkrete Polymerisationssysteme anwenden
 • die Studierenden kennen und verstehen die Grundlagen der Kinetik
 von Polyreaktionen (Homo- und Copolymerisationen) und sind in der
 Lage dazu, die Unterschiede und die gemeinsamen Merkmale der
 Kinetik unterschiedlicher Polyreaktionen zu erfassen, zu analysieren
 und miteinander zu vergleichen.
 • die Studenten kennen die wichtigsten technischen Polymere und ihre
 Herstellung und sind in der Lage aus der Polymerzusammensetzung
 und -struktur, zu bewerten und zu entscheiden, für welche technische
 Anwendung welche(s) Polymer(e) geeignet ist (sind)
 • die Studierenden kennen die wichtigsten chemischen Reaktionen
 zur Modifizierung von Polymeren (polymeranaloge Reaktionen)
 und sind fähig dazu, zu analysieren, für welches Polymer welches
 chemisches Modifikationsverfahren anwendbar ist, sowie können
 die Reaktivität unterschiedlicher Polymertypen für ein bestimmtes
 Modifizierungsreagenz miteinander vergleichen und bewerten
 • die Studierenden kennen und verstehen die grundlegenden
 Mechanismen von Polymerdegradation (Polymerabbau,
 Polymeralterung) und können beurteilen, was die Faktoren sind, die
 unterschiedliche Polymere für Polymerdegradation mehr oder weniger
 anfällig machen
• die Studierenden kennen die wichtigsten Charakterisierungsmethoden für Polymere und können bewerten, welche Polymereigenschaften für bestimmte Polymeranwendungen wichtig oder weniger wichtig sind.

Vorlesungsteil Mathematik der Polyreaktionen:

• die Studierenden können ein- und mehrdimensionale Eigenschaftsverteilungen herleiten. Sie kennen die wichtigsten Modellvereinfachungen und können diese kritisch beurteilen.

• die Studierenden können die Momentengleichungen ableiten und Polymereigenschaften vorhersagen. Sie können geeignete Verfahrensschritte auswählen und kombinieren und deren Auswirkungen vorhersagen.

• die Studierenden können die Polymerisation sowohl als deterministischen als auch als stochastischen Prozess analysieren, vergleichen und bewerten.

• die Studierenden besitzen die Fähigkeit zur interdisziplinären Zusammenarbeit auf dem Gebiet der Reaktionstechnik von Polymeren.

• sie sind in der Lage selbstständig Lösungen zu entwickeln, zu bewerten und anderen zu erläutern.

Vorlesungsteil Übungen/Praktikum:

• die Studenten können im Labor wichtige Polyreaktionen selbst vorbereiten und durchführen (Polykondensation, radikalische Polymerisation, anionische Polymerisation, Polymermodifizierung), die Polymere aufarbeiten und charakterisieren.

• die Studenten sind in der Lage, welches Polymerisationsverfahren für ein bestimmtes Monomer zum optimalen Polymerisationsergebnis führt (Molekularmasse, Molekulargewichtsverteilung, Taktizität, Reinheit etc.)

• die Studierenden sind in der Lage, zu analysieren wie die Polymerisationsbedingungen gewählt werden müssen (z. B. Reinheit Lösungsmittel und Monomere, Reaktionstemperatur, Reaktionsdauer), um ein möglichst hohes Molekulargewicht der synthetisierten Polymere zu erzielen, und daraus die Bedingungen so einzustellen, dass das Polymerisationsergebnis optimal ist.

13. Inhalt: Polymerreaktionstechnik verschiedener Polyreaktionstypen:

• Kettenwachstumsreaktion (radikalische, ionische, koordinative Polymerisation)

• Stufenwachstumsreaktion (Polykondensation, Polyaddition)

• Copolymerisation

• Emulsionspolymerisation, Lösungspolymerisation

• Polymeranaloge Reaktionen (z. B. Sulfonierung, Lithiierung und Folgereaktionen, Nitrierung)

• Charakterisierung von Polymeren (z. B. Berechnung und experimentelle Ermittlung von Molekularmasse und Molekularmassenverteilungen, Berechnung thermischer
Eigenschaften, Ermittlung Ionenleitfähigkeit). Markov-Ketten, Molmassenverteilungen, mehrdimensionale Eigenschaftsverteilungen, Momentengleichungen, Momentenabschluß, Monte-Carlo-Simulation bei Polymerisationen

14. Literatur:
 • Skript
 • H. G. Elias: "Makromoleküle"
 • P. J. Flory: "Principles of Polymer Chemistry"

15. Lehrveranstaltungen und -formen:
 • 182601 Vorlesung Polymer-Reaktionstechnik
 • 182602 Übung Polymer-Reaktionstechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudiumszeit / Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 18261 Polymer-Reaktionstechnik (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 • Tafelschrieb
 • Beamer
 • Praktische Übungen (Versuche) zur Polymerherstellung und -charakterisierung im Labor

20. Angeboten von:
 Institut für Chemische Verfahrenstechnik
Modul: 15930 Prozess- und Anlagentechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041111015</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof.Dr.-Ing. Clemens Merten

9. Dozenten: Clemens Merten

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Chemische Verfahrenstechnik
 → Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen:
Verfahrenstechnisches Grundwissen (Chemische Reaktionstechnik, Mechanische und Thermische Verfahrenstechnik)

12. Lernziele:
Die Studierenden
- können die Aufgaben des Bereiches „Prozess- und Anlagentechnik“ in Unternehmen definieren, identifizieren und analysieren,
- verstehen und erkennen die Ablaufphasen und Methoden bei der Entwicklung und Planung verfahrenstechnischer Prozesse und Anlagen,
- verstehen die Grundlagen des Managements für die Abwicklung eines Anlagenprojektes und können diese anwenden,
- können die Hauptvorgänge (Machbarkeitsstudie, Ermittlung der Grundlagen, Vor-, Entwurfs- und Detailplanung) der Anlagenplanung anwenden,
- verstehen die grundlegenden Wirkungsweisen verfahrenstechnischer (mechanischer, thermischer und reaktionstechnischer) Prozessstufen oder Apparate und können das Wissen anwenden, um Verfahren oder Anlagen in ihrer Komplexität zu analysieren, zu synthetisieren und zu bewerten,
- können Stoff-, Energie- und Informationsflüsse im technischen System Anlage grundlegend beschreiben, bestimmen, kombinieren und beurteilen,
- sind mit wichtigen Methoden der Anlagenplanung vertraut und können diese in Projekten zielführend anwenden,
- können verfahrenstechnische Planungsaufgaben definieren, analysieren, lösen und dokumentieren,
- können wichtige Entwicklungsmethoden in kooperativen Lernsituationen (in Gruppenarbeit) anwenden und ihre Entwicklungsergebnisse beurteilen, präsentieren und zusammenfügen,
- können die Life Cycle Engineering Software COMOS für die Lösung und Dokumentation einer komplexen Planungsaufgabe anwenden.

13. Inhalt:
Systematische Übersicht zur Prozesstechnik:
- Wirkprinzipien, Auslegung und anwendungsbezogene Auswahl von Prozessen, Apparaten und Maschinen
- Prozessanalyse und -synthese

Aufgaben und Ablauf der Anlagenplanung:

Stand: 23. Oktober 2012
• Aufgaben der Anlagentechnik,
• Ablaufphasen der Anlagenplanung,
• Projektmanagement, Methodik der Projektführung,
• Kommunikation und Technische Dokumentation in der Anlagenplanung (Verfahrensbeschreibung, Fließbilder),
• Auswahl und Einbindung von Prozessen und Ausrüstungen in eine Anlage,
• Auslegung von Pumpen- und Verdichteranlagen, Rohrleitungen und Armaturen,
• Räumliche Gestaltung: Bauweise, Lageplan, Aufstellungsplan, Rohrleitungsplanung,
• Aufgaben der Spezialprojektierung: Mess-, Steuer- und Regelungstechnik, Dämmung und Stahlbau, Termin-, Kapazitäts- und Kostenplanung.

Behandlung von Planungsbeispielen ausgewählter Anlagen:

• thematische Übungsaufgaben,
• komplexe Planungsaufgabe mit Anwendung der Life Cycle Engineering Software COMOS

14. Literatur:
• Merten, C.: Skript zur Vorlesung, Übungsunterlagen
• Nutzerhandbuch COMOS

Ergänzende Lehrbücher:
• Bernecker, G.: Planung und Bau verfahrenstechnischer Anlagen. Springer-Verlag

15. Lehrveranstaltungen und -formen:
• 159301 Vorlesung Prozess- und Anlagentechnik
• 159302 Übung Prozess- und Anlagentechnik
• 159303 Exkursion Prozess- und Anlagentechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 15931 Prozess- und Anlagentechnik schriftlich (PL), schriftlich, eventuell mündlich, Gewichtung: 75.0
• 15932 Prozess- und Anlagentechnik mündlich (PL), schriftlich, eventuell mündlich, Gewichtung: 25.0

18. Grundlage für ... :

19. Medienform:
• Vorlesungsskript
• Übungsunterlagen
• kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien

20. Angeboten von:
2831 Kernfächer mit 6 LP

Zugeordnete Module: 13910 Chemische Reaktionstechnik I
Modul: 13910 Chemische Reaktionstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041110001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Ulrich Nieken</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrich Nieken</td>
</tr>
</tbody>
</table>
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule 4 und 5 mit Wahrscheinlichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Kernmodule
 ➔ Pflichtmodule mit Wahrscheinlichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Verfahrenstechnik
 ➔ Chemische Verfahrenstechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Verfahrenstechnik
 ➔ Chemische Verfahrenstechnik
 ➔ Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 ➔ Vertiefungsmodulle
 ➔ Wahrscheinlichkeit Gruppe 4: Energie- und Verfahrenstechnik |
| 11. Empfohlene Voraussetzungen: | Vorlesung:
 • Grundlagen Thermodynamik
 • Höhere Mathematik
 Übungen: keine |
| 13. Inhalt: | Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches... |
Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten

14. Literatur: Skript

empfohlene Literatur:

• Baerns, M.; Hofmann, H.: Chemische Reaktionstechnik, Band 1, G. Thieme Verlag, Stuttgart, 1987
• Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
• Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, 1999

15. Lehrveranstaltungen und -formen:

• 139101 Vorlesung Chemische Reaktionstechnik I
• 139102 Übung Chemische Reaktionstechnik I

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>56 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit:</td>
<td>124 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

| 13911 | Chemische Reaktionstechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |

18. Grundlage für ...:

| 15570 | Chemische Reaktionstechnik II |

19. Medienform:

| Vorlesung: Tafelanschrieb, Beamer |
| Übungen: Tafelanschrieb, Rechnerübungen |

20. Angeboten von:

| Institut für Chemische Verfahrenstechnik |
Modul: 33080 Praktikum Verfahrenstechnik

2. Modulkürzel: 041100111

5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

6. Turnus: jedes Semester

4. SWS: 2.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Ulrich Nieken

9. Dozenten:
 • Hans Gerhard Fritz
 • Clemens Merten
 • Manfred Piesche
 • Günter Tovar
 • Ulrich Nieken
 • Thomas Hirth

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Verfahrenstechnik
 ➔ Chemische Verfahrenstechnik
 M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer A (ING)
 ➔ Gruppe Verfahrenstechnik
 ➔ Mechanische Verfahrenstechnik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte aus dem Gebiet der Verfahrenstechnik anzuwenden und in die Praxis umzusetzen.

13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

 Beispiele:
 • Exothermes Reaktionsverhalten im Rührkesselreaktor: Im vorliegenden Praktikum soll das dynamische Verhalten exothermer Reaktionen in Rührkesselreaktoren und das daraus entstehende Gefahrenpotenzial im industriellen Betrieb experimentell untersucht werden. Die Grundlagen zum Betriebsverhalten von Rührkesselreaktoren in Batch- und Semibatchfahrweise sowie deren modellmäßige Beschreibung werden an dieser Stelle kurz dargelegt. Das Wissen aus der Vorlesung Chemische Reaktionstechnik 1 ist für die Versuchsdurchführung erwünscht.

 • Säure- und Laugenherstellung mittels bipolarer embranen: Mit Hilfe des Versuchs sollen die Grundlagen der Anlagentechnik zur Säure und Laugenherstellung und allgemein der Membranverfahren vermittelt werden. Dabei werden sowohl die theoretischen Aspekte behandelt als auch ein 5-zelliger Demonstrator, zum besseren Verständnis der theoretischen
Grundlagen, aufgebaut.

14. Literatur: Skript, Praktikumsunterlagen

15. Lehrveranstaltungen und -formen:
• 330801 Spezialisierungsfachversuch 1
• 330802 Spezialisierungsfachversuch 2
• 330803 Spezialisierungsfachversuch 3
• 330804 Spezialisierungsfachversuch 4
• 330805 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1
• 330806 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2
• 330807 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3
• 330808 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudiumszeit/ Nacharbeitszeit: 62 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 33081 Praktikum Verfahrenstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
284 Faser- und Textiltechnik

Zugeordnete Module:

- 2841 Kernfächer mit 6 LP
- 2842 Kern-/Ergänzungsfächer mit 6 LP
- 2843 Ergänzungsfächer mit 3 LP
- 33010 Praktikum Textiltechnik

Stand: 23. Oktober 2012
2843 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
33050 Technische Textilien und Faserverbundstoffe
33060 Textile Prüftechnik und Statistik (inkl. Übungen)
36800 Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter
Entwicklungen in die Technik
Modul: 36800 Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter Entwicklungen in die Technik

2. Modulkürzel: 049900105
5. Moduldaauer: 2 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Englisch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck

9. Dozenten: Thomas Stegmaier

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Verfahrenstechnik
 ➔ Faser- und Textiltechnik
 ➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Grundlagenkenntnisse aus der Biologie und Technik

12. Lernziele:
 • Die Studierenden haben einen Überblick über verschiedene biologisch inspirierte Entwicklungen und mögliche technische Anwendungen in der Verfahrenstechnik, Maschinenbau, etc.
 • Sie kennen die Grundbegriffe, verstehen biologische Lösungsansätze und die Vorgehensweisen zur Umsetzung biologischer Prinzipien in die Technik.
 • Die Studierenden sind in der Lage die erworbenen Kenntnisse über Bionik selbständig weiter zu vertiefen und zu erweitern.
 • Die Absolventen/innen des Moduls sind befähigt die Entwicklung innovativer bionischer Produkte anzustoßen.

13. Inhalt:
 In den Vorträgen dieser Ringvorlesung werden unter anderem folgende Inhalte vermittelt:
 - Einführung (Geschichte, Grundbegriffe, Vorgehensweisen, Anwendungsbeispiele)
 - Bauteiloptimierung nach dem Vorbild der Natur
 - Selbstreparatur in Biologie und Technik
 - Unbenetzbare Oberflächen (Lotus-Effekt etc.)
 - Bionische Strukturopimierung im Automobilbau (Bionic-Car etc.)
 - Bionik und textiles Bauen
 - Klebzunge bei Insekten als Vorbild für biphasische viskose Klebstoffe
 - Pflanzen als Ideengeber für technische Lösungen
 - Technischer Pflanzenhalm
 - Faserverbundmaterialien auf bionischen Prinzipien
 - Baubotanik
 - Zugseile und 45° Winkel in der Natur und Leichtbau
 - Energiebionik
 - Interaktionen von pflanzlichen Strukturen mit Fluiden
 - Pneumatischer Muskel und Bionic Learning Network
 - Biomimetische haftende und nichthaftende Oberflächen

14. Literatur:
 • Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form, Infoblätter etc.) mit weiterführenden Internet-Adressen und Literaturempfehlungen zu den Vortragsthemen
 • Bücher zum Thema Bionik, z. B.:
15. Lehrveranstaltungen und -formen: 368001 Ringvorlesung Bionik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden (10,5 Stunden pro Semester)
 Selbststudiumszeit: 21 Stunden (10,5 Stunden pro Semester)
 Prüfungsvorbereitung: 48 Stunden (24 Stunden pro Semester)
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 36801 Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter Entwicklungen in die Technik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PowerPoint-Präsentationen mit Laptop und Beamer,
 Anschauungsmuster, Videos und Animationen, Handouts zu den Vorlesungen

20. Angeboten von:
Modul: 33050 Technische Textilien und Faserverbundstoffe

2. Modulkürzel: 049900104
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck

9. Dozenten: • Heinrich Planck
• Emma Singer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Verfahrenstechnik
➔ Faser- und Textiltechnik
➔ Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse

12. Lernziele:
• Die Studierenden haben breites anwendungs- und forschungsinformiertes Fachwissen im Bereich der Technischen Textilien und Faserverbundstoffen erworben.
• Sie haben die erworbenen theoretischen Kenntnisse über die Verfahren und Maschinen der textilen Produktionskette zur Herstellung von Technischen Textilien durch Demonstrationen an modernen Maschinen und Anlagen im Technikum vertieft.
• Die Studierenden sind befähigt, die technologischen Zusammenhänge zu verstehen, die Komplexität der gesamten Textiltechnik zu erfassen und die erworbenen Kenntnisse selbstständig weiter zu vertiefen und zu erweitern.
• Durch die enge Verbindung mit dem Forschungsinstitut haben die Studierenden einen Überblick über die aktuelle Forschungsthemen in dem Bereich Technische Textilien und Faserverbundstoffe bekommen und sind befähigt, bei der Entwicklung von innovativen Produkten, Verfahren und Maschinen mitzuwirken.
• Die Absolventen/innen des Moduls sind in der Lage, die erworbenen Fachkenntnisse während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen.

13. Inhalt:
Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen und maschinenbaulichen Aspekte, aktuelle vertiefte praxisbezogene Kenntnisse über die Technische Textilien und Faserverbundstoffe:
- Einteilung Technischer Textilien (Buildtech, Geotech, Protech, Ökotech etc.)
- Funktionsmechanismen von Technischen Textilien (Verformbarkeit, Drainagewirkung elektrostatische Aufladung etc.)
- Besondere Faserstoffe und Materialien für Technische Textilien (Glas-, Carbonfasern,
Phasenwechselmaterialien etc.)
- Besondere Flächenherstellungsverfahren für Technische Textilien
 (Abstandsgewirke, Multiaxialgelege,
 3D-Geflechte etc.)
- Textilbasierte Verbundmaterialien (Laminate, Metall-Verbundstrukturen
 mit Textileinlage, textilbewehrter Beton etc.)
- Textile Verstärkungen für Herstellung von Faserverbundwerkstoffen
 (Rovings, Gelege, textile Flächen, 3D-Formteile etc.)
- Verfahren zur Herstellung von faserverstärkten Kunststoffen (Pultrusion,
 Flechtpultrusion, Vakuuminfusionsverfahren, etc.)
- Faserverstärkte Keramik
- Zahlreiche Anwendungsbeispiele für Technische Textilien und
 Faserverbundstoffe

14. Literatur:

- Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien
 in gedruckter Form etc.) mit weiterführenden Literaturrempfehlungen
- Bücher zum Thema „Technische Textilien und Faserverbundstoffe", z. B.:
 - Knecht, P. (Hrsg.): Technische Textilien, Deutscher Fachverlag, 446
 S., 2006
 - Loy, W.: Chemiefasern für technische Textilprodukte, Deutscher
 Fachverlag, 243 S., 2001
 Bekleidung und Heim

15. Lehrveranstaltungen und -formen: 330501 Blockvorlesung Technische Textilien und
 Faserverbundstoffe

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudiumszeit: 21 Stunden
 Prüfungsvorbereitung: 48 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33051 Technische Textilien und Faserverbundstoffe (BSL),
 mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: PowerPoint-Präsentationen mit Laptop und Beamer,
 Anschauungsmuster, Videos und Animationen, Handouts zu den
 Vorlesungen

20. Angeboten von:
Modul: 33060 Textile Prüftechnik und Statistik (inkl. Übungen)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>049900103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Heinrich Planck</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Heinrich Planck
• Emma Singer |
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Gruppe Verfahrenstechnik
→ Faser- und Textiltechnik
→ Ergänzungsfächer mit 3 LP |
| 11. Empfohlene Voraussetzungen: | Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse |
| 12. Lernziele: | • Die Studierenden haben grundlegendes anwendungs- und forschungsorientiertes Fachwissen in den Bereichen der textilen Prüftechnik und Statistik erworben.
• Sie kennen die wichtigsten Prüfverfahren an allen Formen textilen Materialien (Fasern, Garnen, textilen Flächen und konfektionierten Teilen) sowie spezifische Prüfungen an Technischen Textilien.
• Sie haben die erworbenen theoretischen Kenntnisse über textile Prüfmethoden durch anschließende Demonstrationen und praktische Übungen an den modernen Prüfanlagen in Labors vertieft.
• Die Studierenden kennen die statistische Grundbegriffe und sind in der Lage das erworbene Basiswissen über die statistische Methoden in der Textiltechnik bei der Auswertung der Prüfergebnisse einzusetzen.
• Die Studierenden sind befähigt die technologischen Zusammenhänge zu verstehen, die Komplexität der gesamten Textiltechnik zu erfassen und die erworbenen Kenntnisse selbstständig weiter zu vertiefen und zu erweitern.
• Durch die enge Verbindung mit dem Forschungsinstitut haben die Studierenden einen Einblick in die aktuelle Entwicklungen im Bereich textiler Prüftechnik bekommen und sind befähigt bei der Entwicklung von innovativen Produkten, Verfahren und Maschinen mitzuwirken.
• Die Absolventen/innen des Moduls sind in der Lage die erworbenen Fachkenntnisse während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen. |
13. Inhalt: Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen und maschinenbaulichen Aspekte, aktuelle grundlegende praxisbezogene Kenntnisse über die Textile Prüftechnik und Statistik:

- Qualitätskontrolle an textilen Produkten,
- Qualitätsprüfung und wichtigste zu prüfende Eigenschaften,
- Prüfungen an unterschiedlichen Formen textiler Materialien (Fasern, Garnen, Flächen, Fertigwaren),
- Prüfungen, Prüfverfahren, Prüfgeräte,
- Spezielle Prüfungen an Technischen Textilien und Faserverbundstoffen,
- Statistik in der Textiltechnik,
- Statistische Auswertung von Prüfergebnissen.

Die erworbenen theoretischen Kenntnisse werden anschließend durch praktische Übungen und Demonstrationen an den modernen Prüfanlagen in Labors vertieft.

14. Literatur:

• Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form etc.) mit weiterführenden Literaturempfehlungen
• Bücher zum Thema „Textile Prüftechnik und Statistik“, z. B.:
 - Reumann, R.-D.: Prüfverfahren in der Textil- und Bekleidungsstechnik, Springer Verlag, 854 S., 2000

15. Lehrveranstaltungen und -formen:

• 330601 Blockvorlesung Textile Prüftechnik und Statistik
• 330602 Übungen Textile Prüftechnik und Statistik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudiumszeit: 21 Stunden
Prüfungsvorbereitung: 48 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

33061 Textile Prüftechnik und Statistik (inkl. Übungen) (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

20. Angeboten von:
2842 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
- 33040 Faser- und Garntechnologien
- 33070 Textile Flächenherstellungsverfahren
Modul: 33040 Faser- und Garntechnologien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>049900101</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck

9. Dozenten: • Heinrich Planck
• Emma Singer

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technologiemanagement, PO 2011 → Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik</td>
</tr>
<tr>
<td>→ Faser- und Textiltechnik</td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik</td>
</tr>
<tr>
<td>→ Faser- und Textiltechnik</td>
</tr>
<tr>
<td>→ Kernfärber mit 6 LP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse

12. Lernziele:

• Die Studierenden haben breites anwendungs- und forschungsorientiertes Fachwissen im Bereich der Faser- und Garntechnologien erworben.
• Sie haben die erworbenen theoretischen Kenntnisse über die Verfahren und Maschinen der textilen Produktionskette zur Herstellung von Fasern und Garnen durch Demonstrationen an modernen Maschinen und Anlagen im Technikum vertieft.
• Die Studierenden sind befähigt die technologischen Zusammenhänge zu verstehen, die Komplexität der gesamten Textiltechnik zu erfassen und die erworbenen Kenntnisse selbstständig weiter zu vertiefen und zu erweitern.
• Bei der Exkursion haben die Studierenden einen Einblick in die Tätigkeit führender Unternehmen der Textilindustrie und des Textilmaschinenbaus bekommen.
• Durch die enge Verbindung mit dem Forschungsinstitut haben die Studierenden einen Überblick über die aktuelle Forschungsthemen in dem Bereich Faser- und Garntechnologien bekommen und sind befähigt bei der Entwicklung von innovativen Produkten, Verfahren und Maschinen mitzuwirken.
• Die Absolventen/innen des Moduls sind in der Lage die erworbenen Fachkenntnisse während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen.

13. Inhalt: Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen und maschinenbaulichen
Aspekte, aktuelle vertiefte praxisbezogene Kenntnisse über die:

• Textil- und Faserstoffkunde: Einteilung von Faserstoffen; Gewinnung, Aufbau und Eigenschaften von pflanzlichen (Baumwolle, Flachs etc.) und tierischen (Seide, Wolle etc.) Naturfasern; Herstellung und Eigenschaften von Chemiefasern aus Cellulose (Viskose, Acetat etc.) und synthetischen Polymeren (Polyester, Polyamid etc.) sowie speziellen Fasern für Textilien mit besonderen Funktionen (hochfeste, temperaturbeständige, resorbierebare Fasern etc.); Hersteller, Marken- und Handelsnamen, faserstoff-spezifische Anwendungsbereiche und Pflege.

• Chemiefaserherstellung: Erspinnen von Chemiefasern aus der Polymerschmelze (Schmelzspinverfahren) und aus der Lösung (Nass-, Trockenspinverfahren); Theorie der Fadenbildung; Aufbau der Spinnapparatur; Verfahren zur Herstellung von organischen Chemiefasern aus natürlichen, synthetischen und biotechnologisch hergestellten Polymeren; Nachbehandlung (Verstrecken, Texturieren etc.) und Modifizieren von Chemiefasern (Mehrkomponentenfasern, Profilfasern, Mikrofasern etc.); Herstellung von anorganischen Fasern (Glas-, Keramikfasern etc.) und High-Tech-Fasern (Aramid-, Kohlenstofffasern etc.) für technische Anwendungen;

• Herstellung von Stapelfasergerämen: Konventionelle (Ring-, Rotorspinnen) und innovative (Luftspinnen) Spinverfahren; Maschinen und Verfahren für Vorbereitung von Fasern zum Verspinnen; Aufbau von Spinnmaschinen; Struktur- und Eigenschaftsunterschiede von hergestellten Garnen und glegendespezifische Anwendungsbereiche, Besonderheiten bei der Verarbeitung von Fasermischungen und bei der Herstellung von Spezialgarnen aus High-Tech-Fasern für technisch Anwendung.

14. Literatur:

• Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form etc.) mit weiterführenden Literaturempfehlungen

• Bücher zum Thema Faser- und Garntechnologien, z. B.:

15. Lehrveranstaltungen und -formen:

• 330401 Blockvorlesung Textil- und Faserstoffkunde
• 330402 Blockvorlesung Chemiefaserherstellung
• 330403 Blockvorlesung Herstellung von Spinnfasergarnen
• 330404 Exkursion Textiltechnik

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 42 Stunden |
| Exkursion: 8 Stunden (1 Tag) |
| Selbststudium: 72 Stunden |
| Prüfungsvorbereitung: 58 Stunden |
| Summe: 180 Stunden |

17. Prüfungsnummer/n und -name:

33041 Faser- und Garntechnologien (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

PowerPoint-Präsentationen mit Laptop und Beamer, Anschauungsmuster, Videos und Animationen,
Handouts zu den Vorlesungen, Maschinen und Anlagendemonstrationen im Technikum

20. Angeboten von:
Modul: 33070 Textile Flächenherstellungsverfahren

2. Modulkürzel: 049900102 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck
9. Dozenten: • Heinrich Planck • Emma Singer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Verfahrenstechnik
 ➔ Faser- und Textiltechnik
 ➔ Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Verfahrenstechnik
 ➔ Faser- und Textiltechnik
 ➔ Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse
12. Lernziele:
 • Die Studierenden haben breites anwendungs- und forschungsoorientiertes Fachwissen im Bereich der textilen Flächenherstellungsverfahren erworben.
 • Sie haben die erworbenen theoretischen Kenntnisse über die Verfahren und Maschinen der textilen Produktionskette zur Herstellung von textilen Flächen durch Demonstrationen an modernen Maschinen und Anlagen im Technikum vertieft.
 • Die Studierenden sind befähigt die technologischen Zusammenhänge zu verstehen,
 die Komplexität der gesamten Textiltechnik zu erfassen und die erworbenen Kenntnisse selbstständig weiter zu vertiefen und zu erweitern.
 • Bei den Exkursionen haben die Studierenden einen Einblick in die Tätigkeit führender Unternehmen der Textilindustrie und des Textilmaschinenbaus bekommen.
 • Durch die enge Verbindung mit dem Forschungsinstitut haben die Studierenden einen Überblick über die aktuelle Forschungsthemen in dem Bereich Faser- und Textiltechnik bekommen und sind befähigt bei der Entwicklung von innovativen Produkten, Verfahren und Maschinen mitzuarbeiten.
 • Die Absolventen/innen des Moduls sind in der Lage die erworbenen Fachkenntnisse während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen.

13. Inhalt: Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen und maschinenbaulichen Aspekte, aktuelle vertiefte praxisbezogene
Kenntnisse über die Verfahren zur Herstellung von textilen Flächengebilden:

- **Weben**: Verfahren und Maschinen für Gewebeherstellung, Aufbau und Funktion von Webmaschinen mit verschiedenen Schusseintragsystemen (Schütze, Greifer, Luftdüsen etc.), Weberei-Vorwerk, Grundbindungen und besondere Bindungstechniken der Weberei, Eigenschaften von gewebten Flächen, Anwendungsbeispiele;
- **Stricken und Wirken**: Verfahren und Maschinen zur Herstellung von Maschenwaren (Gestricken und Gewirken), Aufbau und Funktion von Strickmaschinen (Flach- und Rundstricken) und Wirkmaschinen (Kettenwirken), Grundbindungen und Musterungsmöglichkeiten, Eigenschaften von Gestrickten und Gewirken, Anwendungsbeispiele.
- **Textilveredlung und Konfektion**: Verfahren und Maschinen für die Vorbehandlung (Bleichen, Mercerisieren etc.), Färben (Faser- und Garnfärbung, Färben von textilen Flächen und Fertigwaren), Bedrucken (Druckwalzen-, Schablonendruck etc.), Beschichten (Rakel-, Schablonenauftrag etc.) und Ausrüstung (Kalandern, Rauhen etc.) von Textilien sowie Verfahren und Maschinen für industrielle Fertigung (Konfektion) von Bekleidung, Heimtextilien und Technischen Textilien (Zuschneiden, Fügen, Formen).

14. Literatur:

- Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form etc.) mit weiterführenden Literaturempfehlungen
- Bücher zum Thema „Textile Flächentechnologien“, z. B.:

15. Lehrveranstaltungen und -formen:

- **330701** Blockvorlesung Textile Flächenerstellungsverfahren I (Weben)
- **330702** Blockvorlesung Textile Flächenerstellungsverfahren II (Stricken, Wirken)
- **330703** Blockvorlesung Nichtkonventionelle textile Flächentechnologien (Vliesstoffherstellung, Flechten etc.)
- **330704** Blockvorlesung Textilveredlung und Konfektion
- **330705** Exkursion Textiltechnik
16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Exkursion: 8 Stunden (1 Tag)
- Selbststudium: 72 Stunden
- Prüfungsvorbereitung: 58 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33071
Textile Flächenherstellungsverfahren (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PowerPoint-Präsentationen mit Laptop und Beamer, Anschauungsmuster, Videos und Animationen, Handouts zu den Vorlesungen, Maschinenund Anlagendemonstrationen

20. Angeboten von:
2841 Kernfächer mit 6 LP

Zugeordnete Module:
- 33040 Faser- und Garntechnologien
- 33070 Textile Flächenherstellungsverfahren
Modul: 33040 Faser- und Garntechnologien

2. Modulkürzel: 049900101
5. Moduldaauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck
9. Dozenten: • Heinrich Planck
 • Emma Singer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Faser- und Textiltechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Faser- und Textiltechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse

12. Lernziele:
 • Die Studierenden haben breites anwendungs- und forschungsorientiertes Fachwissen
 im Bereich der Faser- und Garntechnologien erworben.
 • Sie haben die erworbenen theoretischen Kenntnisse über die Verfahren und Maschinen
 der textilen Produktionskette zur Herstellung von Fasern und Garnen
 durch Demonstrationen an modernen Maschinen und Anlagen im Technikum vertieft.
 • Die Studierenden sind befähigt die technologischen Zusammenhänge zu verstehen,
 die Komplexität der gesamten Textiltechnik zu erfassen und die
 erworbenen Kenntnisse
 selbstständig weiter zu vertiefen und zu erweitern.
 • Bei der Exkursion haben die Studierenden einen Einblick in die
 Tätigkeit führender Unternehmen der Textilindustrie und des
 Textilmaschinenbaus bekommen.
 • Durch die enge Verbindung mit dem Forschungsinstitut haben die
 Studierenden einen
 Überblick über die aktuelle Forschungsthemen in dem Bereich Faser- und
 Garntechnologien bekommen und sind befähigt bei der Entwicklung von
 innovativen
 Produkten, Verfahren und Maschinen mitzuwirken.
 • Die Absolventen/innen des Moduls sind in der Lage die erworbenen
 Fachkenntnisse
 während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder
 Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen.

13. Inhalt:
 Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen
 und maschinenbaulichen
Aspekte, aktuelle vertiefte praxisbezogene Kenntnisse über die:

• Textil- und Faserstoffkunde: Einteilung von Faserstoffen; Gewinnung, Aufbau und Eigenschaften von pflanzlichen (Baumwolle, Flachs etc.) und tierischen (Seide, Wolle etc.) Naturfasern; Herstellung und Eigenschaften von Chemiefasern aus Cellulose (Viskose, Acetat etc.) und synthetischen Polymeren (Polyester, Polyamid etc.) sowie speziellen Fasern für Textilien mit besonderen Funktionen (hochfeste, temperaturbeständige, resorbierbare Fasern etc.); Hersteller, Marken- und Handelsnamen, faserstoff-spezifische Anwendungsbereiche und Pflege.

• Chemiefaserherstellung: Erspinnen von Chemiefasern aus der Polymerschmelze (Schmelzspinnverfahren) und aus der Lösung (Nass-, Trockenspinnverfahren); Theorie der Fadenbildung; Aufbau der Spinnapparatur; Verfahren zur Herstellung von organischen Chemiefasern aus natürlichen, synthetischen und biotechnologisch hergestellten Polymeren; Nachbehandlung (Verstrecken, Texturieren etc.) und Modifizieren von Chemiefasern (Mehrkomponentenfasern, Profilfasern, Mikrofasern etc.); Herstellung von anorganischen Fasern (Glas-, Keramikfasern etc.) und High-Tech-Fasern (Aramid-, Kohlenstofffasern etc.) für technische Anwendungen.

• Herstellung von Stapelfasergeräten: Konventionelle (Ringspinnen, Rotorspinnen) und innovative (Luftspinnen) Spinnverfahren; Maschinen und Verfahren für Vorbereitung von Fasern zum Verspinnen; Aufbau von Spinnmaschinen; Struktur- und Eigenschaftsunterschiede von hergestellten Garnen und garnspezifische Anwendungsbereiche, Besonderheiten bei der Verarbeitung von Fasermischungen und bei der Herstellung von Spezialgarnen aus High-Tech-Fasern für technische Anwendungen.

14. Literatur:

• Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form etc.) mit weiterführenden Literaturempfehlungen
• Bücher zum Thema Faser- und Garntechnologien, z. B.:

15. Lehrveranstaltungen und -formen:

• 330401 Blockvorlesung Textil- und Faserstoffkunde
• 330402 Blockvorlesung Chemiefaserherstellung
• 330403 Blockvorlesung Herstellung von Spinnfasergarnen
• 330404 Exkursion Textiltechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Exkursion: 8 Stunden (1 Tag)
Selbststudium: 72 Stunden
Prüfungsvorbereitung: 58 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33041 Faser- und Garntechnologien (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

PowerPoint-Präsentationen mit Laptop und Beamer, Anschauungsmuster, Videos und Animationen,
Handouts zu den Vorlesungen, Maschinenund Anlagendemonstrationen im Technikum

20. Angeboten von:
Modul: 33070 Textile Flächenherstellungsverfahren

2. Modulkürzel: 049900102
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck
9. Dozenten: • Heinrich Planck
 • Emma Singer

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Faser- und Textiltechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Faser- und Textiltechnik
 → Kernfächer mit 6 LP

11. Empfohlene Voraussetzungen: Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse

12. Lernziele:
• Die Studierenden haben breites anwendungs- und forschungsorientiertes Fachwissen im Bereich der textilen Flächenherstellungsverfahren erworben.
• Sie haben die erworbenen theoretischen Kenntnisse über die Verfahren und Maschinen der textilen Produktionskette zur Herstellung von textilen Flächen durch Demonstrationen an modernen Maschinen und Anlagen im Technikum vertieft.
• Die Studierenden sind befähigt die technologischen Zusammenhänge zu verstehen, die Komplexität der gesamten Textiltechnik zu erfassen und die erworbenen Kenntnisse selbstständig weiter zu vertiefen und zu erweitern.
• Bei den Exkursionen haben die Studierenden einen Einblick in die Tätigkeit führender Unternehmen der Textilindustrie und des Textilmaschinenbaus bekommen.
• Durch die enge Verbindung mit dem Forschungsinstitut haben die Studierenden einen Überblick über die aktuelle Forschungsthemen in dem Bereich Faser- und Textiltechnik bekommen und sind befähigt bei der Entwicklung von innovativen Produkten, Verfahren und Maschinen mitzuwirken.
• Die Absolventen/innen des Moduls sind in der Lage die erworbenen Fachkenntnisse während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen.

13. Inhalt:
Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen und maschinenbaulichen Aspekte, aktuelle vertiefte praxisbezogene
Kenntnisse über die Verfahren zur Herstellung von textilen Flächengebilden:

- Weben: Verfahren und Maschinen für Gewebeherstellung, Aufbau und Funktion von Webmaschinen mit verschiedenen Schusseintragsystemen (Schütze, Greifer, Luftdüsen etc.), Weberei-Vorwerk, Grundbindungen und besondere Bindungstechniken der Weberei, Eigenschaften von gewebten Flächen, Anwendungsbeispiele;
- Stricken und Wirken: Verfahren und Maschinen zur Herstellung von Maschinenwaren (Gestricken und Gewirken), Aufbau und Funktion von Strickmaschinen (Flach- und Rundstricken) und Wirkmaschinen (Kettenwirken), Grundbindungen und Musterungsmöglichkeiten, Eigenschaften von Gestrickten und Gewirken, Anwendungsbeispiele.
- Textilveredlung und Konfektion: Verfahren und Maschinen für die Vorbehandlung (Bleichen, Mercerisieren etc.), Färben (Faser- und Garnfärbchen, Färben von textilen Flächen und Fertigwaren), Bedrucken (Druckwalzen-, Schablonendruck etc.), Umschichten (Rakel-, Schablonendauftrag etc.) und Ausrüstung (Kalandern, Rauhen etc.) von Textilien sowie Verfahren und Maschinen für industrielle Fertigung (Konfektion) von Bekleidung, Heimtextilien und Technischen Textilien (Zuschneiden, Fügen, Formen).

14. Literatur:

- Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form etc.) mit weiterführenden Literaturempfehlungen
- Bücher zum Thema „Textile Flächentechnologien“, z. B.:

15. Lehrveranstaltungen und -formen:

- 330701 Blockvorlesung Textile Flächenerstellungsverfahren I (Weben)
- 330702 Blockvorlesung Textile Flächenerstellungsverfahren II (Stricken, Wirken)
- 330703 Blockvorlesung Nichtkonventionelle textile Flächentechnologien (Vliesstoffherstellung, Flechten etc.)
- 330704 Blockvorlesung Textilveredlung und Konfektion
- 330705 Exkursion Textiltechnik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Exkursion: 8 Stunden (1 Tag)
Selbststudium: 72 Stunden
Prüfungsvorbereitung: 58 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33071 Textile Flächenherstellungsverfahren (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

20. Angeboten von:
Modul: 33010 Praktikum Textiltechnik

2. Modulkürzel: 049900106 5. Moduldaurer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Heinrich Planck
9. Dozenten:
 • Heinrich Planck
 • Emma Singer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Verfahrenstechnik
 → Faser- und Textiltechnik

11. Empfohlene Voraussetzungen:
 Mathematisch-naturwissenschaftliche und ingenieurtechnische Grundlagenkenntnisse

12. Lernziele:
 • Die Studierenden haben die vorher erworbenen theoretischen Kenntnisse über die Verfahren und Maschinen der textilen Produktionskette durch praktische Versuche an modernen Maschinen und Anlagen im Technikum vertieft.
 • Die Studierenden sind befähigt die technologischen Zusammenhänge zu verstehen, die Komplexität der gesamten Textiltechnik zu erfassen und die erworbenen Kenntnisse selbstständig weiter zu vertiefen und zu erweitern.
 • Durch die enge Verbindung mit dem Forschungsinstitut haben die Studierenden einen Überblick über die aktuelle Forschungsthemen in der Textiltechnik bekommen und sind befähigt bei der Entwicklung von innovativen Produkten, Verfahren und Maschinen mitzuwirken.
 • Die Absolventen/innen des Moduls sind in der Lage die erworbenen Fachkenntnisse während ihrer späteren beruflichen Tätigkeit in der Industrie, Maschinenbau oder Forschungseinrichtungen interdisziplinär erfolgreich einzusetzen.

13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter
 http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 Das Modul vermittelt, unter Berücksichtigung der verfahrenstechnischen und maschinenbaulichen Aspekte, praktische Kenntnisse und Fertigkeiten über die Verfahren und Maschinen der textilen Produktionskette und beinhaltet 8 wählbare Spezialisierungsfachversuche und 4 APMB - Versuche zur Herstellung und Texturieren von Chemiefasern, Erspinnen von Stapelafersergarnen, Herstellung von textilen Flächen (Geweben, Gestrickten, Geflechten, Vliesstoffen), Herstellung

Stand: 23. Oktober 2012
von Faserverbundwerkstoffen, Textilveredlung und Oberflächenfunktionalisierung.

14. Literatur:
- Ausgehändigte Praktikumunterlagen mit weiterführenden Literaturempfehlungen

15. Lehrveranstaltungen und -formen:
- 330101 Spezialisierungsfachversuch 1
- 330102 Spezialisierungsfachversuche
- 330103 Spezialisierungsfachversuch 3
- 330104 Spezialisierungsfachversuch 4
- 330105 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1
- 330106 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2
- 330107 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3
- 330108 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 30 Stunden
- Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
- Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
- 33011 Praktikum Textiltechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Maschinen- und Anlagendemonstrationen und praktische Versuche im Technikum, Praktikumunterlagen

20. Angeboten von:
285 Mechanische Verfahrenstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2851</td>
<td>Kernfächer mit 6 LP</td>
</tr>
<tr>
<td>2852</td>
<td>Kern-/Ergänzungsfächer mit 6 LP</td>
</tr>
<tr>
<td>2853</td>
<td>Ergänzungsfächer mit 3 LP</td>
</tr>
<tr>
<td>33080</td>
<td>Praktikum Verfahrenstechnik</td>
</tr>
</tbody>
</table>
2853 Ergänzungsfächer mit 3 LP

Zugeordnete Module:
- 36570 Zerkleinerungs-, Zerstäubungs- und Emulgierentechnik
- 36910 Mehrphasenströmungen
- 36920 F&E Management und kundenorientierte Produktentwicklung
- 36940 Strömungs- und Partikelmesstechnik
Modul: 36920 F&E Management und kundenorientierte Produktentwicklung

2. Modulkürzel: 041900008
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Piesche
9. Dozenten: Michael Durst

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Mechanische Verfahrenstechnik
 → Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
 • Grundlagen zu F&E Management
 • Grundlegende Vorgehensweisen und Entwicklungsprozesse
 • Arten von F&E Projekten und F&E Strategien
 • Planung und Durchsetzen von Entwicklungsprojekten
 • Umsetzung von Ideen in Produkte
 • Struktur des Produktentstehungsprozesses
 • Kreativitätstechniken
 • Spannungsfeld Entwicklungsingenieur und Kunde
 • Benchmarking und „Best Practices“
 • Portfoliotechniken
 • Lastenheft/Pflichtenheft
 • F&E Roadmap
 • Beispiele aus der Praxis im Bereich Automotive Filtration & Separation

14. Literatur:
 • Skript in Form der Präsentationsfolien
 • Pepels, W.: Produktmanagement. 3. Aufl. Oldenbourg Verlag München/Wien, 2001
• Schröder, A.: Spitzenleistungen im F&E Management. verlag moderne industrie, Landsberg/Lech 2000

15. Lehrveranstaltungen und -formen: 369201 Vorlesung F&E Management und kundenorientierte Produktentwicklung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
Nachbearbeitungszeit: 69 h
Summe: 90 h

17. Prüfungsnummer/n und -name: 36921 F&E Management und kundenorientierte Produktentwicklung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Präsentationsfolien

20. Angeboten von:
Modul: 36910 Mehrphasenströmungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074610010</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Pielsche

9. Dozenten: Manfred Pielsche

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 - Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Verfahrenstechnik
 - Mechanische Verfahrenstechnik
 - Ergänzungsfächer mit 3 LP
- M.Sc. Technologiemanagement, PO 2011
 - Gruppe Werkstoff- und Produktionstechnik
 - Kunststofftechnik
 - Ergänzungsfächer mit 3 LP

11. Empfohlene Voraussetzungen:

- Inhaltlich: Höhere Mathematik I - III, Strömungsmechanik
- Formal: keine

12. Lernziele:

Die Studierenden sind am Ende der Lehrveranstaltung in der Lage, mathematisch-numerische Modelle von Mehrphasenströmungen zu erstellen. Sie kennen die mathematisch-physikalischen Grundlagen von Mehrphasenströmungen.

13. Inhalt:

Mehrphasenströmungen:
- Transportprozesse bei Gas-Flüssigkeitsströmungen in Rohren
- Kritische Massenströme
- Blasendynamik
- Bildung und Bewegung von Blasen
- Widerstandsverhalten von Feststoffpartikeln
- Pneumatischer Transport körniger Feststoffe durch Rohrleitungen
- Kritischer Strömungszustand in Gas-Feststoffgemischen
- Strömungsmechanik des Fließbettes

14. Literatur:

- Durst, F.: Grundlagen der Strömungsmechanik, Springer Verlag, 2006
- Brauer, H.: Grundlagen der Ein- und Mehrphasenströmungen, Sauerlaender, 1971

15. Lehrveranstaltungen und -formen:

- 369101 Vorlesung Mehrphasenströmungen

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 h
- Selbststudium: 69 h
- Summe: 90 h

17. Prüfungsnummer/n und -name:

- 36911 Mehrphasenströmungen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

- Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, Rechnerübungen

20. Angeboten von:
Modul: 36940 Strömungs- und Partikelmesstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900006</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr.-Ing. Manfred Piesche</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.Sc. Technologiemanagement, PO 2011 → Gruppe Verfahrenstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Mechanische Verfahrenstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsfächer mit 3 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Inhaltlich: Mechanische Verfahrenstechnik, Strömungsmechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>Strömungs- und Partikelmesstechnik:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Modellgesetze bei Strömungsversuchen</td>
</tr>
<tr>
<td></td>
<td>• Aufbau von Versuchsanlagen</td>
</tr>
<tr>
<td></td>
<td>• Messung der Strömungsgeschwindigkeit nach Größe und Richtung (mechanische, pneumatische, elektrische und magnetische Verfahren)</td>
</tr>
<tr>
<td></td>
<td>• Druckmessungen</td>
</tr>
<tr>
<td></td>
<td>• Temperaturmessungen in Gasen</td>
</tr>
<tr>
<td></td>
<td>• Turbulenzmessungen</td>
</tr>
<tr>
<td></td>
<td>• Sichtbarmachung von Strömungen</td>
</tr>
<tr>
<td></td>
<td>• Optische Messverfahren (Schatten-, Schlieren-, Interferenzverfahren, LDA-Verfahren, Durchlichttomografie)</td>
</tr>
<tr>
<td></td>
<td>• Kennzeichnung von Einzelpartikeln</td>
</tr>
<tr>
<td></td>
<td>• Darstellung und mathematische Auswertung von Partikelgrößenverteilungen</td>
</tr>
<tr>
<td></td>
<td>• Sedimentations-, Beugungs- und Streulicht-, Zählverfahren</td>
</tr>
<tr>
<td></td>
<td>• Siebanalyse</td>
</tr>
<tr>
<td></td>
<td>• PDA-Verfahren</td>
</tr>
<tr>
<td></td>
<td>• Tropfengrößenmessungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Allen, T.: Particle size measurement, Chapman + Hall, 1968.</td>
</tr>
<tr>
<td></td>
<td>• Ruck, B.: Lasermethoden in der Strömungsmechanik, ATFachverlag, 1990</td>
</tr>
</tbody>
</table>

| 15. Lehrveranstaltungen und -formen: | 369401 Vorlesung Strömungs- und Partikelmesstechnik |

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 25 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nachbearbeitungszeit: 65 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 h</td>
</tr>
</tbody>
</table>

| 17. Prüfungsnummer/n und -name: | 36941 Strömungs- und Partikelmesstechnik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

Stand: 23. Oktober 2012
18. Grundlage für ...

| 19. Medienform: | Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien |

| 20. Angeboten von: |
Modul: 36570 Zerkleinerungs-, Zerstäubungs- und Emulgiertechnik

2. Modulkürzel: 041900007
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Piesche
9. Dozenten: Manfred Piesche
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➔ Gruppe Verfahrenstechnik
 ➔ Mechanische Verfahrenstechnik
 ➔ Ergänzungsfächer mit 3 LP
11. Empfohlene Voraussetzungen: Inhaltlich: Mechanische Verfahrenstechnik, Strömungsmechanik
 Formal: keine
13. Inhalt: Zerkleinerungs-, Zerstäubungs- und Emulgiertechnik:
 • Physikalische Grundlagen der Zerkleinerung
 • Maschinen zur Grob-, Fein- und Feinstzerkleinerung
 • Grundlagen der Tropfenbildung
 • Laminarer und turbulenter Strahl- und Lamellenzerfall
 • Zerstäubungsvorrichtungen (Zerstäuberdüsen, Rotationszerstäuber, Ultraschallzerstäuber, etc.)
 • Tropfengrößenmessungen
 • Herstellung, Stabilisierung und Verarbeitung von Emulsionen
 • Emulgiemaschinen
14. Literatur:
 • Wozniak, G.: Zerstäubungstechnik, Springer Verlag, 2003
 • Troesch, H.: Mechanische Verfahrenstechnik, VDI-Verlag, 1999
15. Lehrveranstaltungen und -formen: 365701 Vorlesung Zerkleinerungs-, Zerstäubungs- und Emulgiertechnik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
 Nachbearbeitungszeit: 69 h
 Summe: 90 h
17. Prüfungsnummer/n und -name: 36571 Zerkleinerungs-, Zerstäubungs- und Emulgiertechnik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für ...:
19. Medienform: Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien
20. Angeboten von:
2852 Kern-/Ergänzungsfächer mit 6 LP

Zugeordnete Module:
14020 Grundlagen der Mechanischen Verfahrenstechnik
18080 Transportprozesse disperser Stoffsysteme
36930 Maschinen und Apparate der Trenntechnik
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Modul:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Manfred Piesche</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technologiemanagement, PO 2008, 5. Semester**
 - Ergänzungsmodule
 - Kernmodule
 - Pflichtmodule 4 und 5 mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Ergänzungsmodule
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit
- **B.Sc. Technologiemanagement, PO 2011, 5. Semester**
 - Vorgezogene Master-Module
 - Ergänzungsmodul
 - Kernmodule
 - Pflichtmodule mit Wahlmöglichkeit

M.Sc. Technologiemanagement, PO 2011
- Gruppe Fahrzeug- und Motorentechnik
 - Agrartechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Verfahrenstechnik
 - Mechanische Verfahrenstechnik
 - Kern-/Ergänzungsfächer mit 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Gruppe Verfahrenstechnik
 - Mechanische Verfahrenstechnik
 - Kernfächer und 6 LP
- **M.Sc. Technologiemanagement, PO 2011**
 - Vertiefungsmodul
 - Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen:

- Inhaltlich: Strömungsmechanik
- Formal: keine

12. Lernziele:

13. Inhalt:

- Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
• Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
• Einphasenströmungen in Leitungssystemen
• Transportverhalten von Partikeln in Strömungen
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:
Modul: 36930 Maschinen und Apparate der Trenntechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900005</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden sind am Ende der Lehrveranstaltung in der Lage, mechanische Trennprozesse bei gegebenen Fragestellungen geeignet auszulegen, zu konzipieren und bestehende Prozesse hinsichtlich ihrer Funktionalität zu beurteilen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Trenntechnik:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flüssig-Feststoff-Trennverfahren: Sedimentation im Schwerefeld, Filtration, Zentrifugation, Flotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gas-Feststoff-Trennverfahren: Zentrifugation, Nassabscheidung, Filtration, Elektrische Abscheidung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beschreibung der in der Praxis gebräuchlichen Auslegungskriterien und Apparate zu den genannten Themengebieten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Abhandlung zahlreicher Beispiele aus der Trenntechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar „Filtrationsaufgaben in automobilen Anwendungen“:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aufgaben, Funktionsweise und Bauformen von Filtersystemen, Filterelementen und Filtermedien in Fahrzeugen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anforderungen an die Filter in der Anwendung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Projektablauf in der Komponentenentwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Schwerpunktmodule zu den Filtrationsaufgaben Motorluftfiltration, Kabinenluftfiltration, Kraftstofffiltration und Ölfilter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stieß, M.: Mechanische Verfahrenstechnik, Springer Verlag, 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 369301 Vorlesung F&E Maschinen und Apparate der Trenntechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 369302 Freiwillige Übungen F&E Maschinen und Apparate der Trenntechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 369303 Seminar Filtrationsaufgaben in automobilen Anwendungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragestellung</td>
<td>Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>36931 Maschinen und Apparate der Trenntechnik (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien sowie Animationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 18080 Transportprozesse disperser Stoffsysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900003</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Piesche

9. Dozenten: Manfred Piesche

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011 ➔ Gruppe Verfahrenstechnik ➔ Mechanische Verfahrenstechnik ➔ Kern-/Ergänzungsfächer mit 6 LP

11. Empfohlene Voraussetzungen: HM I-III; Strömungsmechanik

12. Lernziele:
Die Studierenden sind in der Lage verfahrenstechnische, ein- und mehrphasige Prozesse zu analysieren und zu modellieren. Sie können einzelnen Termen in Modellgleichungen ihre physikalische Bedeutung zuordnen und Differentialgleichungssysteme durch geeignete Rechenmethoden vereinfachen und lösen.

13. Inhalt:

Einphasige Strömung:
- Navier-Stokes-Gleichungen im Relativ- und Zylinderkoordinatensystem
- Methoden zur näherungsweisen Lösung der Navier-Stokes-Gleichungen
- Analytische Lösung des technischen Problems „Kühlung von Walzblechen“ durch Modellreduktionen und Näherungslösungen; Anwendung der Ähnlichkeitsmechanik; Vergleich mit experimentellen Daten

Mehrphasige Strömungen:
- Beschreibung der Phasengrenze bei einer Strangentgasung durch Transformation in ein neues Koordinatensystem; Separationsansatz als Lösungsmethode für partielle Differentialgleichungssysteme; Besselsche Funktionen
- Modellierung und Simulation der Kapillardruckmethode zur Bestimmung der Filterfeinheit; Aufzeigen der Grenzen der Kapillardruckmethode
- Herleitung der Euler-Euler-Gleichungen; Diskussion des Wechselwirkungsterms im fest-flüssig-System
- Kritische Gas-Feststoffströmung; Herleitung der kritischen Massenstromdichte
- Hydrodynamische Instabilitäten; Übergang von laminarer zu turbulenter Strömung; Lösungsansatz: Methode der kleinen Schwingungen; Galerkinverfahren
- Strahlzerfall bei Zerstäubungsvorgängen feststoffbeladener Flüssigkeit
- Auslegung und Optimierung von Venturi-Wäsichern bei der Gasreinigung
- Auslegung hochbelasteter Prozesszyklen bei Entstaubungsprozessen
- Ansatz zur Beschreibung der Impaktion von Partikeln/Tropfen am Beispiel des Kaskadenimpaktors
14. Literatur:
- Schlichting, H.: „Grenzschicht Theorie“, Verlag Braun
- Veröffentlichungen zu den skizzierten Themenstellungen

15. Lehrveranstaltungen und -formen:
- 180801 Vorlesung Transportprozesse disperser Stoffsysteme
- 180802 Übung Transportprozesse disperser Stoffsysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 32 h
Selbststudiumszeit / Nacharbeitszeit: 148 h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
18081 Transportprozesse disperser Stoffsysteme (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT-Präsentation mit Beamer, Tafel

20. Angeboten von:
2851 Kernfächer mit 6 LP

Zugeordnete Module: 14020 Grundlagen der Mechanischen Verfahrenstechnik
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

2. Modulkürzel: 041900002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof.Dr.-Ing. Manfred Piesche

9. Dozenten: Manfred Piesche

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Kernmodule
 → Pflichtmodule 4 und 5 mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodule
 → Kompetenzfeld II
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Kernmodule
 → Pflichtmodule mit Wahlmöglichkeit
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Fahrzeug- und Motorentechnik
 → Agrartechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Mechanische Verfahrenstechnik
 → Kern-/Ergänzungsfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Gruppe Verfahrenstechnik
 → Mechanische Verfahrenstechnik
 → Kernfächer mit 6 LP
 M.Sc. Technologiemanagement, PO 2011
 → Vertiefungsmodul
 → Wahlmöglichkeit Gruppe 4: Energie- und Verfahrenstechnik

11. Empfohlene Voraussetzungen: Inhaltlich: Strömungsmechanik

Formal: keine

12. Lernziele:

13. Inhalt:
• Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
• Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
• Einphasenströmungen in Leitungssystemen
• Transportverhalten von Partikeln in Strömungen
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h

Summe: 180 h

17. Prüfungsnummer/n und -name: 14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:
Modul: 33080 Praktikum Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041100111</th>
<th>5. Moduldaucer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Ulrich Nieken</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hans Gerhard Fritz</td>
</tr>
<tr>
<td>• Clemens Merten</td>
</tr>
<tr>
<td>• Manfred Piesche</td>
</tr>
<tr>
<td>• Günter Tovar</td>
</tr>
<tr>
<td>• Ulrich Nieken</td>
</tr>
<tr>
<td>• Thomas Hirth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
- M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Verfahrenstechnik
 → Chemische Verfahrenstechnik
- M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer A (ING)
 → Gruppe Verfahrenstechnik
 → Mechanische Verfahrenstechnik

11. Empfohlene Voraussetzungen: | keine |

12. Lernziele:

Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte aus dem Gebiet der Verfahrenstechnik anzuwenden und in die Praxis umzusetzen.

13. Inhalt:

Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Beispiele:

- Exothermes Reaktionsverhalten im Rührkesselreaktor: Im vorliegenden Praktikum soll das dynamische Verhalten exothermer Reaktionen in Rührkesselreaktoren und das daraus entstehende Gefahrenpotenzial im industriellen Betrieb experimentell untersucht werden. Die Grundlagen zum Betriebsverhalten von Rührkesselreaktoren in Batch- und Semibatchfahrweise sowie deren modellmäßige Beschreibung werden an dieser Stelle kurz dargelegt. Das Wissen aus der Vorlesung Chemische Reaktionstechnik 1 ist für die Versuchsdurchführung erwünscht.

- Säure- und Laugenherstellung mittels bipolarer embranen: Mit Hilfe des Versuchs sollen die Grundlagen der Anlagentechnik zur Säure und Laugenherstellung und allgemein der Membranverfahren vermittelt werden. Dabei werden sowohl die theoretischen Aspekte behandelt als auch ein 5-zelliger Demonstrator, zum besseren Verständnis der theoretischen
Grundlagen, aufgebaut.

14. Literatur:

| Skript, Praktikumsunterlagen |

15. Lehrveranstaltungen und -formen:

| 330801 Spezialisierungsfachversuch 1 |
| 330802 Spezialisierungsfachversuch 2 |
| 330803 Spezialisierungsfachversuch 3 |
| 330804 Spezialisierungsfachversuch 4 |
| 330805 Praktische Übungen: Allgemeines Praktikum Maschinenbau 1 |
| 330806 Praktische Übungen: Allgemeines Praktikum Maschinenbau 2 |
| 330807 Praktische Übungen: Allgemeines Praktikum Maschinenbau 3 |
| 330808 Praktische Übungen: Allgemeines Praktikum Maschinenbau 4 |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 28 h |
| Selbststudiumszeit/ Nacharbeitszeit: 62 h |
| Gesamt: 90 h |

17. Prüfungsnummer/n und -name:

| 33081 Praktikum Verfahrenstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben. |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
300 Spezialisierungsfächer B (BWL)

Zugeordnete Module:
310 Kernfach Gruppe 1
320 Kernfach Gruppe 2
310 Kernfach Gruppe 1

Zugeordnete Module:
 12090 BWL I: Produktion, Organisation, Personal
 13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik
Modul: 12090 BWL I: Produktion, Organisation, Personal

2. Modulkürzel: 100120001 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Michael Reiß
9. Dozenten: • Michael Reiß
• Rudolf Large

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2008, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld I
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Ergänzungsmodule
 ➔ Kompetenzfeld I
B.Sc. Technologiemanagement, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
 ➔ Spezialisierungsfächer B (BWL)
 ➔ Kernfach Gruppe 1

11. Empfohlene Voraussetzungen: Grundlagen der BWL

12. Lernziele:

Veranstaltung "Produktionsmanagement":
Die Studierenden sind am Ende der Veranstaltung in der Lage,
• Produktionssysteme mit Hilfe von Produktions- und Kostenfunktionen abzubilden,
• produktionswirtschaftliche Fragestellungen in Planungsmodellen abzubilden,
• grundlegende Planungsmethoden der Produktion anzuwenden.

Veranstaltung "Organisation und Personalführung":
Die Studierenden sind in der Lage, ausgewählte Führungsmethoden anzuwenden.

13. Inhalt:

Veranstaltung "Produktionsmanagement":

Veranstaltung "Organisation und Personalführung":
Funktionelle, institutionelle, personelle und instrumentelle Zugänge zu Führungssystemen; Führungsstile und Führungsmuster; Dezentralisierung der Personalführung; interaktionelle und infrastrukturelle Führung. Grundlagen der Qualifizierung, Rekrutierung und Motivierung (Aufbau von Anreizsystemen); Eingliederung und Aufgliederung der Organisationsgestaltung; Organisationsstrukturen; Organisationsprozesse; Projektorganisation; Center-Konzepte; Matrixorganisation; Koordinationsorgane; Kontextfaktoren: Strategie, Personal und Technologie; Organisationsstrukturen für das internationale und das Produktgeschäft.

14. Literatur:
- Skript Produktionsmanagement
- Skript Organisation und Personalführung

Veranstaltung "Produktionsmanagement":

15. Lehrveranstaltungen und -formen:
- 120901 Vorlesung BWL I: Produktionsmanagement
- 120902 Übung BWL I: Produktionsmanagement
- 120903 Vorlesung BWL I: Organisation und Personalführung
- 120904 Übung BWL I: Organisation und Personalführung

16. Abschätzung Arbeitsaufwand:
Vorlesung BWL I: Produktionsmanagement
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h

Übung BWL I: Produktionsmanagement
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h

Vorlesung BWL I: Organisation und Personalführung
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h

Übung BWL I: Organisation und Personalführung
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h

Gesamt: 270 h

17. Prüfungsnummer/n und -name: 12091 BWL I: Produktion, Organisation, Personal (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Betriebswirtschaftliches Institut
Modul: 13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik

2. Modulkürzel: 100160001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Hans-Georg Kemper
9. Dozenten:
 • Hans-Georg Kemper
 • Georg Herzwurm
 • Torsten Bornemann
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2008, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld I
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Ergänzungsmodul
 → Kompetenzfeld I
 B.Sc. Technologiemanagement, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer B (BWL)
 → Kernfach Gruppe 1
11. Empfohlene Voraussetzungen: Grundlagen der Betriebswirtschaftslehre
12. Lernziele:
 Marketing: Die Studierenden haben einen Überblick über das gesamte Stoffgebiet des Fachs Marketing und verfügen über grundlegende Kenntnisse.

13. Inhalt:
 Marketing:

 EiW:
14. Literatur:

Marketing:
- Vorlesungsskript und Übungsunterlagen
 (vertiefend)

Einführung in die Wirtschaftsinformatik:
- Stahlknecht, P., Hasenkamp, U., Einführung in die Wirtschaftsinformatik, aktuelle Auflage
- Hansen, H. R., Neumann, G.: Wirtschaftsinformatik 1, aktuelle Auflage
- Skript

15. Lehrveranstaltungen und -formen:
- 132001 Vorlesung Marketing
- 132002 Übung Marketing
- 132003 Vorlesung Einführung in die Wirtschaftsinformatik
- 132004 Übung Einführung in die Wirtschaftsinformatik

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>63 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit:</td>
<td>207 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>270 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

| 13201 | BWL III: Marketing und Einführung in die Wirtschaftsinformatik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Betriebswirtschaftliches Institut
320 Kernfach Gruppe 2

Zugeordnete Module:
13210 Controlling
13220 Investitions- und Finanzmanagement
13370 Betriebliche Informationssysteme (WI 1)
13400 Informationsmanagement
13450 Logistik
13470 Marketing
13490 Organisation
31470 Internationales Management
38550 Business Dynamics
41890 Innovation
Modul: 13370 Betriebliche Informationssysteme (WI 1)

2. Modulkürzel: 100190002
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
5. Moduldaumer: 2 Semester
6. Turnus: unregelmäßig
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Georg Herzwurm
9. Dozenten: Georg Herzwurm
 ➞ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011
 ➞ Spezialisierungsfächer B (BWL)
 ➞ Kernfach Gruppe 2
11. Empfohlene Voraussetzungen: Einführung in die Wirtschaftsinformatik
12. Lernziele:
 Die Studierenden erwerben die fachliche und kommunikative Kompetenz zur Koordination von Anforderungen an betriebliche Informationssysteme zwischen Fachabteilung und IT.
 Die Studierenden sind in der Lage, Projekte zur Entwicklung oder Auswahl sowie Einführung betrieblicher Informationssysteme zielgerichtet zu planen und zu steuern.

13. Inhalt:
 Analyse und Entwurf betrieblicher Informationssysteme:
 Diese Veranstaltung beschäftigt sich mit der Konzeption inner- und überbetrieblicher Informationssysteme, also einerseits der Geschäftsprozessanalyse und -verbesserung und andererseits den frühen Phasen der Softwareentwicklung (bis zum Design). Im Mittelpunkt stehen die Erhebung, Beschreibung, Prüfung und Verwaltung von Anforderungen.
 IT-Projektmanagement:
 Informationssysteme im E-Business:
14. Literatur: Skripte zu den Vorlesungen sowie
- Bernd W. Wirtz: Electronic Business, neueste Auflage
- Klaus Pohl, Chris Rupp: Basiswissen Requirements Engineering, neueste Auflage
- Bernd Hindel et. al.: Basiswissen Software-Projektmanagement, neueste Auflage

15. Lehrveranstaltungen und -formen:
- 133701 Vorlesung Analyse und Entwurf betrieblicher Informationssysteme
- 133702 Übung IT-Projektmanagement
- 133703 Vorlesung Informationssysteme im E-Business

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 h
Selbststudiumszeit / Nacharbeitszeit: 207 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 13371 Betriebliche Informationssysteme: Analyse und Entwurf betrieblicher Informationssysteme (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 13372 Betriebliche Informationssysteme: Informationssysteme im E-Business (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 13373 Betriebliche Informationssysteme: Gruppenarbeit und Präsentation zur Übung IT-Projektmanagement (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:
13380 Seminar Betriebliche Informationssysteme

19. Medienform:

20. Angeboten von:
Betriebswirtschaftliches Institut
Modul: 38550 Business Dynamics

2. Modulkürzel: 075200103
5. Moduldauer: 2 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Meike Tilebein
9. Dozenten: Meike Tilebein

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer B (BWL)
→ Kernfach Gruppe 2

11. Empfohlene Voraussetzungen:

12. Lernziele:

Vorlesung und Übung:

Die Studierenden

- sind in der Lage, komplexe Problemstellungen in sozio-technischen Systemen in Kausaldiagrammen zu modellieren
- können Kausaldiagramme analysieren und interpretieren
- kennen grundlegende Arten von Systemverhalten und die zugehörigen Systemstrukturen
- können System-Dynamics-Simulationsmodelle erstellen
- können System-Dynamics-Simulationsmodelle zur Entscheidungsunterstützung in komplexen Problemstellungen anwenden

Seminararbeit:

Die Studierenden

- können eine weiterführende Problemstellung aus dem Bereich des Spezialisierungsfachs weitgehend selbständig bearbeiten und Lösungsvorschläge erarbeiten
- können die Ergebnisse in einer wissenschaftlichen Seminararbeit zusammenfassen und
- können ihre Arbeit in einem Vortrag präsentieren und verteidigen

13. Inhalt:

Vorlesung und Übung:

- Charakteristika von betriebswirtschaftlichen Systemen
- Einführung in die Modellierung mit System Dynamics
- Kausaldiagramme und Systemarchetypen
- Nonlinear Behavior, Path Dependence, Bounded Rationality, Network Effects, Innovation Diffusion, Supply Chains
- Planspiel "Beer Game"
- Simulation mit Hilfe von Vensim und Matlab

Seminararbeit:
14. Literatur: Vorlesungsunterlagen verfügbar über die Lernplattform ILIAS
Grundlagenliteratur zum jeweiligen Seminarthema wird angegeben; eigene Literaturrecherche der Studierenden ist Teil der Aufgabenstellung

15. Lehrveranstaltungen und -formen: • 385501 Vorlesung Business Dynamics
• 385502 Übung Business Dynamics
• 385503 Seminar Business Dynamics

Arbeitsbelastung von 7 Stunden pro Woche während der Vorlesungszeit (Präsenzzeit und Vor-/Nachbereitungszeit) (insgesamt 14 Wochen), zusätzlich 82 Stunden für die Prüfungsvorbereitung

Seminararbeit: 90 Stunden
- 5 Stunden pro Woche über 14 Wochen für Einführungsveranstaltung und Durchführung der schriftlichen Arbeit
- zusätzlich 20 Stunden für Vorbereitung und Durchführung des Vortrags

17. Prüfungsnummer/n und -name: • 38551 Business Dynamics (LBP), Sonstiges, Gewichtung: 1.0
• 38552 Business Dynamics (PL), schriftliche Prüfung, 120 Min., Gewichtung: 2.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Diversity Studies in den Ingenieurwissenschaften
Modul: 13210 Controlling

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100150003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Burkhard Pedell</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Burkhard Pedell
| | • Ann Katarina Tank
| | • Markus Haupenthal |
| | → Vorgezogene Master-Module
| | M.Sc. Technologiemanagement, PO 2011
| | → Spezialisierungsfächer B (BWL)
| | → Kernfach Gruppe 2 |
| 11. Empfohlene Voraussetzungen: | BWL II: Rechnungswesen und Finanzierung |
| 12. Lernziele: | Die Studierenden haben einen Überblick über die Aufgaben und das grundlegende Instrumentarium des Führungsorientierten Rechnungswesens und des Controllings.
| | Die Studierenden sind in der Lage, die Anwendbarkeit des Instrumentariums in unterschiedlichen Situationen zu beurteilen. |
| 13. Inhalt: | Entscheidungsunterstützung durch die Kosten- und Erlösurechnung, Funktionsweise und Anwendung von Kostenrechnungssystemen, Grenzplankostenrechnung, Prozesskostenrechnung, Target Costing, Kostenkontrolle, Zusammenhang mit externer Rechnungslegung, Übungen und Fallstudien
| | Controlling-Konzeption, Aufgaben und Instrumente des Controllings, Budgetierung, Kennzahlensysteme, Verrechnungspreissysteme |
| 14. Literatur: | • Skript Führungsorientiertes Rechnungswesen
| | • Übungsaufgaben und Fallstudien Führungsorientiertes Rechnungswesen
| | • Friedl, Gunther; Hofmann, Christian; Pedell, Burkhard: Kostenrechnung - eine entscheidungsorientierte Einführung, München 2010.
| | • Skript Einführung in das Controlling
| 15. Lehrveranstaltungen und -formen: | • 132101 Vorlesung Führungsorientiertes Rechnungswesen
| | • 132102 Übung zu Führungsorientiertes Rechnungswesen
| | • 132103 Vorlesung Einführung in das Controlling |
| 16. Abschätzung Arbeitsaufwand: | Gesamtzeitaufwand: 270 h
| | Führungsorientiertes Rechnungswesen (V und Ü) |
Präsenzzeit: 56 h
Selbststudium: 79 h

Einführung in das Controlling (V und Ü)
Präsenzzeit: 56 h
Selbststudium: 79 h

| 17. Prüfungsnummer/n und -name: | | |
|-------------------------------|-------------------|
| • 13211 Controlling: Führungsorientiertes Rechnungswesen (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| • 13212 Controlling: Einführung in das Controlling (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>13390 Seminar Controlling</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamer-Präsentation, Overhead-Projektor, Fallstudien</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>ABWL und Controlling</th>
</tr>
</thead>
</table>
Modul: 13400 Informationsmanagement

2. Modulkürzel: 100170001 5. Moduldauer: 2 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Hans-Georg Kemper

M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer B (BWL)
➔ Kernfach Gruppe 2

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden können die Relevanz eines zielgerichteten Managements von Informationstechnik und Informationssystemen einschätzen.

Die Studierenden haben einen Überblick über wesentliche Gestaltungsparameter des Informationsmanagements.

Die Studierenden beherrschen Methoden und Konzepten zur Unterstützung des Informationsmanagements, die Gestaltung von Systemen zur Managementunterstützung sowie Herangehensweisen im Umgang mit den zugrunde liegenden Infrastrukturen.

13. Inhalt:

Grundlagen des Informationsmanagement:

Business Intelligence:

Die Veranstaltung "Business Intelligence" vermittelt die Grundlagen der IT-basierten Managementunterstützung (Business Intelligence). Thematisiert werden Architekturkonzepte, integrierte Architekturen und Werkzeuge, Methoden der Datenmodellierung sowie Rahmenkonzepte für Entwicklung und Betrieb von Business-Intelligence-Systemen. Die und auf der Basis von Beispielen und Praxisfällen illustriert.

Management von Hardware, Software, Netzinfrastrukturen:

14. Literatur:

- Krcmar, H.: Informationsmanagement, 4. überarbeitete und erweiterte Auflage, Berlin Heidelberg 2005
- Bauer, A.; Günzel, H. (Hrsg.): Data Warehouse Systeme, Heidelberg 2004

15. Lehrveranstaltungen und -formen:

- 134001 Vorlesung Business Intelligence
- 134002 Übung Management von Hardware, Software, Netzinfrastrukturen
- 134003 Vorlesung Grundlagen des Informationsmanagement
- 134004 Vorlesung Management von Hardware, Software, Netzinfrastrukturen

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 63 h |
| Selbststudiumszeit / Nacharbeitszeit: 207 h |
| Gesamt: 270 h |

17. Prüfungsnummer/n und -name:

- 13401 Informationsmanagement: Business Intelligence (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 13402 Informationsmanagement: Grundlagen des Informationsmanagements (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 13403 Informationsmanagement: Gruppenarbeit und Präsentation zur Übung Management von Hardware, Software, Netzinfrastrukturen (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

- 13410 Seminar Informationsmanagement

19. Medienform:

20. Angeboten von:

Betriebswirtschaftliches Institut
Modul: 41890 Innovation

2. Modulkürzel: 100110002
5. Modulduauer: 2 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: unregelmäßig
4. SWS: 6.0
7. Sprache: Nach Ankündigung
8. Modulverantwortlicher: Prof. Dr. Wolfgang Burr
9. Dozenten:
• Wolfgang Burr
• Xenia Prich
• Elena Stefanova
• Anastasios Stilianidis
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technologiemanagement, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technologiemanagement, PO 2011
→ Spezialisierungsfächer B (BWL)
→ Kernfach Gruppe 2
11. Empfohlene Voraussetzungen: BWL I: Organisation und Personal
BWL III: Marketing
12. Lernziele:
Die Studierenden haben einen Überblick über das grundlegende Instrumentarium des Forschungs-, Entwicklungs- und Innovationsmanagements.

Die Studierenden sind in der Lage, die Anwendbarkeit des forschungs-, entwicklungs- und innovationswirtschaftlichen Instrumentariums in unterschiedlichen Situationen zu beurteilen und selbständig Lösungen zu erarbeiten.

13. Inhalt:
Der inhaltliche Schwerpunkt liegt auf der Vermittlung eines ganzheitlichen Verständnisses für Innovationsprozesse und Forschung und Entwicklung in Unternehmen der Industrie- und Dienstleistungswirtschaft. Dabei wird ein integrativer Ansatz der Wissensvermittlung verfolgt mit den Schwerpunkten:

• Rahmenbedingungen der Innovation
• Dienstleistungsinnovation und -management

Im Schwerpunkt Rahmenbedingungen der Innovation werden die institutionellen und gesamtwirtschaftlichen Rahmenbedingungen behandelt, die Einfluss auf den betrieblichen Innovationsprozess nehmen. Zu den relevanten Rahmenbedingungen zählen beispielsweise das Wissenschafts- und Forschungssystem eines Landes, das Recht intellektueller Eigentumsrechte (Patente, Urheberrechte, Geschäftsgemeinsnisse, Markenzeichen) und das Produkthaftungsrecht.

Im Schwerpunkt Dienstleistungsinnovation und -management steht der Innovationsprozess in Dienstleistungsunternehmen im Vordergrund, d. h. die Umsetzung von Ideen für neue Dienstleistungen im Markt. Dabei werden beispielsweise Quellen für neue Dienstleistungsideen, Prozessmodelle für die Generierung von Dienstleistungsinnovationen sowie Konzepte zur Messung und Steigerung der Dienstleistungsqualität behandelt.
14. Literatur:

Schwerpunkt Rahmenbedingungen der Innovation

• Burr, W.: Innovationen in Organisationen, aktuelle Auflage, Verlag Kohlhammer, Stuttgart.
• Folien zur Vorlesung Grundlagen der Innovation

Schwerpunkt Dienstleistungsinnovation und -management

• Folien zur Vorlesung und zur Übung Dienstleistungsinnovation und -management
• Fallstudien zur Übung Dienstleistungsinnovation und -management

15. Lehrveranstaltungen und -formen:

• 418901 Vorlesung Rahmenbedingungen der Innovation
• 418902 Vorlesung Dienstleistungsinnovation und -management
• 418903 Übung Dienstleistungsinnovation und -management

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Vorlesung (Rahmen)</th>
<th>Vorlesung (DL-Inno)</th>
<th>Übung (DL-Inno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 28 h</td>
<td>28 h</td>
<td>28h</td>
</tr>
<tr>
<td>Selbststudium: 62 h</td>
<td>62 h</td>
<td>62h</td>
</tr>
</tbody>
</table>
| Gesamtzeitaufwand:| 90 h | 90h | **270 h**

17. Prüfungsnummer/n und -name:

• 41891 Rahmenbedingungen der Innovation (PL), schriftliche Prüfung, 45 Min., Gewichtung: 1.0
• 41892 Dienstleistungsinnovation und -management (PL), schriftliche Prüfung, 90 Min., Gewichtung: 2.0

18. Grundlage für ... :

38960 Seminar Innovation

19. Medienform:

20. Angeboten von:

ABWL, Forschungs-, Entwicklungs- und Innovationsmanagement
Modul: 31470 Internationales Management

2. Modulkürzel: 100180001
5. Modulduauer: 2 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: unregelmäßig
4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr. Michael-Jörg Oesterle
9. Dozenten: Michael-Jörg Oesterle

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technologiemanagement, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer B (BWL)
 ➔ Kernfach Gruppe 2

12. Lernziele:

13. Inhalt:
 Kernaufgaben und Bedeutung des Internationalen Managements; Institutionelle und rechtliche Rahmenbedingungen internationaler Geschäftstätigkeit; Formen des Markteintritts im Ausland; Strategisches Internationales Management; Koordinationsmustern international tätiger Unternehmen: Strukturelle, technokratische und personenorientierte Mechanismen; Internationales Personalmanagement; Controlling internationaler Geschäftstätigkeit: Unternehmenssicht und gesellschaftliche Perspektive; Kulturelle Dimension der internationalen Geschäftstätigkeit: Kulturvergleichende Studien, Bedeutung und Folgen interkultureller Differenzen in ausgewählten Unternehmensfunktionen, Möglichkeiten des Trainings interkultureller Handlungskompetenz

14. Literatur:
 Skript
 Schneider, S. C., Barsoux, J.-L., Managing across Cultures, Harlow et al., neueste Auflage.

15. Lehrveranstaltungen und -formen:
- 314701 Vorlesung Grundlagen des Internationalen Managements
- 314702 Übung Grundlagen des Internationalen Managements
- 314703 Vorlesung Interkulturelles Management

16. Abschätzung Arbeitsaufwand:
Präsenz: 63 h
Selbststudium: 207 h

17. Prüfungsnummer/n und -name:
- 31471 Internationales Management: Grundlagen des Internationalen Managements (PL), schriftliche Prüfung, 120 Min., Gewichtung: 2.0
- 31472 Internationales Management: Interkulturelles Management (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer Präsentation, Tafel

20. Angeboten von:
ABWL, insbesondere Internationales und Strategisches Management
Modul: 13220 Investitions- und Finanzmanagement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Henry Schäfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Henry Schäfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>BWL II: Rechnungswesen und Finanzierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Gleichgewichtsmodelle, kapitalmarktorientierter Bewertung von Beteiligungs- und Risikokapital (primär Aktien), Partialbewertungsmodelle von Beteiligungskontrakten, ausgewählte Fragestellungen partialanalytischer Bewertung von Investitionsobjekten (Nutzungs- und Ersatzdauer); Kapitalbudgetierung bei unvollkommenen Kapitalmärkten; Bewertung von zinstragenden Anleihen, Messung von Zinsänderungsrisiken, Risikomanagement mittels Durationskonzepten, Fallstudien; Internationale Finanz- und Devisenmärkte; Währungstheoretische und -politische Rahmenbedingungen; Devisenmarkteffizienz und Rationalität der Marktteilnehmer; betriebswirtschaftliches Währungsrisikomanagement; Finanzierung und Vorteilhaftigkeitsbeurteilung von Auslandsdirektinvestitionen; Außenhandelsfinanzierung; Projektfinanzierung, Fallstudien, Kapitalstrukturmanagement, Unternehmensbewertung, Risikoanalyse und -management.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 132201 Vorlesung Investitionstheorie und -steuerung • 132202 Übung zu Investitions- und Finanzmanagement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Übung</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internationales Finanzmanagement</td>
<td>Investitions- und Finanzmanagement und -steuerung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit: 28 h</td>
<td>28 h</td>
<td>28 h</td>
</tr>
<tr>
<td>Selbststudium: 62 h</td>
<td>62 h</td>
<td>62 h</td>
</tr>
<tr>
<td>Gesamtzeitaufwand: 270 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 13221 Investitions- und Finanzmanagement: Investitionstheorie und -steuerung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 13222 Investitions- und Finanzmanagement: Internationales Finanzmanagement (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 13223 Investitions- und Finanzmanagement Übung (LBP), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Betriebswirtschaftliches Institut
Modul: 13450 Logistik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Rudolf Large</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rudolf Large</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>BWL I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Lernziele des Moduls lassen sich auf die Lernziele der beinhalteten Veranstaltungen folgendermaßen aufteilen:
 Veranstaltung "Logistikfunktionen":
 Die Studierenden sollen nach Abschluss der Lehrveranstaltung in der Lage sein,
 • den Gegenstand der Logistik abzugrenzen und
 • einen Überblick der Funktionen der Logistik zu geben.
 Veranstaltung "Quantitative Methoden der Logistik":
 Die Studierenden sollen nach Abschluss der Lehrveranstaltung in der Lage sein,
 • logistische Probleme mathematisch zu formulieren,
 • Verfahren des Operations Research zur Lösung dieser Probleme anzuwenden und
 • multivariate statistische Verfahren der Logistikforschung anzuwenden.
 Veranstaltung "Logistikmanagement":
 Die Studierenden sollen nach Abschluss der Lehrveranstaltung in der Lage sein,
 • die Besonderheiten logistischer Teilsysteme zu erläutern,
 • Strukturen und Prozesse der Logistik zu gestalten und
 • eine strategische Logistikplanung durchzuführen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"Quantitative Methoden der Logistik"

Gegenstand der Übung sind begleitend zur Vorlesung "Logistikfunktionen" zunächst die quantitativen Methoden der Logistikplanung, insbesondere der Standortplanung, der Transportplanung und der Lagerhaltung.

"Logistikmanagement":

Gegenstand der Vorlesung sind die logistischen Systeme der Beschaffungs-, Produktions-, Distributions- und Entsorgungslogistik. Im zweiten Teil der Vorlesung wird das übergreifende Logistikmanagement behandelt. Im Zentrum stehen dabei die Logistikorganisation und die strategische Logistikplanung.

14. Literatur:
Die zu bearbeitende Literatur umfasst neben dem jeweiligen Vorlesungsskript und weiterer in den Vorlesungen genannter Spezialliteratur:

Veranstaltung "Logistikfunktionen":

Veranstaltung "Quantitative Methoden der Logistik":
- Feige, Dieter/Klaus, Peter: Modellbasierte Entscheidungsunterstützung in der Logistik. Neueste Auflage.

Veranstaltung "Logistikmanagement":

15. Lehrveranstaltungen und -formen:
- 134501 Vorlesung Logistikfunktionen
- 134502 Übung quantitative Methoden der Logistik
- 134503 Vorlesung Logistikmanagement

16. Abschätzung Arbeitsaufwand:
- Vorlesung Logistikfunktionen:
 Präsenzzeit: 28 h
 Selbststudium: 62 h
- Übung:
 Präsenzzeit: 28 h
 Selbststudium: 62 h
Vorlesung Logistikmanagement

Präsenzzeit: 28 h
Selbststudium: 62 h

Gesamt: 270 h

| 17. Prüfungsnummer/n und -name: | • 13451 Logistikfunktionen und quantitative Methoden der Logistik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 2.0,
• 13452 Logistiksysteme und Logistikmanagement (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>38980 Seminar Logistik</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Betriebswirtschaftliches Institut</td>
</tr>
</tbody>
</table>
Modul: 13470 Marketing

2. Modulkürzel:	100160002
3. Leistungspunkte:	9.0 LP
4. SWS:	6.0
5. Moduldauler:	2 Semester
6. Turnus:	unregelmäßig
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Univ.-Prof.Dr. Rudolf Large
9. Dozenten:	Torsten Bornemann
M.Sc. Technologiemanagement, PO 2011 ➔ Spezialisierungsfächer B (BWL) ➔ Kernfach Gruppe 2	
11. Empfohlene Voraussetzungen:	BWL III: Marketing

12. Lernziele:

Die Studierenden besitzen vertiefte Kenntnisse über die zentralen Einsatz-, Gestaltungs- und Problemfelder von Instrumenten der Marketingforschung.

Auf dem Feld des internationalen Marketing können die Studierenden

- die Gründe für die Internationalisierung bzw. Globalisierung von Unternehmen identifizieren und kritisch analysieren
- wichtige theoretische Erklärungsansätze des internationalen Leistungsaustauschs voneinander abgrenzen
- interne und externe Rahmenfaktoren der Internationalisierung kritisch beurteilen
- kulturelle Gegebenheiten bzw. Besonderheiten bei international ausgerichteten Unternehmensaktivitäten berücksichtigen
- Selektionskriterien für Auslandsmärkte zielgerichtet identifizieren und anwenden
- Länderrisiken systematisieren und jeweilige Ansätze für ein pro-aktives Risikomanagement entwickeln
- die Instrumente des Marketing-Mix auf internationaler Ebene anwenden.

Die Studierenden können theoretische Kenntnisse auf praktische Problemstellungen anwenden und Lösungen selbstständig erarbeiten.

13. Inhalt:

Der inhaltliche Schwerpunkt liegt auf der Vermittlung eines ganzheitlichen Verständnisses für Problemstellungen des (internationalen) Industriegütermarketing sowie einer grundlegenden Einführung in die Methoden der Marktforschung. Dabei wird ein integrativer Ansatz der Wissensvermittlung verfolgt mit den Schwerpunkten

- Industriegütermarketing,
- Methoden der Marktforschung,
- Internationales Marketing.

Gegenstandsbereich der Veranstaltung Investitionsgütermarketing ist das Marketing für Industriegüter - genauer: Austauschbeziehungen zwischen

Gegenstandsbereich der betrieblichen Marktforschung; Aufgaben; Informationsquellen; die Bedeutung von Informationen für den Entscheidungsprozeß im Marketing; Wirkungsforschung für die Marketinginstrumente; Datenerhebung; Datenauswertung; Präsentation von Forschungsergebnissen.

Die Schwerpunkte im internationalen Marketing sind: Besonderheiten des internationalen Marktumfeldes, internationale Marktforschung, Markterschließungsstrategien, Standardisierung und Differenzierung des Marketing-Mix, internationales Kundenbeziehungsmanagement, organisatorische Aspekte des internationalen Marketing.

14. Literatur:
Skripte und Übungsunterlagen

15. Lehrveranstaltungen und -formen:
• 134701 Vorlesung Internationales Marketing
• 134702 Übung Methoden der Marktforschung
• 134703 Vorlesung Industriegütermarketing

16. Abschätzung Arbeitsaufwand:
Vorlesung Internationales Marketing
Präsenzzeit: 28 h
Selbststudium: 62 h

Übung Methoden der Marktforschung
Präsenzzeit: 28 h
Selbststudium: 62 h

Vorlesung Industriegütermarketing
Präsenzzeit: 28 h
Selbststudium: 62 h

Gesamtstundenzahl: 270 h

17. Prüfungsnummer/n und -name:
• 13471 Marketing: Industriegütermarketing und Methoden der Marktforschung (PL), schriftlich, eventuell mündlich, Gewichtung: 2.0
• 13472 Marketing: Internationales Marketing (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
13480 Seminar Marketing
19. Medienform:

20. Angeboten von: Betriebswirtschaftliches Institut
Modul: 13490 Organisation

2. Modulkürzel: 100120002
5. Modulduer: 2 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: unregelmäßig
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Michael Reiß
9. Dozenten: Michael Reiß
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technologiemanagement, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technologiemanagement, PO 2011
 → Spezialisierungsfächer B (BWL)
 → Kernfach Gruppe 2
11. Empfohlene Voraussetzungen: BWL I: Produktion, Organisation, Personal
12. Lernziele:
 Die Studierenden verfügen über vertiefte Kenntnisse über die zentralen organisatorischen Konzepte und Gestaltungsfelder (Projekt-, Prozess- und Netzwerkorganisation), Gestaltungsprozesse (Organisationsplanung und -implementierung) und Management organisatorischer Veränderungsprozesse.
 Die Studierenden besitzen methodische Fertigkeiten auf dem Gebiet der organisatorischen Methoden.
13. Inhalt:
14. Literatur:
 - Skript Gestaltungsfelder der Organisation
 - Skript Organisatorischer Wandel und Netzwerkorganisation
 - Fallstudien
15. Lehrveranstaltungen und -formen:
 - 134901 Vorlesung Organisatorischer Wandel und Netzwerkorganisation
 - 134902 Übung zu Organisation: Konzepte und Fallstudien
 - 134903 Vorlesung Gestaltungsfelder der Organisation
16. Abschätzung Arbeitsaufwand:
 - Vorlesung Organisatorischer Wandel und Netzwerkorganisation
 - Präsenzzeit: 28 h
 - Selbststudium: 62 h
 - Übung zu Organisation: Konzepte und Fallstudien
 - Präsenzzeit: 28 h
 - Selbststudium: 62 h
 - Vorlesung Gestaltungsfelder der Organisation
 - Präsenzzeit: 28 h
- Selbststudium: 62 h
Gesamt: 270 h

| 17. Prüfungsnummer/n und -name: | 13491 Organisation: Organisatorischer Wandel und Netzwerkorganisation und Organisation (PL), schriftlich, eventuell mündlich, Gewichtung: 2.0
| | 13492 Organisation: Gestaltungsfelder der Organisation (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

| 18. Grundlage für ... : | 13500 Seminar Organisation |

| 19. Medienform: | |

| 20. Angeboten von: | Betriebswirtschaftliches Institut |
Modul: 80260 Masterarbeit Technologiemanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010040</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>30.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: