

Modulhandbuch Studiengang Bachelor of Arts (Kombination) Physik

Prüfungsordnung: 2014 Nebenfach

> Sommersemester 2015 Stand: 08. April 2015

Inhaltsverzeichnis

10370 Physikalisches Praktikum 1	3
14460 Grundlagen der Experimentalphysik I	4
27650 Mathematische Methoden der Physik	6
50050 Grundlagen der Experimentalphysik II	7
50450 Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik	9
57140 Fortgeschrittene Experimentalphysik für Lehramt Beifach	11

Modul: 10370 Physikalisches Praktikum 1

2. Modulkürzel:	081200007	5	. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6	. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7	. Sprache:	Deutsch
8. Modulverantwortlich	er:	Arthur Gru	op	
9. Dozenten:		Dozenten o	der Physik	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	BA (Komb)	Physik, PO 2014	
11. Empfohlene Vorau	ssetzungen:	Modul: Ein	führung in die Physik	
12. Lernziele:		 Protokolli 	erung von Messdater	mente unter Anleitung n nd Erstellung eines schriftlichen Berichts
13. Inhalt:		Mechanik,	r Experimentalphysik Wärmelehre, Strömu trodynamik, Atomphy	ngslehre, Akustik
14. Literatur:			r der Experimentalph texte zum Praktikum,	ysik; darin aufgeführte Literatur
15. Lehrveranstaltungen und -formen:		103701 F	raktikum Physikalisc	nes Praktikum 1
16. Abschätzung Arbe	itsaufwand:	Präsenzze	it: 8 Versuche x 3 h	24 h
		Selbststud	umszeit / Nachbearb	eitungszeit: 66 h
		Gesamt:		90 h
17. Prüfungsnummer/r	n und -name:		ysikalisches Praktiku nriftlicher Ausarbeitur	m 1 (USL), Sonstiges, 8 Versuche mit
18. Grundlage für :		• 10460 Te	undlagen der Makron chnische Chemie trumentelle Analytik	nolekularen Chemie
19. Medienform:				
20. Angeboten von:		Mathemati	k und Physik	

Stand: 08. April 2015 Seite 3 von 12

Modul: 14460 Grundlagen der Experimentalphysik I

2. Modulkürzel:	081200101	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe		
4. SWS:	6.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	ner:	UnivProf. Clemens Bech	UnivProf. Clemens Bechinger		
9. Dozenten:		Gert Denninger			
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	BA (Komb) Physik, PO 20	BA (Komb) Physik, PO 2014, 1. Semester		
11. Empfohlene Vorau	ssetzungen:	Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe). Grundkenntnisse über Differentialgleichungen und Mehrfachintegrale sind wünschenswert.			
12. Lernziele:		Erwerb von Grundlagen a (Mechanik, Thermodynan	aus dem Bereich der klassischen Physik nik).		
		In den Übungen werden I Probleme in diesen Teilge	Lösungsstrategien zur Bearbeitung konkretei ebieten vermittelt.		
13. Inhalt:		Mechanik und Wärmele	hre:		
		 Mechanik starrer Körpe Mechanik deformierbar Schwingungen und We Grundlagen der Therme 	er Körper ellen		
14. Literatur:		"Experimentalphysik 2, Paus, Physik in Experir Bergmann, Schaefer, L Mechanik, Akustik, Wä Gruyter Feynman, Leighton, Sa Band 2, Oldenbourg Ve Halliday, Resnick, Walk Gerthsen, Physik Sprin	ker, Physik, Wiley-VCH		
15. Lehrveranstaltunge	en und -formen:		rimentalphysik für Elektrotechniker erimentalphysik für Elektrotechniker		
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit:	53 h		
		Selbststudiumszeit / Nacharbeitszeit: 127 h			
		Gesamt:	180 h		
17. Prüfungsnummer/n und -name:		eventuell mündlic	Experimentalphysik I (PL), schriftlich, ch, 90 Min., Gewichtung: 1.0, ntalphysik für Elektrotechniker (USL-V), uell mündlich		
18. Grundlage für :					
19. Medienform:		Demonstrationsexperime			

Stand: 08. April 2015 Seite 4 von 12

20. Angeboten von:

Stand: 08. April 2015 Seite 5 von 12

Modul: 27650 Mathematische Methoden der Physik

2. Modulkürzel:	081100301	5. Moduldauer: 1	Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus: jed	des 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache: De	eutsch	
8. Modulverantwortlich	ner:	PD Johannes Roth		
9. Dozenten:		Anna MaciolekJohannes Roth		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	LAGymPO Physik, PO 2010, 1. Seme → Pflichtmodule	ester	
		KLAGymPO Physik, PO 2010, 1. Sen → Pflichtmodule	nester	
		B.Sc. Physik, PO 2011, 1. Semester → Pflichtmodule		
		B.Sc. Physik, PO 2012, 1. Semester → Pflichtmodule		
		BA (Komb) Physik, PO 2014		
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		Die Studierenden verfügen über die n zur Lösung von Aufgaben in der Mech werden und können diese anwenden.	hanik und Elektrodynamik benötig	
13. Inhalt:		Gewöhnliche DifferentialgleichungerLineare AlgebraVektoranalysis	า	
14. Literatur:		Dennery + Krzywicki, "MathematicsArfken, "Mathematical Methods for F	•	
15. Lehrveranstaltunge	en und -formen:	276501 Vorlesung Mathematische M276502 Übung Mathematische Meth		
16. Abschätzung Arbe	itsaufwand:	Vorlesung Präsenzstunden: 2,25 h (3 SWS)*14 Vor- u. Nachbereitung: 2 h pro Präser		
		Übungen Präsenzstunden: 0,75 h (1SWS)*14 ^v Vor- u. Nachbereitung: 4 h pro Präser		
		Prüfung incl. Vorbereitung	33h	
		Gesamt:	180h	
17. Prüfungsnummer/r	n und -name:	 27651 Mathematische Methoden de eventuell mündlich, 120 Min., V Vorleistung (USL-V), schriftlich 	Gewichtung: 1.0,	
18. Grundlage für :				
19. Medienform:		Tafelanschrieb, z.T. Handouts		
20. Angeboten von:				

Stand: 08. April 2015 Seite 6 von 12

Modul: 50050 Grundlagen der Experimentalphysik II

2. Modulkürzel:	081200203	5. Moduldauer:	2 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	6.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf. Clemens Bechinge	er er	
9. Dozenten:		Gert Denninger		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	BA (Komb) Physik, PO 2014		
11. Empfohlene Vorau	ssetzungen:	Modul 14460: Grundlagen der Experimentalphysik I		
		Schulkenntnisse in Mathemat	ik und Physik (gymnasiale Oberstufe).	
		Grundkenntnisse über Differentialgleichungen und Mehrfachintegrale sind wünschenswert.		
12. Lernziele:		Erwerb von Grundlagen aus o (Thermodynamik und Elektroo	dem Bereich der klassischen Physik dynamik).	
		In den Übungen werden Lösu Probleme in diesen Teilgebiet	ingsstrategien zur Bearbeitung konkrete ten vermittelt	
13. Inhalt:		 Thermodynamik (Fortsetzur Mikroskopische Thermodyn Elektrostatik Materie im elektrischen Fele Stationäre Ladungsströme Magnetostatik Induktion, zeitlich veränderl Materie im Magnetfeld Wechselstrom Maxwellgleichungen Elektromagnetische Wellen 	namik d liche Felder	
14. Literatur:		 Demtröder, Experimentalphy Verlag 	ysik 2, Elektrizität und Optik, Springer	
		• Paus, Physik in Experimente	en und Beispielen, Hanser Verlag (1995	
		• Bergmann, Schaefer, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus, De Gruyter		
		 Feynman, Leighton, Sands, Vorlesungen über Physik, Band 2, Oldenbourg Verlag (1997) 		
		Halliday, Resnick, Walker, Physik, Wiley-VCH		
		Gerthsen, Physik, Springer Verlag;		
		Daniel, Physik 2, de Gruyter, Berlin (1997)		
15. Lehrveranstaltunge	en und -formen:	• 500501 Vorlesung Grundlag • 500502 Übung Grundlagen	en der Experimentalphysik II	
16. Abschätzung Arbe		-		

Stand: 08. April 2015 Seite 7 von 12

17. Prüfungsnummer/n und -name:	• 50051 Grundlagen der Experimentalphysik II (PL), schriftlich,			
	• ∨	eventuell mündlich, 90 Min., Gewichtung: 1.0 Vorleistung (USL-V), schriftlich, eventuell mündlich		
18. Grundlage für :				
19. Medienform:				
20. Angeboten von:				

Stand: 08. April 2015 Seite 8 von 12

Modul: 50450 Theoretische Physik für Lehramt I: Mechanik/ Quantenmechanik

2. Modulkürzel:	081100305	5. Moduldauer:	1 Semester
3. Leistungspunkte:	9.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	6.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Alejandro Muramatsu	
9. Dozenten:		 Rudolf Hilfer Günter Wunner Alejandro Muramatsu Manfred Fähnle Jörg Main Udo Seifert Johannes Roth Hans Peter Büchler 	
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	BA (Komb) Physik, PO 2014	
11. Empfohlene Vorau	ssetzungen:	Modul: Mathematische Methoden	der Physik
12. Lernziele:		Die Studierenden verfügen über g fundamentalen Begriffe der klassi Quantenmechanik. Sie können Pr der Quantenmechanik mathemati	schen Mechanik und der obleme der klassischen Mechanik un
13. Inhalt:		Mechanik: Newtonsche Gleichungen Zwangsbedingungen und gener Variationsprinzipien Lagrangesche und Hamiltonsch Zentralkraftprobleme Quantenmechanik: Welle-Teilchen Dualismus Schrödingergleichung Freies Teilchen, Wellenpakete Eindimensionale Potentiale Harmonischer Oszillator Coulombproblem	ne Gleichungen
14. Literatur:		 Goldstein, "Klassische Mechani Landau-Lifshitz, "Mechanik", Ak Cohen-Tannoudji, "Quantenme Messiah, "Quantenmechanik I u Landau-Lifshitz, "Lehrbuch der Deutsch Verlag 	kademie Verlag chanik", 2 Bände, Gruyter Verlag und II", Gruyter Verlag
15. Lehrveranstaltunge	en und -formen:	 504501 Vorlesung Grundlagen of Lehramt I: Mechanik/Qu 504502 Übung Grundlagen der Mechanik/Quantenmech 	antenmechanik Theoretischen Physik für Lehramt I:
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 63 h Selbststudium: 207 h	

Stand: 08. April 2015 Seite 9 von 12

	Summe: 270 h
17. Prüfungsnummer/n und -name:	 50451 Theoretische Physik für Lehramt I: Mechanik/ Quantenmechanik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftliche Prüfung
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 08. April 2015 Seite 10 von 12

Modul: 57140 Fortgeschrittene Experimentalphysik für Lehramt Beifach

2. Modulkürzel:	081000318	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	6.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Günter Wunner	
9. Dozenten:			
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	BA (Komb) Physik, PO 2014	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		der Materie bis zur atomaren Konzepte der Molekül- und Fe Materialeigenschaften. Sie ve Materialwissenschaften. Durc die	ber ein gründliches Verständnis der Struktur Skala. Sie kennen die grundlegenden estkörperphysik und verstehen Molekül- und rfügen über Kenntnisse der Grundlagen der h die Teilnahme an den Übungsgruppen ist die Methodenkompetenz bei der
13. Inhalt:		Atome und Kerne:	
		 Aufbau und Struktur der Ato Spin, Drehimpulsaddition, A Hyperfeinstruktur, Zeeman- 	Aufbau des Periodensystems
		Molekülphysik:	
		Chemische BindungMolekülspektroskopie (Rota	ne Eigenschaften der Moleküle ation- und Schwingungsspektren) olekülspektren (Franck-Condon Prinzip,
		Festkörperphysik:	
		 Bindungsverhältnisse in Kri Reziprokes Gitter und Krista Kristallwachstum und Fehlo Gitterdynamik (Phononensp Wärmeleitung) Fermi-Gas freier Elektroner Energiebänder Halbleiterkristalle 	allstrukturanalyse ordnung in Kristallen oektroskopie, Spezifische Wärme,
14. Literatur:		Atome und Kerne:	
		Haken/Wolf, "Physik der Atom	ne und Quanten", Springer Verlag
		Mayer-Kuckuk, "Atomphysik",	Teubner Verlag

Stand: 08. April 2015 Seite 11 von 12

	Mayer-Kuckuk, "Kernphysik", Teubner Verlag		
	Demtröder, "Experimentalphysik 3", Springer Verlag		
	Frauenfelder, Henley, "Subatomic Physics", Oldenburg Verlag		
	Stierstadt, "Physik der Materie", Wiley-VCH		
	Hering, "Angewandte Kernphysik", Teubner Verlag		
	Molekülphysik:		
	Haken Wolf, Molekülphysik und Quantenchemie, Springer		
	Atkins, Friedmann, Molecular Quantum Mechanics, Oxford		
	Festkörperphysik:		
	Kittel, "Einführung in die Festkörperphysik", Oldenbourg-Verlag		
	Ibach/Lüth, "Festkörperphysik, Einführung in die Grundlagen", Springer Verlag		
	Ashcroft/Mermin: "Festkörperphysik", Oldenbourg-Verlag		
	Kopitzki/Herzog, "Einführung in die Festkörperphysik", Teubner		
15. Lehrveranstaltungen und -formen:	 571401 Vorlesung Teil I - Atome und Kerne 571402 Übung Teil I - Atome und Kerne 571403 Vorlesung Teil II - Molekül- u. Festkörperphysik 571404 Übung Teil II - Molekül- u. Festkörperphysik 		
16. Abschätzung Arbeitsaufwand:			
17. Prüfungsnummer/n und -name:	 57141 Fortgeschrittene Experimentalphysik für Lehramt Beifach (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 V Vorleistung (USL-V), schriftliche Prüfung 		
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:			

Stand: 08. April 2015 Seite 12 von 12