

Modulhandbuch Studiengang Double Masters Degrees Energietechnik Prüfungsordnung: 2011

Sommersemester 2014 Stand: 25. März 2014

Inhaltsverzeichnis

Qualifikationsziele	4
100 Chalmers	5
110 Incoming	6
111 Areas of Specialization	7
	8
1111 Core Modules	9
	9 13
1113 Elective Modules (3 CP)	20
` /	20 32
	34
	35
	ວວ 38
	50 42
` /	+∠ 53
	55
•	ວວ 56
	оо 59
	36
,	71
	73
	74
	75
	76
	77
	78
	79
,	30
	32
	34
	36
	38
	90
	91
	93
	95
	97
	99
13060 Grundlagen der Heiz- und Raumlufttechnik	
14070 Grundlagen der Thermischen Strömungsmaschinen	
11380 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung 10	
14100 Hydraulische Strömungsmaschinen in der Wasserkraft	
14110 Kerntechnische Anlagen zur Energieerzeugung	
14150 Leichtbau	
30400 Methoden der Werkstoffsimulation	
14180 Numerische Strömungssimulation	
11590 Photovoltaik I	19
28550 Regelung von Kraftwerken und Netzen	
30450 Renewable Energy for Rural Areas12	23
30410 Simulation mit Höchstleistungsrechnern	24
30420 Solarthermie	25
19200 Thermo and Fluid Dynamics	27
12420 Windenergie 1 - Grundlagen Windenergie	30
122 Spezialisierungsfächer	32

211 Erneuerbare thermische Energiesysteme	133
2113 Ergänzungsfächer mit 3 LP	134
2112 Ergänzungsfächer mit 6 LP	151
2111 Kernfächer mit 6 LP	154
30560 Praktikum Erneuerbare Thermische Energiesysteme	164
212 Feuerungs- und Kraftwerkstechnik	166
2123 Ergänzungsfächer mit 3 LP	167
2122 Kern- / Ergänzungsfächer mit 6 LP	184
2121 Kernfächer mit 6 LP	206
30620 Praktikum Feuerungs- und Kraftwerkstechnik	214
213 Gebäudeenergetik	216
2133 Ergänzungsfächer mit 3 LP	217
2132 Kern- / Ergänzungsfächer mit 6 LP	227
2131 Kernfächer mit 6 LP	232
30680 Praktikum Gebäudeenergetik	237
214 Kernenergietechnik	239
2143 Ergänzungsfächer mit 3 LP	240
2142 Kern- / Ergänzungsfächer mit 6 LP	245
2141 Kernfächer mit 6 LP	256
30730 Praktikum Kernenergietechnik	265
215 Strömungsmechanik und Wasserkraft	267
2153 Ergänzungsfächer mit 3 LP	268
2152 Kern- / Ergänzungsfächer mit 6 LP	276
2151 Kernfächer mit 6 LP	281
30780 Praktikum Strömungsmechanik und Wasserkraft	284
216 Techniken zur effizienten Energienutzung	286
2163 Ergänzungsfächer mit 3 LP	287
2162 Kern- / Ergänzungsfächer mit 6 LP	298
2161 Kernfächer mit 6 LP	309
30810 Praktikum: Techniken zur effizienten Energienutzung	314
217 Thermische Turbomaschinen	316
2173 Ergänzungsfächer mit 3 LP	317
2172 Kern- / Ergänzungsfächer mit 6 LP	326
2171 Kernfächer mit 6 LP	333
30870 Praktikum Thermische Turbomaschinen	338
218 Windenergie	340
2183 Ergänzungsfächer mit 3 LP	341
2182 Kern- / Ergänzungsfächer mit 6 LP	350
2181 Kernfächer mit 6 LP	365
56300 Praktikum Windenergie	374
690 Studienarheit Energietechnik	376

Qualifikationsziele

Das Qualifikationsprofil von Absolventen/innen, die den Masterabschluss Energietechnik erworben haben, zeichnet sich durch die folgenden zusätzlichen, über die mit dem Bachelor-Abschluss verbundenen hinausgehenden Attribute aus:

- Die Absolventen/innen haben die Ausbildungsziele des Bachelor-Studiums in einem längeren fachlichen Reifeprozess weiter verarbeitet und haben eine größere Sicherheit in der Anwendung und Umsetzung der fachlichen und außerfachlichen Kompetenzen erworben.
- Die Absolventen/innen haben tiefgehende Fachkenntnisse in zwei ausgewählten Bereichen von Energietechnologien oder energietechnischen Querschnittsthemen erworben.
- 3) Die Absolventen/innen sind f\u00e4hig, die erworbenen naturwissenschaftlichen, mathematischen und ingenieurwissenschaftlichen Methoden zur Abstraktion, Formulierung und L\u00f6sung komplexer Aufgabenstellungen in Forschung und Entwicklung in der Industrie oder in Forschungseinrichtungen erfolgreich einzusetzen, sie kritisch zu hinterfragen und sie bei Bedarf auch weiterzuentwickeln.
- 4) Die Absolventen/innen k\u00f6nnen Konzepte und L\u00f6sungen zu grundlagenorientierten, zum Teil auch un\u00fcblen Fragestellungen unter breiter Einbeziehung anderer Disziplinen erarbeiten. Sie setzten ihre Kreativit\u00e4t und ihr ingenieurwissenschaftliches Urteilsverm\u00f6gen ein, um neue und originelle Produkte und Prozesse zu entwickeln.
- 5) Die Absolventen/innen sind insbesondere fähig, benötigte Informationen zu identifizieren, zu finden und zu beschaffen. Sie können analytische, modellhafte und experimentelle Untersuchungen planen und durchführen. Dabei bewerten sie Daten kritisch und ziehen daraus die notwendigen Schlussfolgerungen.
- 6) Die Absolventen/innen verfügen über tiefe und breite Kenntnisse, um sich sowohl in zukünftige Technologien im eigenen Fachgebiet wie auch in Randgebieten einzuarbeiten und neu aufkommende Technologien zu untersuchen und zu bewerten.
- 7) Die Absolventen/innen haben verschiedene technische und soziale Kompetenzen (Abstraktionsvermögen, systemanalytisches Denken, Team- und Kommunikationsfähigkeit, internationale und interkulturelle Erfahrung usw.) erworben, die gut auf Führungsaufgaben vorbereiten.
- 8) Die hohe Qualität und die umfassende Ausbildung auf dem Gebiet der Energietechnik befähigt die Absolventen/innen zur Aufnahme einer wissenschaftlichen Weiterqualifikation in Form der Promotion und bereitet die Absolventen/innen auf die Übernahme von Führungsverantwortung innerhalb der Industrie vor.

Stand: 25. März 2014 Seite 4 von 376

100 Chalmers

Zugeordnete Module: 110 Incoming

120 Outgoing

Stand: 25. März 2014 Seite 5 von 376

110 Incoming

Zugeordnete Module: 111 Areas of Specialization

35990 Industriepraktikum Energietechnik
80270 Masterarbeit Energietechnik
900 Interdisciplinary Key Qualifications

Stand: 25. März 2014 Seite 6 von 376

111 Areas of Specialization

Zugeordnete Module: 1110 Combustion and Power Plant Technology

1120 Thermofluid Dynamics1130 Energy and Environment

Stand: 25. März 2014 Seite 7 von 376

1110 Combustion and Power Plant Technology

Zugeordnete Module: 1111 Core Modules

1112 Core/Elective Modules (6 CP)

1113 Elective Modules (3 CP)

30620 Praktikum Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 8 von 376

1111 Core Modules

Zugeordnete Module: 15440 Firing Systems and Flue Gas Cleaning

Stand: 25. März 2014 Seite 9 von 376

Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel:	042500003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlich	ner:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtGünter BaumbachHelmut Seifert	
10. Zuordnung zum Ci Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core Modules	
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Core/Elective Modules (ıt
		DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	erkstechnik
	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach erkstechnik
		M.Sc. Energietechnik, PO 201	11

M.Sc. Energietechnik, PO 2011

- → Gruppe 1: Fachspezifisches Spezialisierungsfach
- → Feuerungs- und Kraftwerkstechnik
- → Kernfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kern- / Ergänzungsfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kernfächer mit 6 LP

Stand: 25. März 2014 Seite 10 von 376

11. Empfohlene Voraussetzungen:	fundamentals of Mechanic	Fundamentals of Engineering Science and Natural Science, fundamentals of Mechanical Engineering, Process Engineering, Reactio Kinetics as well as Air Quality Control	
12. Lernziele:	The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and for different capacity ranges are best suited, and how furnaces and flame need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollut emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control Energy and Environment and, finally, they got the competence for combustion plants' manufactures, operators and supervisory authoritic		
13. Inhalt:	I: Combustion and Firing	g Systems I (Scheffknecht):	
	 Fuels, combustion process, science of flames, burners and furnaces, heat transfer in combustion chambers, pollutant formation and reduction in technical combustion processes, gasification, renewable energy fuels. 		
	II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):		
	catalytic), flue gas desu	val, nitrogen oxide reduction (catalytic/ non- llfurisation (dry and wet), processes for the ollutants. Energy use and flue gas cleaning; vaste treatment.	
14. Literatur:	l:		
	 Lecture notes "Combustion and Firing Systems" 		
	• Skript		
	II:		
	 Text book "Air Quality Control" (Günter Baumbach, Springer publishers) 		
	News on topics from internet (for example UBA, LUBW)		
	III:		
	Lecture notes for practical work		
15. Lehrveranstaltungen und -formen:	• 154401 Lecture Combus • 154402 Vorlesung Flue	stion and Firing Systems I Gas Cleaning at Combustion Plants	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h V	
	Selbststudiumszeit / Nacharbeitszeit: 124 h		
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:	15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0		
18. Grundlage für :			

Stand: 25. März 2014 Seite 11 von 376

19. Medienform:	Black board, PowerPoint Presentations, Practical measurements
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 12 von 376

1112 Core/Elective Modules (6 CP)

Zugeordnete Module: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

30580 Einführung in die numerische Simulation von Verbrennungsprozessen

Stand: 25. März 2014 Seite 13 von 376

Ш

Modul: 30580 Einführung in die numerische Simulation von Verbrennungsprozessen

2. Modulkürzel:	042200102	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlich	ner:	UnivProf.Dr. Andreas Krone	nburg
9. Dozenten:		Andreas KronenburgOliver Thomas Stein	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core/Elective Modules (Plant Technology
		DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäch	erkstechnik
		 M.Sc. Energietechnik, PO 20⁻ → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäch 	ches Spezialisierungsfach erkstechnik
		 M.Sc. Energietechnik, PO 20² → Gruppe 2: Spezialisierus → Thermofluiddynamik → Kern- / Ergänzungsfächs 	ngsfach mit Querschnittscharakter
11. Empfohlene Vorau	issetzungen:	Fundierte Grundlagen in Math Vertiefungsmodul: Grundlage (beglei-tend)	nematik, Physik, Informatik n technischer Verbrennungsvorgänge I + I
		science	mics, chemistry, mathematics, computer ndamentals I+II or Chemistry and Physics
12. Lernziele:		vereinfachter Verbrennungspi	dlagen der numerischen Simulation rozesse. Sie haben erste Erfahrungen rbrennungssystemen und deren

Sie können selbstständig einfachste Modellsysteme programmieren und Simulati-onen durchführen. Diese sind zur Vertiefung in Form von Studien-/Masterarbeiten geeignet.

Participants shall know the fundamentals of the numerical simulations of simplified combustion processes. They have gained a first experience in the modelling of combustion systems and model implementation. Students are able to program simple reactors, carry out simulations and

Stand: 25. März 2014 Seite 14 von 376

evaluate the results. These skills can be extended within Bachelor-
Master projects.

13. Inhalt:

- Wiederholung der Grundlagen der Verbrennung: Thermodynamik, Gas-gemische, Chemische Reaktionen/Gleichgewicht, Stöchiometrie, Flammen-typen, Mathematische Beschreibung von Massen-/ Impulserhaltung, Wärme-/Stofftransport
- Vereinfachte Reaktorbeschreibungen: Rührreaktoren (0D), Plug Flow Reaktor (1D), einfache laminare Vormisch- und Diffusionsflammen (1D)
- Grundlagen der numerischen Simulation: Grundgleichungen, Modellbildung, Diskretisierung, Implementierung
- Orts-/Zeitdiskretisierung, Anfangs-/Randbedingungen, explizite/implizite Lö-sungsverfahren

Übung: Implementierung und Simulation einfacher Probleme mit Matlab

- Revision of combustion fundamentals: thermodynamics, (ideal) gas mixtures, chemical kinetics/equilibrium, stoichiometry, combustion modes, conservation principles (mass, momentum, energy), heat and mass transfer
- Simplified reactors: batch reactors/well-stirred flow reactors (0D), plug flow reactors, laminar premixed and non-premixed flames (1D)
- Fundamentals of numerical simulation: conservation equations, modelling, discretisation, implementation, solution algorithms
- Spatial/temporal discretisation: Initial/boundary conditions, explicit/implicit solvers, stability criteria

Tutorials: Modelling, implementation and simulation of basic algorithms and reac-tors (MATLAB/Cantera)

14. Literatur:

- Vorlesungsfolien
- S.R. Turns, "An Introduction to Combustion: Concepts and Applications", 2nd Edition, McGraw Hill (2006)
- J. Warnatz, U. Maas, R.W. Dibble, "Verbrennung", 4th Edition, Springer (2010)
- J.H. Ferziger, M. Peric, "Computational Methods for Fluid Dynamics", 3rd Edition, Springer (2002)

15. Lehrveranstaltungen und -formen:

- 305801 Vorlesung Einführung in die numerische Simulation von Verbrennungsprozessen
- 305802 Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:

I Einführung in die numerische Simulation von Verbrennungsprozessen, Vorle-sung: 2.0 SWS = 28 Stunden

II Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen, Übung: 2.0 SWS = 28 Stunden

Summe Präsenzzeit: 56 Stunden Selbststudium: 134 Stunden Gesamt: 180 Stunden

Time of attendance:

I Introduction to numerical simulation of combustion processes, lecture: 2.0 SWS = 28 hours

II Introduction to numerical simulation of combustion processes, exercise: 2.0 SWS = 28 hours

Stand: 25. März 2014 Seite 15 von 376

	sum of attendance: 56 hours self-study: 134 hours total: 180 hours	
17. Prüfungsnummer/n und -name:	30581 Einführung in die numerische Simulation von Verbrennungsprozessen (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests	
18. Grundlage für :		
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen	
20. Angeboten von:		

Stand: 25. März 2014 Seite 16 von 376

Modul: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

2. Modulkürzel:	042500012	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Uwe Schnell	l
9. Dozenten:		 Uwe Schnell Benedetto Risio Oliver Thomas Stein	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core/Elective Modules (Plant Technology
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Gi Mathematik, Physik und Inforr	rundlagen, fundierte Grundlagen in matik.
		Fundamentals of engineering mathematics, physics, and inf	sciences and profound knowledge of ormation technology.
12. Lernziele:		Modellierung und Simulation von der Turbulenzmodellierung ver welchen Verwendungszweck, geeignet ist. Sie können erste und Feuerungssimulation real	haben die Prinzipien und Möglichkeiten de von Feuerungsanlagen sowie insbesondere erstanden. Sie können beurteilen für welche Simulationsmethode am besten einfache Anwendungen der Verbrennungs isieren und verfügen über die Basis zur thoden, z.B. in einer studentischen Arbeit.
		Students will learn the principles and the possibilities of modelling and simulation of technical combustion systems. They will study which models and which simulation methods are suitable for different applications. They will be able to perform simple combustion simulations and based on this knowledge they will have the prerequisites for applying these fundamentals, e.g. in the frame of a student's project.	
13. Inhalt:		I: Verbrennung und Feuerungen II (Schnell): • Strömung, Strahlungswärmeaustausch, Brennstoffabbrand und Schadstoffentstehung in Flammen und Feuerräumen: Grundlagen, Berechnung und Modellierung.	

Stand: 25. März 2014 Seite 17 von 376

II: Simulations- und Optimierungsmethoden für die Feuerungstechnik

• Einsatzfelder für technische Flammen in der Energie- und Verfahrenstechnik, Techniken zur Abbildung industrieller

Feuerungssysteme, Aufbau und Funktion moderner
Höchstleistungsrechner, Algorithmen und Programmiertechnik für die
Beschreibung von technischen Flammen auf Höchstleistungsrechnern,
Besuch des Virtual-Reality (VR)-Labors des HLRS und Demonstration
der VR-Visualisierung für industrielle Feuerungen, Methoden zur
Bestimmung der Verlässlichkeit feuerungstechnischer Vorhersagen
(Validierung) an Praxis-Beispielen, Optimierung in der Feuerungstechnik:
Gradientenverfahren, Evolutionäre Verfahren und Genetische
Algorithmen

III: Grundlagen technischer Verbrennungsvorgänge III (Stein):

- Lösung nicht-linearer Gleichungssysteme
- Verfahren zur Zeitdiskretisierung
- Homogene Reaktoren
- Eindimensionale Reaktoren/Flammen

I: Combustion and Firing Systems II (Schnell): Fundamentals of model descriptions for turbulent reacting fluid flow, radiative heat transfer, combustion of fuels, and pollutant formation in flames and furnaces.

II: Simulation and Optimization Methods for Combustion Systems (Risio): Applications of technical flames in energy technology and process engineering, techniques for "mapping" of industrial combustion systems on computers, design and operation of state-of-the art super computers at HLRS University of Stuttgart, algorithms and programming paradigms for modelling technical flames on super computers, visit of the Virtual Reality (VR) laboratory at HLRS, demonstration of VR visualization of industrial flames, methods for determining the reliability of predictions ("validation") using exemplary technical flames, and optimization methods (gradient methods, evolutionary methods and genetic algorithms).

III: Fundamentals of Technical Combustion Processes III (Stein): Solution of non-linear equation systems
Methods for temporal discretization
Homogeneous reactors
One-dimensional reactors/flames

14. Literatur:

- Vorlesungsmanuskript "Verbrennung & Feuerungen II"
- Vorlesungsmanuskript "Simulations- und Optimierungsmethoden für die Feuerungstechnik"
- Vorlesungsfolien "Grundlagen technischer Verbrennungsvorgänge III"
- S.R. Turns, "An Introduction to Combustion: Concepts and Applications", 2nd Edition, McGraw Hill (2006)
- J. Warnatz, U. Maas, R.W. Dibble, "Verbrennung", 4th Edition, Springer (2010)
- J.H. Ferziger, M. Peric, "Computational Methods for Fluid Dynamics", 3rd Edition, Springer (2002)

15. Lehrveranstaltungen und -formen:

- 159701 Vorlesung Verbrennung und Feuerungen II
- 159702 Vorlesung Simulations- und Optimierungsmethoden für die Feuerungstechnik
- 159703 Vorlesung Grundlagen technischer Verbrennungsvorgänge III

Stand: 25. März 2014 Seite 18 von 376

20. Angeboten von:

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 62 h Selbststudium: 118 h Gesamt: 180 h		
	Time of attendance: 62 hrs Time outside classes: 118 hrs Total time: 180 hrs		
17. Prüfungsnummer/n und -name:	15971 Modellierung und Simulation von Technischen Feuerungsanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0		
18. Grundlage für :			
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen		

Stand: 25. März 2014 Seite 19 von 376

1113 Elective Modules (3 CP)

Zugeordnete Module: 30600 Basics of Air Quality Control

36040 The biogas process

36790 Thermal Waste Treatment

39130 Engine Combustion and Emissions

40480 Flue Gas Cleaning46670 Fluid Dynamics

Stand: 25. März 2014 Seite 20 von 376

Modul: 30600 Basics of Air Quality Control

2. Modulkürzel:	042500026	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	Dr. Ulrich Vogt	
9. Dozenten:		Ulrich Vogt	
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Elective Modules (3 CP)	Plant Technology
		DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	PO 2011
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3	erkstechnik
		 M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifist → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3 	ches Spezialisierungsfach erkstechnik
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		their sources and dependence the atmosphere. Thus the stu	have understood pollutants formation, ies as well the air pollutants behavior in ident has acquired the basis for further in of air pollution control studies and
13. Inhalt:		Lecture Basics of Air Qualit	ty Control
		· ·	tants air quality control combustion and industrial processes in the atmoshere: Meteorological
14. Literatur:			l" (Günter Baumbach, Springer Verlag); on topics from internet (e.g. UBA, LUBV
15. Lehrveranstaltungen und -formen:		306001 Vorlesung Einführur	ng in die Luftreinhaltung
16. Abschätzung Arbeitsaufwand:		Time of Attendance: 28 h Lec Self study: 62 h = 90 h	cture
17. Prüfungsnummer/n und -name:		30601 Basics of Air Quality (mündlich, 60 Min., Ge	Control (BSL), schriftlich, eventuell ewichtung: 1.0
18. Grundlage für :			
19. Medienform:		Black board, PowerPoint Pres	eontations

Stand: 25. März 2014 Seite 21 von 376

20. Angeboten von:

Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 22 von 376

Modul: 39130 Engine Combustion and Emissions

2. Modulkürzel:	070800101	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7. Sprache:	Englisch	
8. Modulverantwortlich	er:	Dr. Dietmar Schmidt		
9. Dozenten:		Dietmar Schmidt		
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Elective Modules (3 CP)	Plant Technology	
		DoubleM.D. Energietechnik, PO 2011 → Areas of Specialization → Energy and Environment → Elective Modules (3 CP)		
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		The students know the physical-chemistry processes of combustion in Otto- and Diesel engines (e.g. kinetics, fuels, turbulence-chemistry interactions) and newer strategies (e.g. HCCI). Pollutant formation path ways and reduction techniques of pollutant formation, exhaust gas aftertreatment in engines. The students are able to transport new ideas or modifications onto engine behaviour, like e. g. power, efficiency, pollutant formation, etc.p { margin-bottom: 0.21cm;		
combustion Fuels Combustion ignition, flam Combustion ignition, spra Combustion Exhaust gas		 combustion Fuels Combustion of spark ignited ignition, flame propagation, Combustion in Diesel-engin ignition, spray combustion Combustion in HCCI-engine Exhaust gases in Otto-engine 	es: combustion, turbulence effects, auto-	
14. Literatur:		Turns, An Introduction to CoManuscript	ombustion, Mc Graw Hill	
15. Lehrveranstaltunge	en und -formen:	391301 Lecture Engine Com	nbustion and Emissions	
16. Abschätzung Arbei	tsaufwand:	Time of attendance: 21 h private study: 69 h overall: 90 h		
17. Prüfungsnummer/n und -name:		39131 Engine Combustion a mündlich, 60 Min., Ge	nd Emissions (BSL), schriftlich, eventuell ewichtung: 1.0	
18. Grundlage für :				
19. Medienform:		Blackboard, ppt-presentation		
20. Angeboten von:		Institut für Verbrennungsmoto	ren und Kraftfahrwesen	

Stand: 25. März 2014 Seite 23 von 376

Modul: 40480 Flue Gas Cleaning

2. Modulkürzel:	042500025	5. Moduldauer:	1 Semester			
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe			
4. SWS:	2.0	7. Sprache:	Englisch			
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Günter Bau	mbach			
9. Dozenten:		Günter Baumbach Helmut Seifert				
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	→ Areas of Specialization	→ Combustion and Power Plant Technology			
		DoubleM.D. Energietechnik, PO 2011 → Areas of Specialization → Energy and Environment → Elective Modules (3 CP)				
		DoubleM.D. Energietechnik, PO 2011 → Chalmers → Incoming → Specialization Modules				
11. Empfohlene Voraussetzungen:		Fundamentals of Engineering Science and Natural Science, fundamentals of Mechanical Engineering, Process Engineering, Combustion and Pollutants Formation, Reaction Kinetics as well as Air Quality Control				
12. Lernziele:		The students of the module have understood the principles of flue gas cleaning techniques to be applied to control the remaining pollutant emissions from combustion processes and firings. The students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants' manufactures, operators and supervisory authorities.				
13. Inhalt:		Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert): Methods for dust removal, nitrogen oxide reduction (catalytic / non-catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants. Energy use and flue gas cleaning; residues from thermal waste treatment.				
14. Literatur:		 Text book "Air Quality Control" (Günter Baumbach, Springer publishers) 				
		News on topics from internet (for example UBA, LUBW)				
		Lecture notes				
		Lecture notes for practical work				
15. Lehrveranstaltunge	en und -formen:	404801 Vorlesung Flue Gas	S Cleaning at Combustion Plants			
16. Abschätzung Arbeitsaufwand:		Time of attendance: 36 h Self study: 54 h Sum: 90 h				

Stand: 25. März 2014 Seite 24 von 376

17. Prüfungsnummer/n und -name:	40481 Flue Gas Cleaning (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 25 von 376

Modul: 46670 Fluid Dynamics

2. Modulkürzel:	041600299	5. Moduldauer:	1 Semester		
3. Leistungspunkte: 3.0 LP		6. Turnus:	jedes 2. Semester, WiSe		
4. SWS:	2.0	7. Sprache:	Englisch		
8. Modulverantwortlich	er:	UnivProf.DrIng. Eckart Laurien			
9. Dozenten:		Eckart Laurien			
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Areas of Specialization → Combustion and Power Plant Technology → Elective Modules (3 CP)			
		DoubleM.D. Energietechnik, PO 2011 → Chalmers → Incoming → Specialization Modules			
11. Empfohlene Vorau	ssetzungen:	Knowledge in mechanical, chemical, or civil engineering			
12. Lernziele:		The students are able to identify the physical mechanism of diffusion, convection and heat conduction within flows of fluid mixtures and establish a mathematical formulation for their description. They are able to select mathematical and numerical procedures for their solution estimate the uncertainties, and perform numerical simulations using state-of-the-art simulation tools. Therefore they are able to investigate, understand, optimize, and evaluate the elements of complex technical processes of water and/or air treatment.			
13. Inhalt:		I Flow with Heat Transfer: convection and conduction, analysis thermal instabilities, turbuler fully developed and develop boundary-layer theory, therr turbulent pipe flow with wall	ing channel and pipe flows nal boundary layers		
		II Computational Fluid Dynami multidimensional conservati finite Volume Method turbulence modelling computational examples usi	on equations		
14. Literatur:		Manuscript and slides availabl	e in ILIAS.		
		Further literature: T. Cebeci: Convective Heat Transfer, 2nd ed, Springer, Berlin, 2002 E. Laurien und H. Oertel: Numerische Strömungsmechanik, Vie-weg +Teubner, 4. Auflage 2011			
15. Lehrveranstaltunge	n und -formen:	 466701 Vorlesung und Übung Flow with Heat Transfer 466702 Vorlesung Computational Fluid Dynamics 			
16. Abschätzung Arbeitsaufwand:		exam: 2hours sum of attendance: 44 hours self-study: 46 hours total: 90 hours			

Stand: 25. März 2014 Seite 26 von 376

17. Prüfungsnummer/n und -name:	46671	Fluid Dynamics (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:		

Stand: 25. März 2014 Seite 27 von 376

Modul: 36040 The biogas process

2. Modulkürzel:	0212020009	5. M	loduldauer:	1 Semester	
3. Leistungspunkte: 3.0 LP		6. T	urnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7. Sprache:		Englisch	
8. Modulverantwortlich	er:	Dr. Carla Cim	Dr. Carla Cimatoribus		
9. Dozenten:		Carla Cimator	ibus		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	→ Areas of→ Combus	inergietechnik, P f Specialization stion and Power I Modules (3 CP)	PO 2011 Plant Technology	
		→ Speziali:→ Erneuer	nergietechnik, P sierungsfächer bare thermische ingsfächer mit 3	Energiesysteme	
		→ Gruppe→ Erneuer	etechnik, PO 201 1: Fachspezifisch bare thermische ungsfächer mit 3	hes Spezialisierungsfach Energiesysteme	
11. Empfohlene Voraussetzungen:		(suggested) Chemistry and Biology for Environmental Engineers, Mechanical and Biological Waste Treatment			
12. Lernziele:		 The student should be able to: Explain the biochemistry of the anaerobic digestion process Describe and discuss critically the process applications (Substrates, reactor types, biogas uses, emissions treatment) Deliver a basic design of a biogas plant (choice and dimensioning of the main equipment, safety concept, preliminary cost/profit estimations) Build a basic model of the anaerobic digestion process 			
13. Inhalt:		 Anaerobic digestion of organic materials: process background Applications and plants concepts Substrates and emissions, biogas processing and utilisation Plant design, cost estimation, energy balance Process monitoring and control, safety concept Low-Tech plant concepts Process modelling and Matlab simulation (ADM1) 		epts iogas processing and utilisation , energy balance rol, safety concept	
14. Literatur:		 Lecture notes Bischofsberger et al. Anaerobtechnik (in German) Tchobanoglous et al. Wastewater Engineering: Treatment and Re (in English, Chapt. 14-9, Anaerobic digestion of sludge) 		water Engineering: Treatment and Reuse	
15. Lehrveranstaltungen und -formen:		360401 Lecture Biogas: process concepts and plant design			
16. Abschätzung Arbeitsaufwand:		Lecture time:	28 h		
		Individual study: 62h			
		36041 The b	iogas process (E	SSL), schriftliche Prüfung, 60 Min.,	
17. Prüfungsnummer/r	i und -name.		chtung: 1.0	· -	

Stand: 25. März 2014 Seite 28 von 376

19. Medienform: PPt slides, black board

20. Angeboten von: Abfallwirtschaft

Stand: 25. März 2014 Seite 29 von 376

Modul: 36790 Thermal Waste Treatment

2. Modulkürzel:	042500031	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Englisch	
8. Modulverantwortlich	ner:	UnivProf.DrIng. Helmut Seife	ert	
9. Dozenten:		Helmut Seifert		
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, PC → Areas of Specialization → Combustion and Power P → Elective Modules (3 CP)		
		DoubleM.D. Energietechnik, PC → Spezialisierungsfächer → Feuerungs- und Kraftwerk → Ergänzungsfächer mit 3 L	kstechnik	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisch → Feuerungs- und Kraftwerk → Ergänzungsfächer mit 3 L 	es Spezialisierungsfach sstechnik	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierung → Energie und Umwelt → Ergänzungsfächer mit 3 L 	sfach mit Querschnittscharakter	
11. Empfohlene Voraussetzungen:		Knowledge of chemical and me waste economics	chanical engineering, combustion and	
12. Lernziele:		The students know about the different technologies for thermal waste treatment which are used in plants worldwide: The functions of the facilities of thermal treatment plan and the combination for an efficient planning are present. They are able to select the appropriate treatment system according to the given frame conditions. They have the competence for the first calculation and design of a thermal treatment plant including the decision regarding firing system and flue gas cleaning		
13. Inhalt:		students get a detailed insight to treatment. The legal aspects for	t the waste treatment possibilities, the o the different kinds of thermal waste r thermal treatment plants regarding ssion limits are part of the lecture as we sees and calculations.	
		thermal waste treatment • Firing system for thermal wa	te art of the different technologies for aste treatment eatment and observation of emission linustion steet eatment	
		II: Excursion: • Thermal Waste Treatment P	Plant	

Stand: 25. März 2014 Seite 30 von 376

14. Literatur:	Lecture Script		
15. Lehrveranstaltungen und -formen:	367901 Vorlesung Thermal Waste Treatment367902 Exkursion Thermal Waste Treatment Plant		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 36 h (=28 h V + 8 h E) Selbststudiumszeit / Nacharbeitszeit: 54 h Gesamt: 90h		
17. Prüfungsnummer/n und -name:	36791 Thermal Waste Treatment (BSL), schriftliche Prüfung, 60 Gewichtung: 1.0		
18. Grundlage für :			
19. Medienform:	Black board, PowerPoint Presentations, Excursion		
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik		

Stand: 25. März 2014 Seite 31 von 376

Modul: 30620 Praktikum Feuerungs- und Kraftwerkstechnik

2. Modulkürzel:	042500007		5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP		6. Turnus:	jedes Semester	
4. SWS:	0.0		7. Sprache:	Deutsch	
8. Modulverantwortlich	ner:	UnivPro	f.Dr. Günter Scheffl	knecht	
9. Dozenten:					
10. Zuordnung zum Co Studiengang:	urriculum in diesem	→ Cha → Inco		PO 2011	
		→ Inco → Area	D. Energietechnik, oming as of Specialization nbustion and Powe		
		DoubleM.D. Energietechnik, PO 2011 → Outgoing → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik			
		 M.Sc. Energietechnik, PO 2011 → Spezialisierungsmodule → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik 			
11. Empfohlene Vorau	ssetzungen:	Spezialisierungsfach Feuerungs- und Kraftwerkstechnik			
12. Lernziele:		Praktische Vertiefung der in den Vorlesungen vermittelten Lehrinhalte			
13. Inhalt:			olgende 4 Spezi ali ne Ausarbeitung an	sierungsfachversuche zu belegen, dazu is nzufertigen:	
		2) Num 3) Wirki Stutt 4) Char	erische Simulation ungsgradberechnur gart (IFK)	emissionen aus Kleinfeuerungen (IFK) einer Kraftwerksfeuerung (IFK) ng des Heizkraftwerks der Universität staubpartikeln mittels n (IFK)	
		Versuchsbeispiel: Bestimmung von Abgasemissionen aus Kleinfeuerungslangen			
		Emissionen aus Feuerungen tragen neben dem Kraftfahrzeugverkehr und anderen industriellen Quellen zur anthropogenen Luftverunreinigung bei. Die Emissionen an Schadstoffen bestehen hier aus Kohlenmonoxid, Schwefeldioxid, Partikeln, Kohlenwasserstoffverbindungen und Stickstoffoxiden. Die beiden letztgenannten Stoffgruppen verfügen ähnlich wie das Hauptoxidationsprodukt fossiler Energieträger, das Kohlendioxid über ein Treibhauspotential. Zur Erfassung der Emissionen sind verschiedene			

Stand: 25. März 2014 Seite 32 von 376

über der Abbrandzeit aufgetragen werden.

diskontinuierlich und kontinuierlich arbeitende Messverfahren entwickelt worden. Die wichtigsten kontinuierlichen arbeitenden Messverfahren werden in diesem Praktikumsversuch angewendet. Im Anschluss an die Messung wird ein Diagramm erstellt, in dem die Konzentrationswerte

4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:

- APMB 1
- APMB 2
- APMB 3
- APMB 4

14. Literatur:	Praktikumsunterlagen (online verfügbar)				
15. Lehrveranstaltungen und -formen:	306201 Spezialisierungsfachversuch1				
	306202 Spezialisierungsfachversuch2				
	 306203 Spezialisierungsfachversuch3 				
	 306204 Spezialisierungsfachversuch4 				
	 306205 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1 				
	 306206 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2 				
	 306207 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3 				
	 306208 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4 				
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 30 Stunden				
	Selbststudium: 60 Stunden				
	Summe: 90 Stunden				
17. Prüfungsnummer/n und -name:	30621 Praktikum Feuerungs- und Kraftwerkstechnik (USL),				
	Sonstiges, Gewichtung: 1.0, Schriftliche Ausarbeitung				
18. Grundlage für :					
19. Medienform:					
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik				

Stand: 25. März 2014 Seite 33 von 376

1130 Energy and Environment

Zugeordnete Module: 1131 Core Modules

1132 Core/Elective Modules (6 CP)1133 Elective Modules (3 CP)

32010 Praktikum Energie und Umwelt

Stand: 25. März 2014 Seite 34 von 376

1131 Core Modules

Zugeordnete Module: 19080 Pollutant Formation and Air Quality Control

Stand: 25. März 2014 Seite 35 von 376

Modul: 19080 Pollutant Formation and Air Quality Control

2. Modulkürzel:	04250027	5. Moduldauer:	1 Semester			
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe			
4. SWS:	5.0	7. Sprache:	Englisch			
8. Modulverantwortlich	er:	Dr. Ulrich Vogt				
9. Dozenten:		 Ulrich Vogt Andreas Kronenburg				
10. Zuordnung zum Curriculum in diesem Studiengang:		→ Areas of Specialization	→ Energy and Environment			
11. Empfohlene Vorau	ssetzungen:	Fundamental knowledge in Cl Meteorology	Fundamental knowledge in Chemistry, Thermodynamics and Meteorology			
12. Lernziele:		The graduates of the module have understood the physics and chemistry of combustion and subsequently the air pollutants formation. Thus the student has acquired the basis for further understanding and application of air pollution control studies and measures.				
13. Inhalt:		I: Chemistry and Physics of Combustion (Kronenburg): • Definitions and phenomena • Conservation laws • Laminar flames • Chemical reaction • Reaction mechanisms • Laminar premixed flames, Laminar non-premixed flames • NO-formation, NO-reduction • Unburned hydrocarbons • Soot formation • Phenomena on turbulent flames II: Basics of Air Quality Control (Vogt): • Clean Air and air pollution, definitions • Natural Sources of Air Pollutants • History of air pollution and air quality control • Pollutant formation during combustion and industrial processes • Dispersion of air pollutants in the atmosphere: Meteorological influences, inversions • Atmospheric chemical transformations • Ambient air quality				
14. Literatur:		 Text book "Air Quality Control" (Günter Baumbach, Springer Verlag); Scripts of the lectures; News on topics from internet (e.g. UBA, LUBW) 				
15. Lehrveranstaltungen und -formen:		190801 Lecture Chemistry and Physics of Combustion190802 Lecture Basics of Air Quality Control				
16. Abschätzung Arbeitsaufwand:		Time of attendance: I Chemistry and Physics of Coexercises: 1.0 SWS = 14 hour	ombustion, lecture: 2.0 SWS = 28 hours,			
		II Basics of Air Quality Contro	I: 2 SWS = 28 hours + 62 hours self study			

Stand: 25. März 2014 Seite 36 von 376

exam: 2hours

sum of attendance: 80 hours

self-study: 100 hours total: 180 hours

17. Prüfungsnummer/n und -name:	19081 Pollutant Formation and Air Quality Control (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPt slides, black board
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 37 von 376

1132 Core/Elective Modules (6 CP)

Zugeordnete Module: 15440 Firing Systems and Flue Gas Cleaning

Stand: 25. März 2014 Seite 38 von 376

Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel:	042500003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlich	ner:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtGünter BaumbachHelmut Seifert	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core Modules	
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Core/Elective Modules (t
		DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach rkstechnik
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc	hes Spezialisierungsfach

- → Feuerungs- und Kraftwerkstechnik
- → Kernfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kern- / Ergänzungsfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kernfächer mit 6 LP

Stand: 25. März 2014 Seite 39 von 376

11. Empfohlene Voraussetzungen:		ng Science and Natural Science, al Engineering, Process Engineering, Reaction ity Control
12. Lernziele:	generation with combustion plants for the different fuels different capacity ranges ar need to be designed that a emissions could be achieve cleaning techniques have to emissions. Thus, the studer for the application and evaluation plants for further Energy and Environment ar	have understood the principles of heat plants and can assess which combustion a oil, coal, natural gas, biomass on and for the best suited, and how furnaces and flames high energy efficiency with low pollutant ed. In addition, they know which flue gas to be applied to control the remaining pollutant ents acquired the necessary competence uation of air quality control measures in the fields of Air Quality Control, and, finally, they got the competence for courses, operators and supervisory authorities.
13. Inhalt:	I: Combustion and Firing	Systems I (Scheffknecht):
	heat transfer in combustion	ss, science of flames, burners and furnaces, on chambers, pollutant formation and mbustion processes, gasification, renewable
	II: Flue Gas Cleaning for (Combustion Plants (Baumbach/Seifert):
	catalytic), flue gas desulfe	I, nitrogen oxide reduction (catalytic/ non- urisation (dry and wet), processes for the lutants. Energy use and flue gas cleaning; aste treatment.
14. Literatur:	l:	
	Lecture notes "Combustic	on and Firing Systems"
	Skript	
	II:	
	 Text book "Air Quality Co publishers) 	ontrol" (Günter Baumbach, Springer
	News on topics from inter	rnet (for example UBA, LUBW)
	III:	
	Lecture notes for practical	al work
15. Lehrveranstaltungen und -formen:	• 154401 Lecture Combusti • 154402 Vorlesung Flue G	on and Firing Systems I as Cleaning at Combustion Plants
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h V
	Selbststudiumszeit / Nacharbeitszeit: 124 h	
	Gesamt:	180 h
17. Prüfungsnummer/n und -name:	15441 Firing Systems and Prüfung, 120 Min.,	Flue Gas Cleaning (PL), schriftliche Gewichtung: 1.0
18. Grundlage für :		

Stand: 25. März 2014 Seite 40 von 376

19. Medienform:	Black board, PowerPoint Presentations, Practical measurements
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 41 von 376

1133 Elective Modules (3 CP)

Zugeordnete Module: 19140 Technology Assessment

30990 Emissions reduction at selected industrial processes

36520 Primary Environmental Technologies in Industrial Processes

39130 Engine Combustion and Emissions39140 Sustainable Production Processes

40480 Flue Gas Cleaning

Stand: 25. März 2014 Seite 42 von 376

Modul: 30990 Emissions reduction at selected industrial processes

2. Modulkürzel:	042500027	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester	
4. SWS:	1.5	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Günter Baur	mbach	
9. Dozenten:		Günter Baumbach		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Elective Modules (3 CP)	t	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Ergänzungsfächer mit 3 	ngsfach mit Querschnittscharakter	
		M.Sc. Energietechnik, PO 201 → Schlüsselqualifikationen		
11. Empfohlene Vorau	ssetzungen:		Recommended: Module "Firing Systems and Flue Gas Cleaning", "Luftreinhaltung I" or "Basics of Air Quality"	
12. Lernziele:		•	tence for the independent solution of at several industrial processes.	
13. Inhalt:		Emissions reduction at sele	cted industrial processes:	
		I Introducing lecture		
		Discussion of the general sub	ject and procedure of the project work	
		II Office hours		
		Individual discussion of the su	bject in office hours (2 - 3 visits)	
		III Excursion		
		•	undary, steal factory, refinery, pulp and actory, lacquering plant, glas melting plant	
		VI Project work with present	tation	
		Working out of possibilities of emissions reduction measures for a spectase of industrial processes:		
		process	industrial process s sources and pollutant formation within thi	
14. Literatur:		G. Baumbach, Lehrbuch "Lu	uftreinhaltung", Springer Verlag or G. Quality Control", Springer Verlag	

Stand: 25. März 2014 Seite 43 von 376

Management Association 2nd edition, 2000

	 VDI-Handbuch Reinhaltung der Luft mit den entsprechenden VDI- Richtlinien Actual to the subject from internet (e.g. BAT (Best Available Technics), UBA, LUBW)
15. Lehrveranstaltungen und -formen:	 309901 Project work Emissions reduction at selected industrial processes 309902 Excursion
16. Abschätzung Arbeitsaufwand:	Presence time: 19 h (= 2 h V + 2 h Office hour + 8 h E + 7 h presentation) Self study: 71 h (project work) Sum: 90 h
17. Prüfungsnummer/n und -name:	30991 Emissions reduction at selected industrial processes (BSL), Sonstiges, Gewichtung: 1.0, • Projekt work: 0,5 presentation, 0,5 project report• The participation in 60 % of all presentations of this module in the relevant semester is compulsory.• The participation in one excursion is compulsory for this module.
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 44 von 376

Modul: 39130 Engine Combustion and Emissions

2. Modulkürzel:	070800101	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	Dr. Dietmar Schmidt	
9. Dozenten:		Dietmar Schmidt	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Elective Modules (3 CP)	Plant Technology
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Elective Modules (3 CP)	t
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		in Otto- and Diesel engines (e interactions) and newer strate ways and reduction technique aftertreatment in engines. The	cal-chemistry processes of combustion e.g. kinetics, fuels, turbulence-chemistry gies (e.g. HCCI). Pollutant formation path es of pollutant formation, exhaust gas estudents are able to transport new ideas of paviour, like e. g. power, efficiency, pollutantom: 0.21cm;
13. Inhalt:		 combustion Fuels Combustion of spark ignited ignition, flame propagation, Combustion in Diesel-engin ignition, spray combustion Combustion in HCCI-engine Exhaust gases in Otto-engine 	es: combustion, turbulence effects, auto-
14. Literatur:		Turns, An Introduction to CoManuscript	ombustion, Mc Graw Hill
15. Lehrveranstaltungen und -formen: 391301 Lecture Engine Combustion and Emissions		nbustion and Emissions	
16. Abschätzung Arbei	tsaufwand:	Time of attendance: 21 h private study: 69 h overall: 90 h	
17. Prüfungsnummer/r	ı und -name:	39131 Engine Combustion a mündlich, 60 Min., Ge	nd Emissions (BSL), schriftlich, eventuell ewichtung: 1.0
18. Grundlage für :			
19. Medienform:		Blackboard, ppt-presentation	
20. Angeboten von:		Institut für Verbrennungsmoto	ren und Kraftfahrwesen

Stand: 25. März 2014 Seite 45 von 376

Modul: 40480 Flue Gas Cleaning

2. Modulkürzel:	042500025	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Günter Bau	mbach
9. Dozenten:		Günter Baumbach Helmut Seifert	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Elective Modules (3 CP)	Plant Technology
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmer → Elective Modules (3 CP)	nt
		DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	PO 2011
11. Empfohlene Voraussetzungen:		fundamentals of Mechanical E	Science and Natural Science, Engineering, Process Engineering, ormation, Reaction Kinetics as well as Air
12. Lernziele:		cleaning techniques to be apprenticed emissions from combustion puthe necessary competence for control measures in combustion of Air Quality Control, Energy	ave understood the principles of flue gas blied to control the remaining pollutant rocesses and firings. The students acquired the application and evaluation of air qual on plants for further studies in the fields and Environment and, finally, they got on plants' manufactures, operators and
13. Inhalt:		Methods for dust removal, niticatelytic), flue gas desulfurisa	ustion Plants (Baumbach/Seifert): rogen oxide reduction (catalytic / non- ntion (dry and wet), processes for the nts. Energy use and flue gas cleaning; treatment.
14. Literatur:		 Text book "Air Quality Cor publishers) 	ntrol" (Günter Baumbach, Springer
		News on topics from interior	net (for example UBA, LUBW)
		Lecture notes	
		Lecture notes for practical	work
15. Lehrveranstaltunge	en und -formen:	· · · · · · · · · · · · · · · · · · ·	Cleaning at Combustion Plants
16. Abschätzung Arbei	itsaufwand:	Time of attendance: 36 h Self study: 54 h Sum: 90 h	

Stand: 25. März 2014 Seite 46 von 376

17. Prüfungsnummer/n und -name:	40481 Flue Gas Cleaning (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 47 von 376

Modul: 36520 Primary Environmental Technologies in Industrial Processes

2. Modulkürzel:	042500028	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Günter Baum	bach
9. Dozenten:		Herbert Kohler	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PC → Areas of Specialization → Energy and Environment → Elective Modules (3 CP)	
		 M.Sc. Energietechnik, PO 2017 → Gruppe 2: Spezialisierung → Energie und Umwelt → Ergänzungsfächer mit 3 I 	gsfach mit Querschnittscharakter
11. Empfohlene Vorau	ssetzungen:	Basics in Air Quality Control, C	hemistry and Physics
12. Lernziele:		The students have deep knowledge in primary environmental technologies and possibilities of emissions reduction in instustrial processes. They learnt during excursions the practical dimensionsof environmental aspects in industrie plants. They have got the competen in independent solving of emissions reduction problems.	

13. Inhalt:	Content:		
	Lecture: Primary technologies for environmental protection		
	Definition of primary technologies and end of pipe applications; total energy and material balance; advantages and risks of both solutions; primary technologies in product and production; examples and study results; consequences for product lifetime and quality; hierarchy regarding environmental technologies.		
	Excursion to an industrial plant to illustrate the subjects of the lecture		
14. Literatur:	Lecture script: Primary Environmental Technologies in Industrial Processes Part I and Part II		
	 Actual to the subject from internet (e.g. BAT (Best Available Technics) UBA, LUBW) 		
15. Lehrveranstaltungen und -formen:	 365201 Primary Environmental Technologies in Industrial Processes 365202 Exkursion in Abgasreinigung0 		
16. Abschätzung Arbeitsaufwand:	Presence time: 33 h (= 28 h V + 5 h E) Self study: 56 h Sum: 89 h		

Stand: 25. März 2014 Seite 48 von 376

17. Prüfungsnummer/n und -name:	36521 Primärtechnologien im Umweltschutz (BSL), schriftlich oder mündlich, 30 Min., Gewichtung: 1.0, The participation in one excursion is compulsory for this module.	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Exkursion	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 49 von 376

Modul: 39140 Sustainable Production Processes

2. Modulkürzel:	074300030	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7. Sprache:	Englisch	
8. Modulverantwortlich	er:	Prof.Dr. Thomas Hirth		
9. Dozenten:		Thomas Hirth		
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Areas of Specialization → Energy and Environment → Elective Modules (3 CP)		
		M.Sc. Energietechnik, PO 201→ Schlüsselqualifikationen		
11. Empfohlene Vorau	ssetzungen:	Good knowledge of basics of penvironmental engineering	process engineering, chemistry and	
12. Lernziele:		 The students know the principles of sustainability and sustainable production. The students have understood the needs for sustainable production. The students are able to analyze and assess production processes with respect to sustainability. The students have the competence of sustainable process development. The students can identify opportunities for process optimization and improvement and describe the sustainable processes. 		
13. Inhalt:		 Introduction to sustainable development and sustainable production. Impact of production processes on the environment. Sustainable production processes in the chemical industries. Sustainable production processes in the metal industries. Sustainable production processes in the ceramic industries 		
14. Literatur:		 Chemical Technology and the Environment - Volume 1 Kirk Othmer, John Wiley & Sons, New Jersey 2007 P. Eyerer, Th. Hirth, J. Woidasky, Nachhaltige rohstoffnahe Produktic IRB-Verlag, 2007 Lecture notes 		
15. Lehrveranstaltunge	en und -formen:	391401 Vorlesung Sustainab	le Production Processes	
16. Abschätzung Arbeitsaufwand:		Time of attendance: 28 h Private study: approx. 62 h		
17. Prüfungsnummer/r	n und -name:	39141 Sustainable Production 60 Min., Gewichtung:	n Processes (BSL), schriftliche Prüfung, 1.0	
18. Grundlage für :				
19. Medienform:		Blackboard, PPT-presentation	, manuscript of the lecture	

Stand: 25. März 2014 Seite 50 von 376

Modul: 19140 Technology Assessment

2. Modulkürzel:	041210012	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.5	7. Sprache:	Englisch
8. Modulverantwortlich	er:	Apl. Prof.Dr. Rainer Friedrich	
9. Dozenten:		Rainer Friedrich	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Areas of Specialization → Energy and Environmen → Elective Modules (3 CP)	t
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		and understand the meaning of optimisation. They understand technology assessment includ deduce environmental objective defend the application of measurements.	c theories of environmental economics of sustainable development and welfare I and can apply the relevant methods of ling the cost benefit analysis. They can thus yes, assess alternative technologies and sures and techniques for environmental know how to make presentations and how ins.
13. Inhalt:		protection as sub-goal to welfa sustainable development; inte by discounting; investment ap for technology assessment; de assessment; multi attribute uti benefit-analysis; ecopolitical in	conomics; health and environmental are optimisation and indicator for remporal comparison of costs and benefits praisal; economics of resources; methods ecisions with multiple criteria; life cycle lity analysis; cost-effectiveness and cost-nstruments.
		Seminar on techniques for pre Preparing and giving an oral p effective way; structure of a so	resentation in a didactically and rhetorically
14. Literatur:		Script, online-tutorial Common, M., Stagl, S. 2005: I Cambridge: Cambridge Univ.	Ecological economics: an introduction; Press
15. Lehrveranstaltunge	en und -formen:	191401 Vorlesung Technolog Economics 191402 Seminar Presentatio	gy Assessment and Environmental ns and Publications
16. Abschätzung Arbe	itsaufwand:	Time of attendance:	
		I: Technology Assessment and 2.0 SWS = 28 hours	d Environmental Economics:, lecture:
		II Presentations and Publication	ons: 0.5 SWS = 7 hours
		Exam: 2hours	
		Sum of attendance: 37 hours	

Stand: 25. März 2014 Seite 51 von 376

Self-s	tudv.	53	hours

Total: 90 hours

17. Prüfungsnummer/n und -name:	 19141 Technology Assessment and Environmental Economics (PL) schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Not graded but compulsory study performance for the exam(USL-V): presence during the seminar as well as giving a presentation V Vorleistung (USL-V), schriftlich, eventuell mündlich 	
18. Grundlage für :		
19. Medienform:	PowerPoint slides, blackboard	
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung	

Stand: 25. März 2014 Seite 52 von 376

Modul: 32010 Praktikum Energie und Umwelt

2. Modulkürzel:	041210023	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	ner:	UnivProf.DrIng. Alfred Voß		
9. Dozenten:		Günter BaumbachUlrich VogtAlfred Voß		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Incoming → Areas of Specialization → Energy and Environment M.Sc. Energietechnik, PO 2011 → Spezialisierungsmodule → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energie und Umwelt		
11. Empfohlene Vorau	ıssetzungen:	Kenntnisse in der Energietech	nnik	
12. Lernziele:		Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen		
13. Inhalt:		Spezialisierungsfachversuche für die jeweils ein Praktikumst Qualität angegertigt werden m Brennstoffzellentechnik (IEI Energieeffizienzvergleich (I Kraft-Wärme-Kopplung (BH Messen el. Arbeit und Leist Stirlingmotor (IER) Online-Praktikum: Stromver Lastmanagement (IER) Bestimmung von Schadgas Bestimmung des Staubgeh NOx-Minderung bei der Kol	R) ER) IKW) (IER) rung (IER) rbrauchsanalyse und elektrisches sen in der Außenluft (IFK) alts einer Holzfeuerung (IFK)	

Brennstoffzellentechnik (IER):

Im Praktikum werden die Vor- und Nachteile des Einsatzes von Wasserstoff als Energieträger dargestellt. Hierzu wurde ein Versuchsstand aufgebaut, der Messungen an einer Solarzelle, Elektrolyse-Zelle und einer Brennstoffzelle ermöglicht. Bei der Versuchsdurchführung wird in einem ersten Schritt elektrische Energie mit einer Solarzelle aus Strahlungsenergie gewonnen. Danach erfolgt die Umwandlung mit einer Elektrolyse-Zelle in chemische Energie (Wasserstoff, Sauerstoff). In einem dritten Schritt werden diese chemischen Stoffe mit einer Brennstoffzelle wieder in elektrische Energie umgewandelt.

Stand: 25. März 2014 Seite 53 von 376

	Bestimmung von Schadgasen in der Außenluft (IFK):		
	 Möglichkeiten der NOx-Minderung (Luft- und Brennstoffstufung) Technische Daten der Versuchsanlage Berechnung des Luftbedarfs bei ungestufter Verbrennung mit Lambda = 1,15 Berechnung Primär-/Sekundärluft und einzustellender Ausbrandluftmengen bei luftgestufter Verbrennung Berechnung von Strömungsgeschwindigkeit und Verweilzeit im Reaktor Auswertung: Korrektur der NOx- Emissionen auf 6 % im O₂ im Abgas 		
14. Literatur:	Praktikumsunterlagen (online verfügbar)		
15. Lehrveranstaltungen und -formen:	 320101 Spezialisierungsfachversuch 1 320102 Spezialisierungsfachversuch 2 320103 Spezialisierungsfachversuch 3 320104 Spezialisierungsfachversuch 4 320105 Allgemeines Praktikum Maschinenbau 1 320106 Allgemeines Praktikum Maschinenbau 2 320107 Allgemeines Praktikum Maschinenbau 3 320108 Allgemeines Praktikum Maschinenbau 4 		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 h Selbststudium und Prüfungsvorbereitung: 62 h Gesamt: 90 h		
17. Prüfungsnummer/n und -name:	32011 Praktikum Energie und Umwelt (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Zu den 4 Spezialisierungsfachversuchen sind Praktikumsberichte von mindestens ausreichender Qualität anzufertigen.		
18. Grundlage für :			
19. Medienform:	Beamergestützte Einführung in das Thema; Praktische Übung an Exponaten, Maschinen bzw. Versuchsständen im Labor		
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung		

Stand: 25. März 2014 Seite 54 von 376

1120 Thermofluid Dynamics

Zugeordnete Module: 1121 Core Modules

1122 Core/Elective Modules (6 CP)

1123 Elective Modules (3 CP)

51820 Practical Work Thermofluid Dynamics

Stand: 25. März 2014 Seite 55 von 376

1121 Core Modules

Zugeordnete Module: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

Stand: 25. März 2014 Seite 56 von 376

Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel:	040800010	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester	
4. SWS:	5.0	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlich	er:	UnivProf.Dr. Andreas Krone	nburg	
9. Dozenten:		Andreas Kronenburg		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core Modules	PO 2011	
		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energie und Umwelt → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Thermofluiddynamik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Thermofluiddynamik → Kernfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik, Reaktionskinetik		
12. Lernziele:		Die Studenten kennen die physikalisch-chemischen Grundlagen von Verbrennungsprozessen: Reaktionskinetik von fossilen und biogenen Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen, vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie Wechselwirkungsmechanismen, Schadstoffbildung		
13. Inhalt:		Grdlg. Technischer Verbren Unterrichtssprache Deutsch	nungsvorgänge I & II (WiSe, n):	
		chemische Reaktion; Reakt und nicht-vorgemischte Fla • Gestreckte Flammenstruktu	ıren; Zündprozesse; Flammenstabilität; d nicht-vorgemischte Verbrennung;	
		An equivalent course is tau	ght in English:	

English):

Stand: 25. März 2014

Combustion Fundamentals I & II (summer term only, taught in

Seite 57 von 376

	 Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixe combustion. Effects of stretch, strain and curvature on flame characteristics; 	
	ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion	
14. Literatur:	 Vorlesungsmanuskript Warnatz, Maas, Dibble, "Verbrennung", Springer-Verlag Warnatz, Maas, Dibble, "Combustion", Springer Turns, "An Introduction to Combustion", Mc Graw Hill 	
15. Lehrveranstaltungen und -formen:	 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II 140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)	
	Selbststudiumszeit / Nacharbeitszeit: 110 h	
	Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	TafelanschriebPPT-PräsentationenSkripte zu den Vorlesungen	
20. Angeboten von:	Institut für Technische Verbrennung	

Stand: 25. März 2014 Seite 58 von 376

1122 Core/Elective Modules (6 CP)

Zugeordnete Module: 15440 Firing Systems and Flue Gas Cleaning

30590 Modellierung und Simulation turbulenter reaktiver Strömungen

51780 Modeling of Two-Phase Flows

Stand: 25. März 2014 Seite 59 von 376

Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel:	042500003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtGünter BaumbachHelmut Seifert	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core Modules	
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Core/Elective Modules (t
		DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach rkstechnik
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc	hes Spezialisierungsfach

- → Feuerungs- und Kraftwerkstechnik
- → Kernfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kern- / Ergänzungsfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kernfächer mit 6 LP

Stand: 25. März 2014 Seite 60 von 376

11. Empfohlene Voraussetzungen:		ng Science and Natural Science, al Engineering, Process Engineering, Reaction ity Control
12. Lernziele:	The students of the module have understood the principles of he generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and different capacity ranges are best suited, and how furnaces and need to be designed that a high energy efficiency with low pollut emissions could be achieved. In addition, they know which flue cleaning techniques have to be applied to control the remaining emissions. Thus, the students acquired the necessary competer for the application and evaluation of air quality control measures combustion plants for further studies in the fields of Air Quality C Energy and Environment and, finally, they got the competence for combustion plants' manufactures, operators and supervisory automatically.	
13. Inhalt:	I: Combustion and Firing	Systems I (Scheffknecht):
	heat transfer in combustion	ss, science of flames, burners and furnaces, on chambers, pollutant formation and mbustion processes, gasification, renewable
	II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):	
	catalytic), flue gas desulfe	I, nitrogen oxide reduction (catalytic/ non- urisation (dry and wet), processes for the lutants. Energy use and flue gas cleaning; aste treatment.
14. Literatur:	l:	
	Lecture notes "Combustic	on and Firing Systems"
	Skript	
	II:	
	 Text book "Air Quality Control" (Günter Baumbach, Springer publishers) 	
	 News on topics from internet (for example UBA, LUBW) 	
	III:	
	Lecture notes for practical	al work
15. Lehrveranstaltungen und -formen:	• 154401 Lecture Combusti • 154402 Vorlesung Flue G	on and Firing Systems I as Cleaning at Combustion Plants
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h V
	Selbststudiumszeit / Nacharbeitszeit: 124 h	
	Gesamt:	180 h
17. Prüfungsnummer/n und -name:	15441 Firing Systems and Prüfung, 120 Min.,	Flue Gas Cleaning (PL), schriftliche Gewichtung: 1.0
18. Grundlage für :		

Stand: 25. März 2014 Seite 61 von 376

19. Medienform:	Black board, PowerPoint Presentations, Practical measurements
20 Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 62 von 376

Modul: 51780 Modeling of Two-Phase Flows

2. Modulkürzel:	041600615	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	UnivProf.DrIng. Eckart Laurien	
9. Dozenten:		Eckart Laurien	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, PO 2 → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (6 Cl	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches → Strömungsmechanik und W → Kern- / Ergänzungsfächer m 	asserkraft
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Thermofluiddynamik → Kern- / Ergänzungsfächer m 	
11. Empfohlene Vorau	ssetzungen:	Numerische Strömungssimulation	1
12. Lernziele:		The students have special knowledge about the three-dimensional methods using multifluid models for two- or three-dimensional two-phase flows in energy-, process, and environmental engineering. Bubbly stratified and droplet flows will be modeled using statistical averaging in an application-oriented way. The emphasis is on gas-liquid systems with momentum transfer, two-phase turbulence as well as boiling, cavitation and condensation. The quality and accuracy of those models is discussed in view of experimental observations and measurements. An example software (CFX) is presented and used in practical exercises.	
13. Inhalt:			
14. Literatur:		complete lecture material can be slides (pdf-format)	downloaded from ILIAS in the form of
		E. Laurien und H. Oertel: Numeris Vieweg+Teubner, 2013	sche Strömungsmechanik, 5. Auflage,
15. Lehrveranstaltungen und -formen:		517801 Vorlesung Modeling of Two-Phase Flows Part I517802 Vorlesung Modeling of Two-Phase Flows Part II	
16. Abschätzung Arbe	itsaufwand:	6 x 30 h	
17. Prüfungsnummer/n und -name:		 51781 Modeling of Two-Phase Flows (PL), mündliche Prüfung, Gewichtung: 1.0 51782 Modeling of Two-Phase Flows (USL), mündliche Prüfung, Gewichtung: 1.0 	
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:			

Stand: 25. März 2014 Seite 63 von 376

Modul: 30590 Modellierung und Simulation turbulenter reaktiver Strömungen

042200103	5. Moduldauer:	1 Semester
6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4.0	7. Sprache:	Nach Ankuendigung
er:	UnivProf.Dr. Andreas Krone	nburg
	Andreas Kronenburg Oliver Thomas Stein	
rriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
	 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach rkstechnik
	 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Thermofluiddynamik → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter
setzungen:	Vertiefungsmodul: Grundlager Modul: Einführung in die num Verbrennungsprozessen	n technischer Verbrennungsvorgänge I + II erische Simulation von
	Verbrennungssysteme ausein der Turbulenz und deren num Simulation vertraut. Sie kenne	mit der Komplexität der Modellierung reale andergesetzt. Sie sind mit den Grundzüger erischen en verschiedene Ansätze zur Modellierung d in der Lage dieses Wissen in vertiefender
	Kontinuumsgleichungen/Sk Stabilität - Grundzüge reakt Verbrennungsmoden: vorge teilvorgemischt, Phänomene • Grundlagen der Turbulenz u turbulente Skalen, Energiek • Ansätze zur Modellierung tu Gleichgewichtschemie, Flar Gleichung, PDF, LEM • Modellierung komplexer Ge • Schwerpunkt LES: gefilterte Schließung • Beispiele: Verdrallte Gasflat	Jen der numerischen Strömungssimulation: alargleichungen, Orts- /Zeitdiskretisierung, iver Strömungen: Reaktionskinetik, emischt / nicht-vorgemischt / ologie / mathematische Beschreibung und Turbulenzsimulation: Reynoldszahl, taskade, Kolmogorov,RANS / LES / DNS urbulenter Flammen, u.a. Mixedis- Burnt, melets, CMC, EBU, BML, FSD, Grometrien von praktischer Relevanz e Gleichungen, Feinskalenmodellierung, mmen, Simulation von Kohle-Verbrennung
	obung. Implementierung und	omidiation mit wattab/OpenFOAW
	6.0 LP	6.0 LP 4.0 7. Sprache: UnivProf.Dr. Andreas Kroner • Andreas Kronenburg • Oliver Thomas Stein DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfächer M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfächer M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierung → Thermofluiddynamik → Kern- / Ergänzungsfächer Werterfungsmodul: Grundlager Modul: Einführung in die numverbrennungsprozessen Die Studierenden haben sich Verbrennungssysteme ausein der Turbulenz und deren num Simulation vertraut. Sie kennetechnischer Flammen und sin-Arbeiten umzusetzen. • Wiederholung der Grundlage Kontinuumsgleichungen/Sk Stabilität - Grundzüge reakt Verbrennungsmoden: vorgeteilvorgemischt, Phänomen • Grundlagen der Turbulenz uturbulente Skalen, Energiek • Ansätze zur Modellierung tu Gleichgewichtschemie, Flar Gleichung, PDF, LEM • Modellierung komplexer Ge • Schwerpunkt LES: gefilterteschließung • Beispiele: Verdrallte Gasflar

Stand: 25. März 2014 Seite 64 von 376

	 J.H. Ferziger, M. Peric, "Computational Methods for Fluid Dynamics, 3d Edition, Springer, 2002 T. Poinsot, D. Veynante, "Theoretical and Numerical Combustion", 2nd Edition, RT Edwards Inc, 2005
15. Lehrveranstaltungen und -formen:	 305901 Vorlesung Modellierung und Simulation turbulenter reaktiver Strömungen 305902 Computerübungen in Kleingruppen Modellierung und Simulation turbulenter reaktiver Strömungen
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudiumszeit/Nachbearbeitungszeit: 138 h Summe: 180 h
17. Prüfungsnummer/n und -name:	30591 Modellierung und Simulation turbulenter reaktiver Strömungen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen
20. Angeboten von:	Institut für Technische Verbrennung

Stand: 25. März 2014 Seite 65 von 376

1123 Elective Modules (3 CP)

51790 Fluid Dynamik der Atmosphäre51800 Advanced Combustion Zugeordnete Module:

Stand: 25. März 2014 Seite 66 von 376

Modul: 51800 Advanced Combustion

2. Modulkürzel:	042200106	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester		
4. SWS:	2.0	7. Sprache:	Englisch		
8. Modulverantwortlich	er:	UnivProf.Dr. Andreas Krone	UnivProf.Dr. Andreas Kronenburg		
9. Dozenten:		Andreas KronenburgOliver Thomas Stein			
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Elective Modules (3 CP)			
		 M.Sc. Energietechnik, PO 20^o → Gruppe 2: Spezialisierus → Thermofluiddynamik → Ergänzungsfächer mit 3 	ngsfach mit Querschnittscharakter		
11. Empfohlene Vorau	ssetzungen:	Grundlagen technischer Verb Simulation von Verbrennungsprozessen	rennungsvorgänge I+II; Einführung in die		
12. Lernziele:		and multiphase flows. They apphysico-chemical processes. of turbulent combustion and it	complexities of turbulent reacting single ppreciate the interactions of the different They are able to apply the concepts is modelling to real turbulent flames in ance using different types of fuel (gaseous		
13. Inhalt:		turbulent premixed and non-p modelling of turbulent reactive source terms (for global react methods for turbulent non-pre function/Monte Carlo methods linear-eddy modelling; level-source models for turbulent premixed liquid fuel and solid fuel comb single droplet combustion; sto	at combustion theory and modelling; remixed flames; issues related to the expecies; simple closures for the chemication schemes); mixture fraction based emixed combustion; probability density is for turbulent combustion; et methods and flame surface density if combustion; Part II: Introduction to sustion and its coupling with the flow field; echastic modelling of spray break-up and its coal combustion; rocket fuel combustion		
14. Literatur:		1. T. Poinsot, D. Veynante, "T Edition, RT Edwards Inc, 2009	heoretical and Numerical Combustion", 2r		
		2. N. Peters. "Turbulent Comb	oustion" Cambridge University Press, 2000		
		3. R. S. Cant and E. Mastorak Flows", Imperial College Pres	cos. "A Introduction to Turbulent Reacting s, 2008		
		4. W. A. Sirignano, "Fluid Dyn Sprays", Cambridge Universit	namics and Transport of Droplets and y Press, 2000		
15. Lehrveranstaltunge	en und -formen:	518001 Vorlesung Advance	d Combustion		
16. Abschätzung Arbei	itsaufwand:	Präsenzzeit: Selbststudiumszeit/Nachbearl Summe:	28 h beitungszeit: 62 h 90 h		

Stand: 25. März 2014 Seite 67 von 376

17. Prüfungsnummer/n und -name:	51801 Advanced Combustion (BSL), schriftlich oder mündlich, Gewichtung: 1.0, written examination (60 minutes) for course "Advanced Combustion" or oral examination (20 minutes), written examination (60 minutes) for course "Advanced Combustion" or oral examination (20 minutes)
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen
20. Angeboten von:	Institut für Technische Verbrennung

Stand: 25. März 2014 Seite 68 von 376

Modul: 51790 Fluid Dynamik der Atmosphäre

2. Modulkürzel:	41600620	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Eckart Lau	ien
9. Dozenten:		Eckart Laurien	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Areas of Specialization → Thermofluid Dynamics → Elective Modules (3 CP)	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Thermofluiddynamik → Ergänzungsfächer mit 3 	gsfach mit Querschnittscharakter
11. Empfohlene Vorau	ssetzungen:	Fluidmechanik I + II	
12. Lernziele:		Aufbau der Erdatmosphäre und die Entstehung und Bewegung den Aufbau der thermischen und Bodengrenzschicht, die Rolle sowie die grundlegenden Mec Zusätzlich besitzen die Absolv Ausbreitung und ggf. Ablageru Schadstoffen, einschließlich ra	von Instabilitäten und Wolkenbildung, hansimen atmosphärischer Turbulenz. renten notwendige Kenntnisse, um die ung von unterschiedlichen industriellen adioaktiven Stoffen, aus Punktquellen se von Ausbreitungsrechnungen wie sie
13. Inhalt:		Gliederung	
		Aerostatik der Atmosphäre	
		Potentialtheorie	
		Großräumige Wettersystem	е
		Instabilitäten und Turbulenz	
		Atmosphärische Grenzschio	hten
		Kleinräumige Wettersysteme	е
		Stoffausbreitung in der Atmo	osphäre
		Simulation / Ausbreitungsre	chnung
14. Literatur:		D. Etling: Theoretische Meteor Springer, Heidelberg, 2008	rologie - Eine Einführung, 3. Auflage,
		S.P. Arya: Air Pollution Meteor Press, 1999	rology and Dispersion, Oxford University
15. Lehrveranstaltunge	en und -formen:	517901 Vorlesung Fluid Dyn	amik der Atmosphäre
16. Abschätzung Arbe	itsaufwand:	3 x 30 h	

Stand: 25. März 2014 Seite 69 von 376

17. Prüfungsnummer/n und -name:	51791	Fluid Dynamik der Atmosphäre (BSL), mündliche Prüfung, Gewichtung: 1.0
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:		

Stand: 25. März 2014 Seite 70 von 376

Modul: 51820 Practical Work Thermofluid Dynamics

13. Inhalt:		Computational fluid dynami	cs:
12. Lernziele:		and quantify laminar and turbout phase mixtures without or with chemical reaction. They have	w on practical methods to understand ulent flows of liquids, gases and two- n heat transfer and with or without special knowledge about state-of-the audithe numerical simulation program CFX
11. Empfohlene Vorau	ssetzungen:		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Incoming → Areas of Specialization → Thermofluid Dynamics	PO 2011
		Walter ScheuermannRudi KulenovicAndreas Kronenburg	
9. Dozenten:		Eckart Laurien Rainer Mertz	
8. Modulverantwortlich	er:	UnivProf.DrIng. Eckart Lau	rien
4. SWS:	2.0	7. Sprache:	Englisch
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester
2. Modulkürzel:	-	5. Moduldauer:	1 Semester

13. Inhalt:

Computational fluid dynamics:

A general introduction into computational fluid dynamics forms the basis for the first -assisted- fluid flow computations using the commercial software CFX. The students will investigate the dependence of their simulation results on the discretization of the computational domain. With the aid of the example of flow induced by natural convection within a simple geometry the students determine technically relevant parameters, e.g. heat conduction coefficient and Nusselt number.

Digital Image Processing:

An experimental setup will be used where boiling processes can be observed. The necessary conditions for image processing will be discussed, e.g. image resolution, light sources, data selection frequencies and data sizes. A test image will be taken and will be processed by using suitable morphological image processing techniques. This requires knowledge of some image analysis methods such as pattern recognition, object tracking and extraction of object properties. The demonstrated methods are universally applicable and are used in many different areas, e.g. object recognition, quality assurance in production and video surveillance.

Laseroptical measurements for fluid flows:

The practical session will provide an overview over the current non-invasive laseroptical methods fort he measurement of thermodynamical flow properties such as flow velocities, temperature distributions, mixing ratios etc ... Potential applications will be discussed. The method of particle-image velocimetry (PIV) will be introduced in more detail and its application will be demonstrated by measuring the flow velocities of channel flow using the laboratory setup at IKE.

Stand: 25. März 2014 Seite 71 von 376

Ultrafast x-ray tomographie for two-phase flows:

The methodology and the functionality of ultra-fast computer tomography will be explained. This includes the electronic beam guidance, the detector technology and digital image reconstruction. In the second part of the session, the students will receive the opportunity to scan and reconstruct a phantom image.

Simulation of turbulent combustion processes:

Students will be guided to carry out numerical simulations of turbulent non-premixed flames. A short introduction will present some theory of turbulent flows and combustion including several aspects of simple turbulent combustion models and the so-called flamelet-model. The students will learn how to use the simulation software package OpenFOAM, they will run some simulations and analyse the influence of the combustion model and of the flow field on the species predictions in the flame

ical Work Thermofluid Dynamics
cical Work Thermofluid Dynamics
cal Work Thermofluid Dynamics (USL), mündliche g, Gewichtung: 1.0

Stand: 25. März 2014 Seite 72 von 376

Modul: 35990 Industriepraktikum Energietechnik

2. Modulkürzel:	042500010		5. Moduldauer:	1 Semester
3. Leistungspunkte:	12.0 LP		6. Turnus:	jedes Semester
4. SWS:	0.0		7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivPr	of.Dr. Günter Scheffk	necht
9. Dozenten:				
10. Zuordnung zum Curriculum in diesem Studiengang:		→ Ch	M.D. Energietechnik, I nalmers coming	PO 2011
		→ Ch	Л.D. Energietechnik, I nalmers utgoing	PO 2011
			nergietechnik, PO 20 ertiefungsmodule	11
11. Empfohlene Vorau	ssetzungen:			
		Studium Praxisbe die Mög Bereiche Wissen, Ein weit Betriebs Sozialst und Mita	n ergänzen und erwork ezug vertiefen. Die Pr lichkeit, einzelne der e kennenzulernen und beispielsweise durch erer Aspekt liegt im E egeschehens. Die Pra ruktur verstehen und	soll das Industriepraktikum das bene theoretische Kenntnisse in ihrem aktikanten haben im Fachpraktikum Fertigung vor- bzw. nachgeschaltete d dabei ihr im Studium erworbenes Einbindung in Projektarbeit, umzusetzen. rfassen der soziologischen Seite des ktikanten müssen den Betrieb auch als das Verhältnis zwischen Führungskräften in, um so ihre künftige Stellung und inzuordnen.
13. Inhalt:		Siehe P	raktikantenrichtlinien	Maschinenbau
14. Literatur:		keine		
15. Lehrveranstaltunge	en und -formen:	359901	Industriepraktikum	
16. Abschätzung Arbe	itsaufwand:	360 Stu	nden	
17. Prüfungsnummer/r	n und -name:		Industriepraktikum Er mündlich, Gewichtun	nergietechnik (USL), schriftlich, eventuell g: 1.0
18. Grundlage für :				
19. Medienform:				
20. Angeboten von:		· · · · · · · · · · · · · · · · · · ·		

Stand: 25. März 2014 Seite 73 von 376

900 Interdisciplinary Key Qualifications

Zugeordnete Module: 56180 Deutsch als Fremdsprache

Stand: 25. März 2014 Seite 74 von 376

Modul: 56180 Deutsch als Fremdsprache

2. Modulkürzel:	-		5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP		6. Turnus:	unregelmäßig
4. SWS:	0.0		7. Sprache:	-
8. Modulverantwortlich	er:	John N	ixon	
9. Dozenten:				
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	→ C → In	M.D. Energietechnik, l halmers coming terdisciplinary Key Qu	
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:				
13. Inhalt:				
14. Literatur:				
15. Lehrveranstaltunge	en und -formen:			
16. Abschätzung Arbe	itsaufwand:			
17. Prüfungsnummer/r	n und -name:	56181	Deutsch als Fremdsp	orache (USL), Sonstiges, Gewichtung: 1.
18. Grundlage für :				
19. Medienform:				
20. Angeboten von:				

Stand: 25. März 2014 Seite 75 von 376

Modul: 80270 Masterarbeit Energietechnik

2. Modulkürzel:	042500009		5. Moduldauer:	1 Semester	
3. Leistungspunkte:	30.0 LP		6. Turnus:	jedes Semester	
4. SWS:	0.0		7. Sprache:	Deutsch	
8. Modulverantwortlicher:		Univ	Prof.Dr. Günter Scheffk	necht	
9. Dozenten:					
10. Zuordnung zum Curriculum in diesem Studiengang:		→ (DoubleM.D. Energietechnik, PO 2011 → Chalmers → Incoming		
11. Empfohlene Vorau	ssetzungen:	Minde	stens 72 erworbene Le	istungspunkte	
12. Lernziele:		ihr sol erwork auf Pr soll in werde	I der Studierende seine benen Kenntnisse in eir ojekte aus der Ingenieu nerhalb einer vorgegeb	des ist eine Masterarbeit anzufertigen. In Fähigkeit nachweisen, die im Studium her selbständigen wissenschaftlichen Arbeit urspraxis anzuwenden. Eine Problemstellung enen Frist selbstständig strukturiert hen Methoden systematisch bearbeitet und nentiert werden.	
13. Inhalt:		Wird in	ndividuell definiert.		
14. Literatur:		keine			
15. Lehrveranstaltunge	en und -formen:				
16. Abschätzung Arbeitsaufwand:		900h			
17. Prüfungsnummer/n und -name:		3999	Masterarbeit (PL), sc	hriftliche Prüfung, Gewichtung: 1.0	
18. Grundlage für :					
19. Medienform:					
20. Angeboten von:					

Stand: 25. März 2014 Seite 76 von 376

120 Outgoing

Zugeordnete Module: 121 Pflichtmodule mit Wahlmöglichkeit

122 Spezialisierungsfächer

35990 Industriepraktikum Energietechnik 80690 Studienarbeit Energietechnik

Stand: 25. März 2014 Seite 77 von 376

Modul: 35990 Industriepraktikum Energietechnik

2. Modulkürzel:	042500010	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	12.0 LP	6. Turnus:	jedes Semester	
4. SWS:	0.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	ner:	UnivProf.Dr. Günter Sch	neffknecht	
9. Dozenten:				
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechr → Chalmers → Incoming	nik, PO 2011	
		DoubleM.D. Energietechr → Chalmers → Outgoing	nik, PO 2011	
		M.Sc. Energietechnik, PO 2011→ Vertiefungsmodule		
11. Empfohlene Vorau	ssetzungen:			
		Praxisbezug vertiefen. Di die Möglichkeit, einzelne Bereiche kennenzulernen	worbene theoretische Kenntnisse in ihrem e Praktikanten haben im Fachpraktikum der Fertigung vor- bzw. nachgeschaltete n und dabei ihr im Studium erworbenes	
		Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen u	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfte ernen, um so ihre künftige Stellung und	
13. Inhalt:		Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen u und Mitarbeitern kennenk	Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfter ernen, um so ihre künftige Stellung und tig einzuordnen.	
13. Inhalt: 14. Literatur:		Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen und Mitarbeitern kennenk Wirkungsmöglichkeit richt	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfte ernen, um so ihre künftige Stellung und tig einzuordnen.	
	∍n und -formen:	Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen und Mitarbeitern kennenk Wirkungsmöglichkeit richt Siehe Praktikantenrichtlin	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfter ernen, um so ihre künftige Stellung und tig einzuordnen. iien Maschinenbau	
14. Literatur:		Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen u und Mitarbeitern kennenk Wirkungsmöglichkeit richt Siehe Praktikantenrichtlin keine	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfte ernen, um so ihre künftige Stellung und tig einzuordnen.	
14. Literatur: 15. Lehrveranstaltunge	itsaufwand:	Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen u und Mitarbeitern kennenle Wirkungsmöglichkeit richt Siehe Praktikantenrichtlin keine 359901 Industriepraktike 360 Stunden	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfte ernen, um so ihre künftige Stellung und tig einzuordnen. nien Maschinenbau m Energietechnik (USL), schriftlich, eventuell	
14. Literatur:15. Lehrveranstaltunge16. Abschätzung Arbei	itsaufwand:	Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen u und Mitarbeitern kennenk Wirkungsmöglichkeit richt Siehe Praktikantenrichtlin keine 359901 Industriepraktiku 360 Stunden	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfte ernen, um so ihre künftige Stellung und tig einzuordnen. nien Maschinenbau m Energietechnik (USL), schriftlich, eventuell	
14. Literatur: 15. Lehrveranstaltunge 16. Abschätzung Arbei 17. Prüfungsnummer/r	itsaufwand:	Ein weiterer Aspekt liegt i Betriebsgeschehens. Die Sozialstruktur verstehen u und Mitarbeitern kennenk Wirkungsmöglichkeit richt Siehe Praktikantenrichtlin keine 359901 Industriepraktiku 360 Stunden	m Erfassen der soziologischen Seite des Praktikanten müssen den Betrieb auch als und das Verhältnis zwischen Führungskräfte ernen, um so ihre künftige Stellung und tig einzuordnen. nien Maschinenbau m Energietechnik (USL), schriftlich, eventuell	

Stand: 25. März 2014 Seite 78 von 376

121 Pflichtmodule mit Wahlmöglichkeit

Zugeordnete Module: 11380 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung

11560 Elektrische Energienetze I

11590 Photovoltaik I

12420 Windenergie 1 - Grundlagen Windenergie

12440 Einführung in die energetische Nutzung von Biomasse

13060 Grundlagen der Heiz- und Raumlufttechnik

13940 Energie- und Umwelttechnik

13950 Energiewirtschaft und Energieversorgung

14070 Grundlagen der Thermischen Strömungsmaschinen14090 Grundlagen Technischer Verbrennungsvorgänge I + II

14100 Hydraulische Strömungsmaschinen in der Wasserkraft

14110 Kerntechnische Anlagen zur Energieerzeugung

14150 Leichtbau

14180 Numerische Strömungssimulation

16000 Erneuerbare Energien

16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

18160 Berechnung von Wärmeübertragern

19200 Thermo and Fluid Dynamics

28550 Regelung von Kraftwerken und Netzen

30390 Festigkeitslehre I

30400 Methoden der Werkstoffsimulation

30410 Simulation mit Höchstleistungsrechnern

30420 Solarthermie

30450 Renewable Energy for Rural Areas

30970 Air Quality Control and Management

35980 Computational Materials Modeling (CMM)

Stand: 25. März 2014 Seite 79 von 376

Modul: 30970 Air Quality Control and Management

2. Modulkürzel:	042500030	5. Moduldauer:	2 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester	
4. SWS:	4.0	7. Sprache:	Englisch	
8. Modulverantwortlich	er:	Dr. Ulrich Vogt		
9. Dozenten:		 Ulrich Vogt Rainer Friedrich Sandra Torras Ortiz		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energie und Umwelt		
		→ Kern- / Ergänzungsfäch M.Sc. Energietechnik, PO 20 ^o		
		 M.Sc. Energietechnik, PO 20° → Vertiefungsmodule → Pflichtmodule mit Wahln 		
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		their sources and dependenci in the atmosphere. Thus the s further understanding and app and measures. Students can emission scenarios, operate a environmental impacts and ex	have understood pollutants formation, les as well as the air pollutants behavior student has acquired the basis for polication of air pollution control studies generate emission inventories and atmospheric models, estimate health and acceedances of thresholds, establish clean affectiveness and cost-benefit analyses to control strategies.	
13. Inhalt:		I. Lecture Basics of Air Qua	lity Control (Vogt), 2 SWh	
			ants ir quality control ombustion and industrial processes on the atmoshere: Meteorological influences	

II. Lecture Air Quality Mangement (Friedrich, Theloke, Torras), 2 SWh

Sources of air pollutants and greenhouse gases, generation of emission inventories, scenario development, atmospheric (chemistry-transport) processes and models, indoor pollution, exposure modelling, impacts of air pollutants, national and international regulations, instruments

Stand: 25. März 2014 Seite 80 von 376

	and techniques for air pollution control, clean air plans, integrated assessment, cost-effectiveness and cost benefit analyses.
14. Literatur:	 Script Online-tutorial Common, M., Stagl, S. 2005: Ecological economics: an introduction. Cambridge Univ. Press; Text book "Air Quality Control" (Günter Baumbach, Springer Verlag); Scripts of the lectures, News on topics from internet (e.g. UBA, LUBW)
15. Lehrveranstaltungen und -formen:	309701 Vorlesung Basics of Air Quality Control309702 Vorlesung Air Quality Management
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 64 h Selbststudium: 116 h Summe 180 Stunden
17. Prüfungsnummer/n und -name:	 30971 Basics of Air Quality Control (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, 30972 Air Quality Management (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PowerPoint, slides, blackboard
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 81 von 376

Modul: 18160 Berechnung von Wärmeübertragern

2. Modulkürzel:	042410030	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Dr. Wolfgang Heidemann	
9. Dozenten:		Wolfgang Heidemann	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 6	Energiesysteme
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effiziente → Kern- / Ergänzungsfäche	n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifischer → Erneuerbare thermischer → Kern- / Ergänzungsfächer 	ches Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energiespeicherung und → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter I -verteilung
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 	
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Wärme- u	nd Stoffübertragung
12. Lernziele:		Erworbene Kompetenzen:	
		Die Studierenden	

Die Studierenden

- kennen die Grundgesetze der Wärmeübertragung und der Strömungen
- sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsaussagen und Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden

Stand: 25. März 2014 Seite 82 von 376

	 kennen unterschiedliche Methoden zur Berechnung von Wärmeübertragern kennen die Vor- und Nachteile verschiedener Wärmeübertragerbauformen
13. Inhalt:	Ziel der Vorlesung und Übung ist es einen wichtigen Beitrag zur Ingenieursausbildung durch Vermittlung von Fachwissen für die Berechnung von Wärmeübertragern zu leisten.
	Die Lehrveranstaltung
	 zeigt unterschiedliche Wärmeübertragerarten und Strömungsformen der Praxis, vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert, Kennzahlen, NTU-Diagramm, Zellenmethode behandelt Sonderbauformen und Spezialprobleme(Wärmeverluste), vermittelt Grundlagen zur Wärmeübertragung in Kanälen und im Mantelraum (einphasige Rohrströmung, Plattenströmung, Kondensation, Verdampfung), führt in Fouling ein (Verschmutzungsarten, Foulingwiderstände, Maßnahmen zur Verhinderung/ Minderung, Reinigungsverfahren), behandelt die Bestimmung von Druckabfall und die Wärmeübertragun durch berippte Flächen vermittelt die Berechnung von Regeneratoren
14. Literatur:	Vorlesungsmanuskript,
	 empfohlene Literatur: VDI: VDI-Wärmeatlas, Springer Verlag, Berlin Heidelberg, New York.
15. Lehrveranstaltungen und -formen:	181601 Vorlesung Berechnung von Wärmeübertragern181602 Übung Berechnung von Wärmeübertragern
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h
	Selbststudiumszeit / Nacharbeitszeit: 124 h
	Gesamt: 180 h
17. Prüfungsnummer/n und -name:	18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Vorlesung: Beamerpräsentation
	Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware
20. Angeboten von:	

Stand: 25. März 2014 Seite 83 von 376

Modul: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

2. Modulkürzel: 042410042 5. Moduldauer: 2 Semester 3. Leistungspunkte: 6.0 LP 6. Turnus: jedes 2. Semester, 4. SWS: 4.0 7. Sprache: Deutsch 8. Modulverantwortlicher: UnivProf.Dr. Andreas Friedrich 9. Dozenten: Andreas Friedrich 10. Zuordnung zum Curriculum in diesem Studiengang: DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsr → Energiesysteme und Energiewirtschaft → Kern- / Ergänzungsfächer mit 6 LP
4. SWS: 4.0 7. Sprache: Deutsch 8. Modulverantwortlicher: UnivProf.Dr. Andreas Friedrich 9. Dozenten: Andreas Friedrich 10. Zuordnung zum Curriculum in diesem Studiengang: DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsr → Energiesysteme und Energiewirtschaft
8. Modulverantwortlicher: UnivProf.Dr. Andreas Friedrich 9. Dozenten: Andreas Friedrich DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsr → Energiesysteme und Energiewirtschaft
9. Dozenten: Andreas Friedrich DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsr → Energiesysteme und Energiewirtschaft
10. Zuordnung zum Curriculum in diesem Studiengang: DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsd → Energiesysteme und Energiewirtschaft
Studiengang: → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsd → Energiesysteme und Energiewirtschaft
 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittse → Energiesysteme und Energiewirtschaft
→ Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittsd → Energiesysteme und Energiewirtschaft
 → Gruppe 2: Spezialisierungsfach mit Querschnitts → Energiesysteme und Energiewirtschaft
 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit
11. Empfohlene Voraussetzungen: Abgeschlossenes Grundstudium und Grundkenntnisse

12. Lernziele:

Die Teilnehmer/-innen verstehen das Prinzip der elektrochemischen Energiewandlung und können aus thermodynamischen Daten Zellspannungen und theoretische Wirkungsgrade ermitteln. Die Teilnehmer/-innen kennen die wichtigsten Werkstoffe und Materialien in der Brennstoffzellentechnik und können die Funktionsanforderungen benennen. Die Teilnehmer/innen beherrschen die mathematischen Zusammenhänge, um Verluste in Brennstoffzellen zu ermitteln und technische Wirkungsgrade zu bestimmen. Sie kennen die wichtigsten Untersuchungsmethoden für Brennstoffzellen und Brennstoffzellensystemen. Die Teilnehmer/-innen können die wichtigsten Anwendungsbereiche von Brennstoffzellensystemen und ihre Anforderungen benennen. Sie besitzen die Fähigkeit, typische Systemauslegungsaufgaben zu lösen. Die Teilnehmer/-innen verstehen die grundlegenden Veränderungen und Triebkräfte der relevanten Märkte, die zu der Entwicklung von Brennstoffzellen und der Einführung einer Wasserstoffinfrastruktur führen.

13. Inhalt:

- Einführung in die Energietechnik, Entwicklung nachhaltiger Energietechnologien, Erscheinungsformen der Energie; Energieumwandlungsketten, Elektrochemische Energieerzeugung: -Systematik -
- Thermodynamische Grundlagen der elektrochemischen Energieumwandlung, Chemische Thermodynamik: Grundlagen und Zusammenhänge, Elektrochemische Potentiale und die freie Enthalpie DeltaG, Wirkungsgrad der elektrochemischen

Stand: 25. März 2014 Seite 84 von 376

- Stromerzeugung, Druckabhängigkeit der elektrochemischen Potentiale / Zellspannungen, Temperaturabhängigkeit der elektrochemischen Potentiale
- Aufbau und Funktion von Brennstoffzellen, Komponenten: Anforderungen und Eigenschaften, Elektrolyt: Eigenschaften verschiedener Elektrolyte, Elektrochemische Reaktionsschicht von Gasdiffusionselektroden, Gasdiffusionsschicht, Stromkollektor und Gasverteiler, Stacktechnologie
- Technischer Wirkun gsgrad, Strom-Spannungskennlinien von Brennstoffzellen; U(i)-Kennlinien, Transporthemmungen und Grenzströme, zweidimensionale Betrachtung der Transporthemmungen, Ohm`scher Bereich der Kennlinie, Elektrochemische Überspannungen: Reaktionskinetik und Katalyse, experimentelle Bestimmung einzelner Verlustanteile

Technik und Systeme (SS):

- **Überblick:** Einsatzgebiete von Brennstoffzellensystemen, stationär, mobil, portabel
- Brennstoffzellensysteme, Niedertemperaturbrennstoffzellen, Alkalische Brennstoffzellen, Phosphorsaure Brennstoffzellen-, Polymerelektrolyt-Brennstoffzellen, Direktmethanol-Brennstoffzellen, Hochtemperaturbrennstoffzellen, Schmelzkarbonat-Brennstoffzellen, Oxidkeramische Brennstoffzellen
- Einsatzbereiche von Brennstoffzellensystemen, Verkehr: Automobilsystem, Auxiliary Power Unit (APU), Luftfahrt, stationäre Anwendung: Dezentrale Blockheizkraftwerke, Hausenergieversorgung, Portable Anwendung: Elektronik, Tragbare Stromversorgung, Netzunabhängige Stromversorgung
- Brenngasbereitstellung und Systemtechnik, Wasserstoffherstellung: Methoden, Reformierung, Systemtechnik und Wärmebilanzen,
- Ganzheitliche Bilanzierung , Umwelt, Wirtschaftlichkeit, Perspektiven der Brennstoffzellentechnologien

	del Biellistonzellent	Comologicm		
14. Literatur:	Vorlesungszusammenfassungen,			
	empfohlene Literatur:			
	 P. Kurzweil, Brennstoffzellentechnik, Vieweg Verlag Wiesbaden, ISBN 3-528-03965-5 			
15. Lehrveranstaltungen und -formen:	· ·	undlagen Brennstoffzellentechnik ennstoffzellentechnik, Technik und Systeme		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h		
	Selbststudiumszeit / Nacharbeitszeit: 124 h			
	Gesamt:	180 h		
17. Prüfungsnummer/n und -name:		ntechnik - Grundlagen, Technik und Systeme e Prüfung, 120 Min., Gewichtung: 1.0		
18. Grundlage für :				
19. Medienform:	Kombination aus Multir	nediapräsentation, Tafelanschrieb und Übunger		
20. Angeboten von:	Institut für Thermodyna	mik und Wärmetechnik		

Stand: 25. März 2014 Seite 85 von 376

Modul: 35980 Computational Materials Modeling (CMM)

O. Markelleinerale	0.44.04.0004	C. Madadalanan	A Compostor	
2. Modulkürzel:	041810021	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Englisch	
8. Modulverantwortlich	er:	UnivProf.Dr. Siegfried Schma	auder	
9. Dozenten:		Siegfried Schmauder		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahlm		
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Festigkeitslehre und We → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter rkstofftechnik	
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahlm		
11. Empfohlene Vorau	ssetzungen:	Introduction to Strength of Ma	terials and Materials Science	
12. Lernziele:		simulation methods. They have the theoretical back atomistic, microscopic and made between simultaneous and sepotential of multiscale simulating Based on the acquired skills, to	the basic concepts of different multiscale kground to perform simulations on acroscopic levels. They know the difference quential procedures and understand the ons in engineering. The students are able to apply continuum ne Abaqus program to problems in the field	
13. Inhalt:		 Introduction to multiscale simulation (Models and methods on different length and time scales) Historical development of multiscale materials modeling Basis of Monte-Carlo Method (MC) Molecular Dynamics (MD) Phase Field Method (PFM) Dislocations Dynamics (DD) Damage Mechanics Coupled Methods Introduction to the program system Abaqus Abaqus CAE Abaqus Standard Practical exercises with Abaqus CAE at PC Special lectures concerning materials modeling 		
14. Literatur:		Manuscript (in English)		
15. Lehrveranstaltunge	en und -formen:	359801 Vorlesung Computate359802 Übung Block seminate359803 Kolloqium Materials	r Multiscale Materials Modeling	
16. Abschätzung Arbei	itsaufwand:	Time of attendance: 48 h Private study: 132 h In total: 180 h		

Stand: 25. März 2014 Seite 86 von 376

17. Prüfungsnummer/n und -name:	35981 Computational Materials Modeling (CMM) (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre

Stand: 25. März 2014 Seite 87 von 376

Modul: 12440 Einführung in die energetische Nutzung von Biomasse

2. Modulkürzel:	042500002	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffkr	necht	
9. Dozenten:		Günter ScheffknechtLudger EltropUwe Schnell		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	PO 2011	
		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahlm		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Erneuerbare thermische Energiesysteme → Kernfächer mit 6 LP		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	hes Spezialisierungsfach	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		verstanden. Sie kennen Qualit Biomasse, die wichtigsten Um Vergasung und Fermentation, die nachgeschalteten Prozess Sie können ihre erlangten Ker Einsatzes von Biomasse zur E	Grundlagen der Nutzung von Biomasse tät, Verfügbarkeit und Potentiale von wandlungsverfahren Verbrennung, die damit verbundenen Emissionen sowie se zur Strom- und/oder Wärmeerzeugung. Intnisse für die Beurteilung des verstärkten Energieerzeugung einsetzen. Des weiteren zungskonzepte beurteilen und erstellen.	
13. Inhalt:		I: Bereitstellung von biogen	en Energieträgern	
			technische Grundlagen zur Produktion und e als Brennstoff zur energetischen Nutzung,	

Stand: 25. März 2014 Seite 88 von 376

Auswirkungen

• technisch-wirtschaftliche Entwicklungsperspektiven und ökologische

20. Angeboten von:

	 Einordnung der systema Zusammenhänge 	nalytischen und energiewirtschaftlichen	
	Rahmenbedingungen eir	ner Nutzung in Energiesystem	
	 Einführung in physikalisc Umwandlungsverfahren 	ch-chemische und biochemische	
	II: Energetische Nutzung	von Biomasse	
	Brennstofftechnische Ch	arakterisierung von Biomasse	
	 Einführung in Verbrennungs- und Vergasungstechnologien sowie die Fermentation 		
	Emissionsverhalten und Einführung in die Abgasreinigung		
	 Einführung in die Umwandlungsverfahren zur Erzeugung von Strom und/oder Wärme 		
14. Literatur:	Vorlesungsmanuskript		
		1., Hartmann, H. (Hrsg.) Energie aus rlag, Berlin, Heidelberg, New York, 2009	
15. Lehrveranstaltungen und -formen:		rung in die energetische Nutzung von	
	Biomasse • 124402 Übung Einführun Biomasse	g in die energetische Nutzung von	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h	
	Selbststudiumszeit / Nacharbeitszeit: 124 h		
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:		energetische Nutzung von Biomasse (PL), g, 120 Min., Gewichtung: 1.0	
18. Grundlage für :			
19. Medienform:	TafelanschriebPPT-PräsentationenSkripte zu den Vorlesung	gen	

Stand: 25. März 2014 Seite 89 von 376

Institut für Feuerungs- und Kraftwerkstechnik

6.

Modul: 11560 Elektrische Energienetze I

2. Modulkürzel:	050310001	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Stefan Te	nbohlen
9. Dozenten:		Stefan Tenbohlen	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, → Chalmers → Outgoing → Pflichtmodule mit Wahl	
		 M.Sc. Energietechnik, PO 20 → Vertiefungsmodule → Pflichtmodule mit Wahl 	
11. Empfohlene Vorau	ssetzungen:	Elektrische Energietechnik	<u> </u>
12. Lernziele:		Studierender hat Kenntnisse der elektrischen Energieübertragung und der Berechnungsverfahren für Leitungen und Netze. Die Studierenden kennen den Aufbau und die Ersatzschaltblider der elektrischen Netzkomponenten. Sie können Lastfluss- und Kurzschlussstromberechnungen durchführen.	
13. Inhalt:		 Einpolige Ersatzschaltung Betriebsweise 	mmetrischem Kurzschluss
14. Literatur:		 Aufl., 2004 Heuck, Dettmann: Elektris Braunschweig/Wiesbaden Hosemann (Hg.):Hütte Tas Energietechnik. Band 3: N 	he Kraftwerke und Netze Springer-Verlag, 6 che Energieversorgung Vieweg, , 6. Aufl., 2005 schenbücher der Technik. Elektrische etze. Springer-Verlag, Berlin, 2001 steme, Springer-Verlag, 1. Aufl., 2006
15. Lehrveranstaltunge	en und -formen:	115601 Vorlesung Elektrische115602 Übung Elektrische	
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit: Selbststudium/Nacharbeits Gesamt:	56 h szeit: 124 h 180 h
17. Prüfungsnummer/r	n und -name:	11561 Elektrische Energier Gewichtung: 1.0	netze I (PL), schriftliche Prüfung, 120 Min.,
18. Grundlage für :		21760 Elektrische Energier	netze II
19. Medienform:		PowerPoint, Tafelanschrieb	
20. Angeboten von:		Energieübertragung und Hoo	chspannungstechnik

Stand: 25. März 2014 Seite 90 von 376

Modul: 13940 Energie- und Umwelttechnik

2. Modulkürzel:	042510001		5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP		6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0		7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Uni	vProf.Dr. Günter Scheffkr	necht
9. Dozenten:		Gü	nter Scheffknecht	
10. Zuordnung zum Co Studiengang:	10. Zuordnung zum Curriculum in diesem Studiengang:		ubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		-	Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Kern- / Ergänzungsfäche	ngsfach mit Querschnittscharakter
		-	Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Kernfächer mit 6 LP	1, 2. Semester ngsfach mit Querschnittscharakter
		 M.Sc. Energietechnik, PO 2011, 2. Semester → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		Ene Prii beu Ene wire die erfa	märenergieträger als Grund irteilen, mit welcher Anlage ergieausnutzung mit möglid d. Die Studierenden haben praktische Anwendung im	haben die Prinzipien der äte sowie Eigenschaften verschiedener dlagenwissen verstanden und können entechnik eine möglichst hohe ehst wenig Schadstoffemissionen erreicht damit für das weitere Studium und für Berufsfeld Energie und Umwelt die knwendung und Beurteilung der relevante
13. Inhalt:		Vo	lesung und Übung, 4 SW	/S
		1)	Eigenschaften, verschied	mwandlung, Einheiten, energetische ene Formen von Energie, Transport und , Energiebilanzen verschiedener Systeme
		2)	Primärenergieversorgung Fossile Brennstoffe: Char	und Endenergieverbrauch akterisierung, Verarbeitung und
		4)		Erdöl, 3. Erdgas 4.Heizwert wandlung in verschiedenen Sektoren: e, Hausheizungen
		5)	Techniken zur Begrenzun	g der Umweltbeeinflussungen
		6) 7)	Treibhausgasemissionen Erneuerbare Energieträge	er: Geothermie, Wasserkraft,
		8)		taik, Wind, Wärmepumpe, Biomasse,
14. Literatur:		- V	orlesungsmanuskript nterlagen zu den Übungen	JII ZGIIG

Stand: 25. März 2014 Seite 91 von 376

15. Lehrveranstaltungen und -formen:	139401 Vorlesung und Übung Energie- und Umwelttechnik		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h	
	Selbststudiumszeit / Nach	arbeitszeit: 124 h	
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:	13941 Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0		
18. Grundlage für :			
19. Medienform:	TafelanschriebSkripte zu den Vorlesungen und zu den Übungen		
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik		

Stand: 25. März 2014 Seite 92 von 376

Modul: 13950 Energiewirtschaft und Energieversorgung

2. Modulkürzel:	041210001	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		Alfred Voß	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PC → Chalmers → Outgoing → Pflichtmodule mit Wahlmodule M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule	öglichkeit
		 → Pflichtmodule mit Wahlmöglichkeit 	
11. Empfohlene Vorau	ssetzungen:	 Grundlagen der Thermodyna Kreisprozesse, 1. und 2. Hau Kenntnisse in Physik und Ch 	iptsatz)
12. Lernziele: 13. Inhalt:		Die Studierenden kennen die physikalisch-technischen Grundlagen der Energiewandlung und können diese im Hinblick auf die Bereitstellung von Energieträgern und die Energienutzung anwenden. Sie verstehen die komplexen Zusammenhänge der Energiewirtschaft und Energieversorgung, d.h. ihre technischen, wirtschaftlichen und umweltseitigen Dimensionen und können diese analysieren. Sie haben die Fähigkeit, die Methoden der Bilanzierung und der Wirtschaftlichkeitsrechnung zur Analyse und Beurteilung von Energiesystemen einschließlich ihrer umweltseitigen Effekte einzusetzer • Energie und ihre volkswirtschaftliche sowie gesellschaftliche Bedeutung • Energienachfrage und die Entwicklung der Energieversorgungsstrukturen • Energieressourcen • Techniken zur Umwandlung und Nutzung von Mineralöl, Erdgas, Kohle, Kernenergie und erneuerbaren Energiequellen • Methoden der Bilanzierung und Wirtschaftlichkeitsrechnung • Organisation und Struktur der Energiewirtschaft und von Energiemärkten • Umwelteffekte und -wirkungen der Energienutzung • Techniken zur Reduktion energiebedingter Umweltbelastungen	
14. Literatur:		TÜV Media; 10. überarbeitete A Zahoransky, Richard A. Energietechnik: Systeme zur E Studium und Beruf. Vieweg+Te Wiesbaden, 2009	nergieumwandlung. Kompaktwissen für eubner Verlag / GWV Fachverlage GmbH,
		Kugeler, Kurt; Phlippen, Peter-	W.

Stand: 25. März 2014 Seite 93 von 376

	Energietechnik : technische, ökonomische und ökologische Grundla Springer - Berlin ; Heidelberg [u.a.] , 2010
15. Lehrveranstaltungen und -formen:	139501 Vorlesung Energiewirtschaft und Energieversorgung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h
	Selbststudiumszeit / Nacharbeitszeit: 124 h
	Gesamt: 180 h
17. Prüfungsnummer/n und -name:	13951 Energiewirtschaft und Energieversorgung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	 Beamergestützte Vorlesung teilweise Tafelanschrieb Lehrfilme begleitendes Manuskript
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung

Stand: 25. März 2014 Seite 94 von 376

Modul: 16000 Erneuerbare Energien

2. Modulkürzel:	041210008	5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	5.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		 Alfred Voß Ludger Eltrop Christoph Kruck	
10. Zuordnung zum C Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiesysteme und Energiesysteme und Energiesysteme → Kern- / Ergänzungsfäche 	gsfach mit Querschnittscharakter ergiewirtschaft
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Vorau	issetzungen:	Grundkenntnisse der Energiev Ingenieurwissenschaftliche Gr	
12. Lernziele:		wissen alle Formen der erneud zu ihrer Nutzung. Die Teilnehn regenerativer Energien analys	n die physikalisch-technischen zung aus erneuerbaren Energieträgern. Sie erbaren Energien und die Technologien ner/-innen können Anlagen zur Nutzung ieren und beurteilen. Dies umfasst die und umweltrelevanten Aspekte.
13. Inhalt:		Sonnenenergie und ihre tec Wasserangebot und Nutzun Windangebot (räumlich und Geothermie Speichertechnologien energetische Nutzung von E	zeitlich) und technische Nutzung Biomasse ad Grenzen des Einsatzes erneuerbarer
		Empfehlung (fakultativ): IER-E	xkursion Energiewirtschaft / Energietechnik
14. Literatur:		 University Press, ISBN 0-19 Kaltschmitt, M., Streicher, W. Energien: Systemtechnik, V. Springer-Verlag Hartmann, H. und Kaltschmierneuerbarer Energieträger ökonomische Analyse im Kornen FNR-Schriftenreihe Band 3, Kaltschmitt, M. und Hartman 	gy - Power for a sustainable future, Oxford 1-926178-4 V., Wiese, A. (Hrsg. 2006): Erneuerbare Virtschaftlichkeit, Umweltaspekte. Berlin: itt, M. (Hrsg. 2002): Biomasse als - Eine technische, ökologische und ontext der übrigen Erneuerbaren Energien. Landwirtschaftsverlag, Münsternn, H. (Hrsg. 2009): Energie aus Biomasse. Verfahren. Berlin: Springer-Verlag

Stand: 25. März 2014 Seite 95 von 376

15. Lehrveranstaltungen und -formen:	 160001 Vorlesung Grundlagen der Nutzung erneuerbarer Energien 160002 Vorlesung Grundlagen der Nutzung erneuerbarer Energien 160003 Seminar Erneuerbare Energien 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 70 h Selbststudium: 110 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	16001 Erneuerbare Energien (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Zur erfolgreichen Absolvierung des Moduls gehört neben der bestandenen Modulprüfung ein Nachweis über 5 Teilnahmen am Seminar Erneuerbare Energien (Unterschriften auf Seminarschein). Das Seminar kann sowohl im SS als auch im WS besucht werden.	
18. Grundlage für :		
19. Medienform:	Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitend Manuskript Primär Powerpoint-Präsentation	
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung	

Stand: 25. März 2014 Seite 96 von 376

1 Semester

Deutsch

jedes 2. Semester, WiSe

Modul: 30390 Festigkeitslehre I

041810010

6.0 LP

4.0

2. Modulkürzel:

4. SWS:

3. Leistungspunkte:

4. 3003. 4.0	7. Sprache. Deutsch
8. Modulverantwortlicher:	DrIng. Michael Seidenfuß
9. Dozenten:	Markus Rauch
10. Zuordnung zum Curriculum in diesem Studiengang:	DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit
	DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Festigkeitslehre und Werkstofftechnik → Kern- / Ergänzungsfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Festigkeitslehre und Werkstofftechnik → Kernfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit
11. Empfohlene Voraussetzungen:	 Einführung in die Festigkeitslehre Werkstoffkunde I + II
12. Lernziele:	Die Studierenden verstehen die Grundlagen des Spannungs- und Verformungszustandes von isotropen Werkstoffen. Sie sind in der Lage einen beliebigen mehrachsigen Spannungszustand mit Hilfe von Festigkeitshypothesen in Abhängigkeit vom Werkstoff und der Beanspruchungssituation zu bewerten. Sie können Festigkeitsnachweise für praxisrelevante Belastungen (statisch, schwingend, thermisch) durchführen. Die Grundlagen der Berechnung von Faserverbundwerkstoffen sind ihnen bekannt. Die Teilnehmer des Kurses sind in der Lage komplexe Bauteile auszulegen und sicherheitstechnisch zu bewerten.
13. Inhalt:	 Spannungs- und Formänderungszustand Festigkeitshypothesen bei statischer und schwingender Beanspruchung Werkstoffverhalten bei unterschiedlichen Beanspruchungsarten Sicherheitsnachweise Festigkeitsberechnung bei statischer Beanspruchung Festigkeitsberechnung bei schwingender Beanspruchung Berechnung von Druckbehältern

5. Moduldauer:

6. Turnus:

7. Sprache:

Stand: 25. März 2014 Seite 97 von 376

	Festigkeitsberechnung bei thermischer BeanspruchungBruchmechanik	
	Festigkeitsberechnung bei von Faserverbundwerkstoffen	
14. Literatur:	Manuskript zur VorlesungErgänzende Folien (online verfügbar)Issler, Ruoß, Häfele: Festigkeitslehre Grundlagen, Springer-Verlag	
15. Lehrveranstaltungen und -formen:	303901 Vorlesung Festigkeitslehre I303902 Übung Festigkeitslehre I	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudium: 138 h Summe: 180 h	
17. Prüfungsnummer/n und -name:	30391 Festigkeitslehre I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügba Zusatzmaterialien	
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre	

Stand: 25. März 2014 Seite 98 von 376

Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel:	040800010	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester	
4. SWS:	5.0	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlich	er:	UnivProf.Dr. Andreas Kroner	nburg	
9. Dozenten:		Andreas Kronenburg		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core Modules	PO 2011	
		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Thermofluiddynamik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Thermofluiddynamik → Kernfächer mit 6 LP 	l1 ngsfach mit Querschnittscharakter	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahln 		
11. Empfohlene Voraussetzungen:			nd naturwissenschaftliche Grundlagen, , Verfahrenstechnik, Thermodynamik,	
12. Lernziele:		Verbrennungsprozessen: Rea Brennstoffen, Flammenstruktu	ysikalisch-chemischen Grundlagen von aktionskinetik von fossilen und biogenen uren (laminare und turbulente Flammen, mischte Flammen), Turbulenz-Chemie en, Schadstoffbildung	
13. Inhalt:		Grdlg. Technischer Verbren Unterrichtssprache Deutsch	nungsvorgänge I & II (WiSe, n):	
		chemische Reaktion; Reakt und nicht-vorgemischte Flar Gestreckte Flammenstruktu	ıren; Zündprozesse; Flammenstabilität; d nicht-vorgemischte Verbrennung;	
		An equivalent course is tau	ght in English:	

Stand: 25. März 2014 Seite 99 von 376

English):

Combustion Fundamentals I & II (summer term only, taught in

	 Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixed combustion. Effects of stretch, strain and curvature on flame characteristics; 	
	ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion	
14. Literatur:	 Vorlesungsmanuskript Warnatz, Maas, Dibble, "Verbrennung", Springer-Verlag Warnatz, Maas, Dibble, "Combustion", Springer Turns, "An Introduction to Combustion", Mc Graw Hill 	
15. Lehrveranstaltungen und -formen:	 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II 140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)	
	Selbststudiumszeit / Nacharbeitszeit: 110 h	
	Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	TafelanschriebPPT-PräsentationenSkripte zu den Vorlesungen	
20. Angeboten von:	Institut für Technische Verbrennung	

Stand: 25. März 2014 Seite 100 von 376

Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

2. Modulkürzel:	041310001	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlicher:		UnivProf.DrIng. Michael Sc	hmidt	
9. Dozenten:		Michael Schmidt	Michael Schmidt	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahlm		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Gebäudeenergetik → Kernfächer mit 6 LP	PO 2011	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Gebäudeenergetik → Kernfächer mit 6 LP 		
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahlm		
11. Empfohlene Voraussetzungen:		 Höhere Mathematik I + II Technische Mechanik I + II 		
12. Lernziele:		Studenten die Anlagen und de und Klimatisierung von Räume ingenieurwissenschaftlichen G	z- und Raumlufttechnik haben die eren Systematik der Heizung, Lüftung en kennen gelernt und die zugehörigen Grundkenntnisse erworben. Auf dieser Basi slegungen der Anlagen vornehmen.	
		Erworbene Kompetenzen: Die Studenten		
		 kennen die thermodynamisofeuchter Luft, der Verbrennu verstehen den Zusammenh funktion und den Innenlaste 	n Methoden zur Anlagenauslegung vertraut chen Grundoperationen der Behandlung ung und des Wärme- und Stofftransportes ang zwischen Anlagenauslegung und en, den meteorologischen thermischen sowie lufthygienischen	
13. Inhalt:		 Systematik der heiz- und ru Strömung in Kanälen und R Wärmeübergang durch Kon Wärmeleitung Thermodynamik feuchter Lu Verbrennung meteorologische Grundlage Anlagenauslegung thermische und lufthygienische 	äumen vektion und Temperaturstrahlung uft	
14. Literatur:			.; Schramek, ER.: Taschenbuch für Oldenbourg Industrieverlag,München, 200	

Stand: 25. März 2014 Seite 101 von 376

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

• Rietschel, H.; Esdorn H.: Raumklimatechnik Band 1 Grundlagen -16. Auflage, Berlin: Springer-Verlag, 1994 • Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004 • Bach, H.; Hesslinger, S.: Warmwasserfußbodenheizung, 3.Auflage, Karlsruhe: C.F. Müller-Verlag, 1981 • Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag, 1998 • Arbeitskreis der Dozenten für Klimatechnik: Lehrbuch der Klimatechnik, Bd.1-Grundlagen. Bd.2-berechnung und Regelung. Bd.3-Bauelemente. Karlsruhe: C.F. Müller-Verlag, 1974-1977 • Knabe, G.: Gebäudeautomation. Verlag für Bauwesen, Berlin 1992 15. Lehrveranstaltungen und -formen: Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik 16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h Selbststudiumszeit / Nacharbeitszeit: 138 h Gesamt: 180 h Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche 17. Prüfungsnummer/n und -name: 13061 Prüfung, 120 Min., Gewichtung: 1.0

Stand: 25. März 2014 Seite 102 von 376

Vorlesungsskript

Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel:	042310004	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Damian Vogt	
9. Dozenten:		Damian Vogt	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Thermische Turbomasch → Kern- / Ergänzungsfäche	ninen
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Thermische Turbomaschinen → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Kernfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Vorau	ssetzungen:	IngenieurwissenschaftlicheTechnische ThermodynamikStrömungsmechanik oder T	(+
12. Lernziele:		Der Studierende	
		Strömungsmaschinen • kennt und versteht die physi Zusammenhänge in Thermis Verdichter, Ventilatoren) • beherrscht die eindimension Verlusten und Geschwindigl • ist in der Lage, aus dieser a	m Fokus auf der Anwendung bei ikalischen und technischen Vorgänge und schen Strömungsmaschinen (Turbinen, nale Betrachtung von Arbeitsumsetzung, keitsdreiecken bei Turbomaschinen nalytischen Durchdringung die ng und Konstruktion von axialen und
 13. Inhalt: Anwendungsgebiete und wirtschaftliche Bedeutung Bauarten Thermodynamische Grundlagen Fluideigenschaften und Zustandsänderungen Strömungsmechanische Grundlagen 		agen tandsänderungen	

Stand: 25. März 2014 Seite 103 von 376

	 Maschinenkomponent 	stertheorie sgrade, Möglichkeiten ihrer Beeinflussung en nnfelder, Regelungsverfahren	
14. Literatur:	 Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005 Cohen H., Rogers, G.F.C., Saravanamutoo, H.I.H., Gas Turbine Theory, Longman 2000 Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001 Wilson D.G, and Korakianitis T., The design of high efficiency turbomachinery and gas turbines, 2nd ed., Prentice Hall 1998 		
15. Lehrveranstaltungen und -formen:	140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	42 h	
	Selbststudiumszeit / Nac	charbeitszeit: 138 h	
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:	14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0		
18. Grundlage für :	30820 Thermische Strömungsmaschinen		
19. Medienform:	Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung		
20. Angeboten von:	Institut für Thermische S	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium	

Stand: 25. März 2014 Seite 104 von 376

Modul: 11380 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung

2. Modulkürzel:	041210007	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Apl. Prof.Dr. Rainer Friedrich	
9. Dozenten:		Andreas Kronenburg Rainer Friedrich	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Kernfächer mit 6 LP 	11 ngsfach mit Querschnittscharakter
		M.Sc. Energietechnik, PO 20¹→ Vertiefungsmodule→ Pflichtmodule mit Wahln	
11. Empfohlene Vorau	ssetzungen:	Thermodynamik, ingenieurwis	ssenschaftliche Grundlagen
12. Lernziele:		der Verbrennung und der Ents Verbrennungsprozess sowie o entstehenden Umwelteffekte i und Umwelt qualitativ und qua	nemisch-physikalischen Grundlagen stehung von Schadstoffen beim die bei der Nutzung von Energie mit ihren Auswirkungen auf Mensch antitativ. Die Teilnehmer erwerben die ngen von Energiewandlungen quantitati nnen.
13. Inhalt:		Verbrennung und Verbrenn	ungsschadstoffe:
		 Verbrennung von höheren I Laminare vorgemischte und - Flammenstruktur und -ges Erhaltungsgleichungen für 	d nicht-vorgemischte Flammen: schwindigkeit r Masse, Energie und Geschwindigkeit nd nicht-vorgemischte Flammen:

Stand: 25. März 2014 Seite 105 von 376

menschliche Gesundheit:

Treibhauseffektradioaktive Strahlung

• Auswirkungen von Energiewandlungsanlagen auf Umwelt und

Aerosole, saure Deposition, Stickstoffeintrag

- Luftschadstoffbelastung: SO2, NOx, CO, Feinstaub VOC, Ozon,

	- Flächenverbrauch	
	- Lärm - Abwärme	
	- elektromagnetische Strahlung	
	Techniken zur Emissionsminderung für die verschiedenen Energietechnologien	
14. Literatur:	Online-Manuskript	
	Borsch, P. Wagner, HJ. 1997: Energie und Umweltbelastung; Berlin: Springer-Verlag	
	Möller, D. 2003: Luft - Chemie, Physik, Biologie, Reinhaltung, Recht; Berlin: de Gruyter	
	Roth, E. 1994: Mensch, Umwelt und Energie : die zukünftigen Erfordernisse und Möglichkeiten der Energieversorgung; Düsseldorf: etv	
15. Lehrveranstaltungen und -formen:	 113801 Vorlesung Verbrennung und Verbrennungsschadstoffe 113802 Vorlesung Energie und Umwelt 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h	
	Selbststudium / Nacharbeitszeit: 112 h	
	Online-Übung: 10 h	
	Gesamt: 178 h	
17. Prüfungsnummer/n und -name:	11381 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript	
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung	

Stand: 25. März 2014 Seite 106 von 376

Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

2. Modulkürzel:	042000100	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.DrIng. Stefan Riedelbauch	
9. Dozenten:		Stefan Riedelbauch	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik un → Kern- / Ergänzungsfäch	d Wasserkraft
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Strömungsmechanik und Wasserkraft → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Strömungsmechanik und Wasserkraft → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Strömungsmechanik und → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 20° → Vertiefungsmodule → Pflichtmodule mit Wahln 	
11. Empfohlene Voraussetzungen:		Wahlpflichtmodul Gruppe 1	(Strömungsmechanik)
		 Technische Strömungslehre Strömungsmechanik 	e (Fluidmechanik 1) oder
12. Lernziele:		Die Studierenden kennen die prinzipielle Funktionsweise von Wasserkraftanlagen und die Grundlagen der hydraulischen Strömungsmaschinen. Sie sind in der Lage, grundlegende Vorauslegungen von hydraulischen Strömungsmaschinen in Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu beurteilen.	
13. Inhalt:		Kreiselpumpen und Pumpenti Bauarten und deren Kennwer Kavitationserscheinungen vor die Auslegung von hydraulisc damit zusammenhängenden I gegeben. Mit der Berechnung	Grundlagen von Kraftwerken, Turbinen, urbinen. Dabei werden die verschiedene te, Verluste sowie die dort auftretenden gestellt. Es wird eine Einführung in hen Strömungsmaschinen und die Kennlinien und Betriebsverhalten und Konstruktion einzelner Bauteile die Auslegung von hydraulischen

Stand: 25. März 2014 Seite 107 von 376

	Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise "Hydrodynamische Getriebe und Absperr- und Regelorgane behandelt.
14. Literatur:	Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
	C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
	W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlage
	J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
	J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag
15. Lehrveranstaltungen und -formen:	141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
	 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
	 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h
17. Prüfungsnummer/n und -name:	14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,
18. Grundlage für :	29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen
19. Medienform:	Tafel, Tablet-PC, Powerpoint Präsentation
20. Angeboten von:	

Stand: 25. März 2014 Seite 108 von 376

Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

2. Modulkürzel:	041610001	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester	
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlicher:		UnivProf.DrIng. Jörg Starfli	inger	
9. Dozenten:		Jörg Starflinger		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahlr		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kern- / Ergänzungsfäch		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kernfächer mit 6 LP	PO 2011	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Kernenergietechnik → Kernfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Vorau	ssetzungen:	Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre		
12. Lernziele:		Die Studierenden		
		zeigen, bei welchen Nukliden wird. Sie verstehen den Mass der Einstein'schen Formel. Si	und die Bindungsenergie. Sie können durch Fusion oder Spaltung Energie "frei" sendefekt und den Zusammengang mit e können die Bethe-Weizsäcker-Formel otope in Isobarenketten identifizieren.	
		erläutern. Sie kennen das Ge		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Stand: 25. März 2014 Seite 109 von 376

- können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte

- wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Terme benennen und erläutern.

Neutronen sind und woher diese stammen.

- können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.
- verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperiode erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.
- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.
- können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.
- können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren können, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.
- können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nukleare Zwischenkühlsystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzboriersystem beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.
- im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.
- Das Defense-in-Depth Prinzip als Staffelung des Sicherheitssystems beschreiben, die fünf Sicherheitsebenen identifizieren und zugehörige Gegenmaßnahmen erläutern. Sie können das Barrierenprinzip für DWR und SWR anhand von Beispielen erläutern.
- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.

Stand: 25. März 2014 Seite 110 von 376

- können generell die Reaktorentwicklung (Generationen 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.
- verstehen die Ziele von Gen IV Reaktoren, können Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen reproduzieren und Beispiele angeben. Sie verstehen das Konzept und die Idee eines ADS-Reaktors als ein mögliches Konzept zur Verringerung der Radiotoxizität des Abfalls.
- Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.
- den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.
- können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.
- Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrierenkonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt:

Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuklidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)
- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILIAS

14. Literatur:

• W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:

141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:

45 h Präsenzzeit

45 h Vor-/Nacharbeitungszeit

90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:

14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

Stand: 25. März 2014 Seite 111 von 376

18. Grundlage für :	26000 Kernenergietechnik		
19. Medienform:	ppt-Präsentation		
	Manuskripte online		
	Tafel + Kreide		
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme		

Stand: 25. März 2014 Seite 112 von 376

Modul: 14150 Leichtbau

2. Modulkürzel: 041810002		5. Moduldauer:	1 Semester		
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe		
4. SWS:	4.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	er:	DrIng. Michael Seidenfuß			
9. Dozenten:					
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit			
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche			
		 M.Sc. Energietechnik, PO 2011, 2. Semester → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP 			
		 M.Sc. Energietechnik, PO 2011, 2. Semester → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 			
11. Empfohlene Voraussetzungen:		Einführung in die FestigkeitslehreWerkstoffkunde I und II			
12. Lernziele:		Die Studierenden sind in der Lage anhand des Anforderungsprofils leichte Bauteile durch Auswahl von Werkstoff, Herstell- und Verarbeitungstechnologie zu generieren. Sie können eine Konstruktic bezüglich ihres Gewichtsoptimierungspotentials beurteilen und gegebenenfalls verbessern. Die Studierenden sind mit den wichtigste Verfahren der Festigkeitsberechnung, der Herstellung und des Füger vertraut und können Probleme selbstständig lösen.			
13. Inhalt:		 Werkstoffe im Leichtbau Festigkeitsberechnung Konstruktionsprinzipien Stabilitätsprobleme: Knicken und Beulen Verbindungstechnik Zuverlässigkeit Recycling 			
14. Literatur:		 - Manuskript zur Vorlesung - Ergänzende Folien (online verfügbar) - Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft - Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft 			
15. Lehrveranstaltunge	en und -formen:	141501 Vorlesung Leichtbau 141502 Leichtbau Übung			
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 42 h			
		Selbststudiumszeit / Nacharbeitszeit: 138 h			
		Gesamt:	180 h		

Stand: 25. März 2014 Seite 113 von 376

17. Prüfungsnummer/n und -name:	14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPT auf Tablet PC, Animationen u. Simulationen
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre

Stand: 25. März 2014 Seite 114 von 376

Modul: 30400 Methoden der Werkstoffsimulation

2. Modulkürzel: 041810011		5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.Dr. Siegfried Schm	auder	
9. Dozenten:		Siegfried Schmauder		
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Festigkeitslehre und We → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter rkstofftechnik	
		M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Festigkeitslehre und Werkstofftechnik → Kernfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Voraussetzungen:		Einführung in die Festigkeitslehre, Werkstoffkunde I + II, Höhere Mathematik		
12. Lernziele:		Die Studierenden sind mit den Grundlagen der Elastizitätstheorie vertraut. Sie sind in der Lage, mit analytischen Verfahren den Spannungszustand in einfachen Bauteilen zu berechnen. Sie haben sich Grundkenntnisse über die Funktion und den Anwendungsbereich der wichtigsten numerischen Simulationsmethoden auf der Mikro- und Makroebene angeeignet. Die Teilnehmer des Kurses haben einen Überblick über die wichtigster Simulationsmethoden in der Materialkunde und sind in der Lage problemspezifisch geeignete Verfahren auszuwählen.		
13. Inhalt:		 Elastizitätstheorie Spannungsfunktionen Energiemethoden Differenzenverfahren Finite-Elemente-Methode Grundlagen des elastisch-plastischen Werkstoffverhaltens Traglastverfahren Gleitlinientheorie Seminar "Multiskalige Materialmodellierung" inkl. Einführung in und praktische Übungen mit dem System ABAQUS/CAE 		
14. Literatur:		Manuskript zur Vorlesung und ergänzende Folien im Internet Schmauder, S., L. Mishnaevsky: Micromechanics and Nanosimulation Metals and Composites, Springer Verlag		
15. Lehrveranstaltunge	en und -formen:	 304001 Vorlesung Methoden der Werkstoffsimulation 304002 Übung Methoden der Werkstoffsimulation 		
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 42 h Selbststudium: 138 h		

Stand: 25. März 2014 Seite 115 von 376

	Summe: 180 h
17. Prüfungsnummer/n und -name:	30401 Methoden der Werkstoffsimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbar Zusatzmaterialien
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre

Stand: 25. März 2014 Seite 116 von 376

Modul: 14180 Numerische Strömungssimulation

2. Modulkürzel:	041610002		5. Moduldauer:	1 Semester		
3. Leistungspunkte:	6.0 LP	6. Turnus: jedes 2. Semester, So		jedes 2. Semester, SoSe		
4. SWS:	4.0	7. Sprache: Deutsch		Deutsch		
8. Modulverantwortlich	ner:	UnivP	rof.DrIng. Eckart La	urien		
9. Dozenten:			Eckart Laurien Albert Ruprecht			
10. Zuordnung zum C Studiengang:	urriculum in diesem	→ C → C	M.D. Energietechnik, halmers outgoing flichtmodule mit Wahl			
		→ G → T	 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Thermofluiddynamik → Kern- / Ergänzungsfächer mit 6 LP 			
		→ G → T	M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Thermofluiddynamik → Kernfächer mit 6 LP			
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 				
11. Empfohlene Voraussetzungen:			Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre			
12. Lernziele:		Studenten besitzen fundiertes Wissen über die Vorgehensweise, die mathematisch/physikalischen Grundlagen und die Anwendung der numerischen Strömungssimulation (CFD, Computational Fluid Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind in der Lage die fachgerechte Erweiterung, Verifikation und Validierung problemangepasster Simulationsrechnungen vorzunehmen				
13. Inhalt:		1. Einf	ührung			
		1.1	Beispiele und Defin	itionen		
		1.2	Analytische Method	len		
		1.3	Experimentelle Methoden			
		1.4 Numerische Methoden				
		2. CFD-Vorgehensweise				
		2.1	2.1 Physikalische Vorgänge			
		2.2	Grundgleichungen			
		2.3	Diskretisierung			
			Methoden			
		2.5	Simulationsprogran	nme		

Stand: 25. März 2014 Seite 117 von 376

	3. Grundgleichungen und Modelle			
	3.1 Modellierung Molekülebene			
	3.2 Laminare Strömungen			
	3.3 Turbulente Strömungen			
	4. Qualität und Genauigkeit			
	4.1 Anforderungen			
	4.2 Numerische Fehler			
	4.3 Modellfehler			
14. Literatur:	 E. Laurien und H. Oertel jr.: Numerische Strömungsmechanik - Grundgleichungen und Modelle - Lösungsmethoden - Qualität und Genauigkeit, 5. Auflage, Springer Vieweg (2013) alle Vorlesungsfolien in ILIAS verfügbar 			
15. Lehrveranstaltungen und -formen:	 141801 Vorlesung und Übung Numerische Strömungssimulation 141802 Praktikum Numerische Strömungssimulation 			
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 45h + Nacharbeitszeit: 131h + Praktikumszeit: 4 h = 180 h			
17. Prüfungsnummer/n und -name:	14181 Numerische Strömungssimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Schriftliche Unterlagen sind zugelassen			
18. Grundlage für :				
19. Medienform:	ppt-Folien (30 %), Tafel und Kreide (65 %), Computerdemonstration (5%			
	Manuskripte online			
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme			

Stand: 25. März 2014 Seite 118 von 376

Modul: 11590 Photovoltaik I

2. Modulkürzel:	050513002	5. Moduldauer: 1 Semester		1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus: jedes 2. Semester, SoSe		edes 2. Semester, SoSe	
4. SWS:	4.0	7. Sprache	e: I	Deutsch	
8. Modulverantwortlich	er:	UnivProf.Dr. Jürgei	n Heinz Werner		
9. Dozenten:		Jürgen Heinz Werne	er		
10. Zuordnung zum Curriculum in diesem Studiengang:		 → Chalmers → Outgoing → Pflichtmodule r M.Sc. Energietechni 	 → Outgoing → Pflichtmodule mit Wahlmöglichkeit M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule 		
11. Empfohlene Vorau	ssetzungen:		er Halbleiterma	terialien und Halbleiterdioden, z.B	
12. Lernziele:		Die Studierenden ke	nnen		
		die Grundprizipiendie Energieerträge	e von Solarzelle chnologien der H von Wechselric verschiedener	n Herstellung von Solarmodulen	
13. Inhalt:		 Der photovoltaische Effekt Sonnenleistung und Energieumsätze in Deutschland Maximaler Wirkungsgrad von Solarzellen Grundprinzip von Solarzellen Ersatzschaltbilder von Solarzellen Photovoltaik-Materialien und -technologien Modultechnik- Erträge von Photovoltaik-Systemen Photovoltaik-Markt 			
14. Literatur:		 Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubn 1994 P. Würfel, Physik der Solarzellen, Spektrum, 1995 M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems Sydney, 1986 F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996 			
15. Lehrveranstaltungen und -formen:		115901 Vorlesung Photovoltaik I 115902 Übungen Photovoltaik I			
16. Abschätzung Arbei	itsaufwand:	Präsenzzeit: Selbststudium/Nach: Gesamt:	56 arbeitszeit: 142 180	h	
17. Prüfungsnummer/r	und -name:	11591 Photovoltaik I (PL), schriftliche Prüfung, 90 Min., Gewichtung 1.0			
18. Grundlage für:		21930 Photovoltaik	· II		

Stand: 25. März 2014 Seite 119 von 376

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Institut für Photovoltaik

Stand: 25. März 2014 Seite 120 von 376

Modul: 28550 Regelung von Kraftwerken und Netzen

2. Modulkürzel:	042500042	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffk	necht	
9. Dozenten:		Florian Gutekunst		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		DoubleM.D. Energietechnik, PO 2011, 5. Semester → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 2011, 5. Semester → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		M.Sc. Energietechnik, PO 2011, 5. Semester → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Kern- / Ergänzungsfächer mit 6 LP		
		M.Sc. Energietechnik, PO 2011, 5. Semester → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit		
11. Empfohlene Vorau	ssetzungen:	Keine		
12. Lernziele:		Die Absolventen des Moduls kennen die klassischen kraftwerksund netzseitigen Automatisierungs- und Regelungsaufgaben im Bereich der Stromerzeugung. Sie sind mit den aktuellen nationalen und internationalen Spezifikationen und Richtlinien für die Standard-Regelaufgaben in der Stromerzeugung vertraut und können bestehend Regelungen und ihre Auswirkungen auf das Verbundsystem bewerten.		
13. Inhalt:		I: Einführung: Aufbau elektrischer Energieversorgungssysteme I.1: Verbundnetzgliederung I.2: Netzpartner I.3: Europäisches Verbundnetz und Verbundnetze weltweit II: Dynamisches Verhalten der Netzpartner II.1a: fossile Dampfkraftwerke II.1b: Kernkraftwerke II.1c: Solarthermische Kraftwerke II.1c: Solarthermische Kraftwerke II.1d: Wasserkraftwerke II.1e: Windkraftanlagen II.1f: weitere dezentrale Erzeuger II.2: Verbraucher II.3: Netzbetriebsmittel/Leistungselektronik III: Netzregelung und Systemführung III.1: Frequenz-Wirkleistungs-Regelung III.2: Spannungsregelung III.3: Dynamisches Netzverhalten III.4: Monitoring		

Stand: 25. März 2014 Seite 121 von 376

	IV: Aktuelle Herausforderungen IV.1: Einbindung erneuerbarer Energien IV.2: Ausweitung des europäischen Stromhandels IV.3: Erweiterungen des europäischen Verbundnetzes IV.4: Möglichkeiten zur Minderung von CO2 Emissionen bei der el. Energieerzeugung mittels CCS (Carbon Capture and Storage) V: Übung V.1: Fossil befeuerte Kraftwerke V.2: Kernkraftwerke und Wasserkraftwerke V.3: Leistungs-Frequenzregelung V.4: Lastflussrechnung	
14. Literatur:	Vorlesungsskript, VDI/VDE-Richtlinienreihe 35xx, Nationale und internationale Netzcodes (TransmissionCode, DistributionCode, UCTE Operation Handbook)	
15. Lehrveranstaltungen und -formen:	285501 Vorlesung Regelung von Kraftwerken und Netzen	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	28551 Regelung von Kraftwerken und Netzen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :	28550 Regelung von Kraftwerken und Netzen	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 122 von 376

Modul: 30450 Renewable Energy for Rural Areas

2. Modulkürzel:	Hohenheim		5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP		6. Turnus:	jedes Semester
4. SWS:	4.0		7. Sprache:	Deutsch
8. Modulverantwortlich	er:	DrIng	. Bernhard Bäuerle-Ha	ahn
9. Dozenten:				
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	→ (eM.D. Energietechnik, l Chalmers Outgoing Pflichtmodule mit Wahlr	
		→ \	Energietechnik, PO 20 /ertiefungsmodule /flichtmodule mit Wahlr	
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:				
13. Inhalt:				
14. Literatur:				
15. Lehrveranstaltunge	en und -formen:			
16. Abschätzung Arbe	itsaufwand:			
17. Prüfungsnummer/n und -name: 30			Renewable Energy for mündlich, 120 Min., C	or Rural Areas (PL), schriftlich, eventuell Gewichtung: 1.0
18. Grundlage für :				
19. Medienform:				
20. Angeboten von:		Universität Hohenheim		

Stand: 25. März 2014 Seite 123 von 376

Modul: 30410 Simulation mit Höchstleistungsrechnern

2. Modulkürzel:	041500006	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Michael Resch	
9. Dozenten:		Bastian Koller	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Methoden der Modellieru → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter ung und Simulation
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Methoden der Modellieru → Kernfächer mit 6 LP 	ngsfach mit Querschnittscharakter
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Vorau	ssetzungen:	Grundlagen der Informatik und	d Mathematik
12. Lernziele:		Die Studenten verstehen • die Funktionsweise eines S • die Programmierung eines • die Architektur eines Super den Einsatz von Supercomput	Supercomputers rcomputers
13. Inhalt:		Supercomputer-Konzepte Supercomputer-Architekturen Supercomputer-Programmieru Supercomputer-Einsatz	ung
14. Literatur:		Neu zu erstellendes Skriptum	zur Vorlesung
15. Lehrveranstaltunge	en und -formen:	304101 Vorlesung Simulation	n mit Höchstleistungsrechnern
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 42 h Selbststudium: 138 h Summe. 180 h	
17. Prüfungsnummer/r	n und -name:	30411 Simulation mit Höchst Prüfung, 120 Min., Ge	leistungsrechnern (PL), schriftliche wichtung: 1.0
18. Grundlage für :			
19. Medienform:		PPT-Präsentation, Tafelansch	rieb
20. Angeboten von:			

Stand: 25. März 2014 Seite 124 von 376

Modul: 30420 Solarthermie

2. Modulkürzel:	042400023	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	DrIng. Harald Drück	
9. Dozenten:		Harald Drück	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energiespeicherung und → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter d -verteilung
		 M.Sc. Energietechnik, PO 20¹ → Vertiefungsmodule → Pflichtmodule mit Wahln 	
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Mathema	tik und Thermodynamik
12. Lernziele:		Erworbene Kompetenzen: Die Studierenden	
		 können die auf unterschied Erdoberfläche auftreffende 	lich orientierte Flächen auf der Solarstrahlung berechnen
		 kennen Methoden zur aktive Solarenergienutzung im Nie 	•
		 kennen Solaranlagen und d Trinkwassererwärmung, Ra 	leren Komponenten zur aumheizung und solaren Kühlung
		 kennen unterschiedliche Technologien zur Speicherung von Solarwärme. 	
		 kennen die Technologien konzentrierender Solartechnik zur Erzeugu von Strom und Hochtemperaturwärme 	
13. Inhalt:		zur Solarstrahlung vermittelt.	warmeübertragungsvorgänge an von Sonnenkollektoren, Wärmespeicher

Stand: 25. März 2014 Seite 125 von 376

(Technologien, Bauformen, Beurteilung) werden ausführlich hinsichtlich Grundlagen und Anwendung behandelt. Der Einsatz sowie der Aufbau von Solaranlagen zur Trinkwassererwärmung, zur kombinierten Trinkwassererwärmung und Heizungsunterstützung, zur Erwärmung von Freibädern und zur solaren Kühlung wird ausführlich diskutiert.

	Zusätzlich zur aktiven Solarenergienutzung sind die Grundlagen passiver Solarenergienutzung Gegenstand der Lehrveranstaltung. Im Hinblick auf die Erzeugung von Strom mittels solarthermischen Prozessen werden die aktuellen Technologien wie Parabolrinnen- und Solarturmkraftwerke erläutert und über aktuelle Kraftwerksprojekte berichtet.
14. Literatur:	J.A. Duffie, W.A. Beckman: Solar Engineering ofThermal Processes, Wiley-Interscience, ISBN 0-471-51056
	 Volker Quaschning: Regenerative Energiesysteme, Hanser Verlag. ISBN 978-3-446-40973-6
	 Norbert Fisch / Bruno Möws / Jürgen Zieger:Solarstadt Konzepte, Technologien, Projekte,W. Kolhammer, 2001 ISBN 3-17-015418-4
	 Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb und Aufgabenblättern
15. Lehrveranstaltungen und -formen:	304201 Vorlesung Solarthermie 304202 Übung mit Workshop Solarthermie
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 48 Stunden Selbststudium: 132 Stunden Summe: 180 Stunden
17. Prüfungsnummer/n und -name:	30421 Solarthermie (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Vorlesung als Powerpoint-Präsentation mit Beispielen zur Erläuterung und Anwendung des Vorlesungsstoffes ergänzend Tafelanschrieb
20. Angeboten von:	

Stand: 25. März 2014 Seite 126 von 376

Modul: 19200 Thermo and Fluid Dynamics

2. Modulkürzel:	041600203	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	5.5	7. Sprache:	Englisch
8. Modulverantwortlich	ner:	UnivProf.DrIng. Eckart Laurie	n
9. Dozenten:		Ulrich Eiden Eckart Laurien	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, PO → Chalmers → Incoming → Specialization Modules	2011
		DoubleM.D. Energietechnik, PO → Chalmers → Outgoing → Pflichtmodule mit Wahlmö	
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 	
11. Empfohlene Vorau	ssetzungen:	Knowledge in mechanical, chem	nical, or civil enginering
12. Lernziele:		convection and heat conduction establish a mathematical formul able to select mathematical and estimate the uncertainties, and partial state-of-the-art simulation tools. fundamental thermodynamic law formulate single and multicomposition.	the physical mechanism of diffusion, within flows of fluid mixtures and ation for their description. They are numerical procedures for their solution, perform numerical simulations using The students are familiar with the vs and processes and are able to onent phase equilibria. Therefore they are optimize, and evaluate the elements of water and/or air treatment.
13. Inhalt:			
		I Thermodynamics of Fluid Mixto	ures (Dr. U. Eiden)
		first and second law of thermo	odynamics
		reversible and irreversible systems	
		essential thermodynamic process	
		single component phase equilibria	
		description of homogeneous a	and heterogeneous mixtures
		II Adsorption (Dr. U. Eiden):	
		technical adsorbents	
		fundamentals of adsorption ed	quilibrium
		desorption methods	

Stand: 25. März 2014 Seite 127 von 376

- -- industrial application
- -- design criteria
- -- short-cut methods

III Flow with Heat Transfer (Prof. E. Laurien):

- -- convection and conduction, heat transfer coefficient
- -- dimension analysis, non-dimensional parameters
- -- conservation equations and boundary conditions
- -- fully developed laminar channel and pipe flows, dissipation
- -- boundary-layer theory, thermal boundary layers
- -- turbulent pipe flow with heat transfer

IV Computational Fluid Dynamics (Prof. E. Laurien):

- -- multidimensional conservation equations for turbulent flows
- -- computational examples using Ansys-CFX
- -- numerical integration using the Finite-Volume Method
- -- accuracy and error estimation
- -- k-epsilon turbulence model

14. Literatur:	Lecture Material available in ILIAS	
15. Lehrveranstaltungen und -formen:	 192001 Lecture Thermodynamics of Fluid Mixtures 192002 Lecture Flow with Heat Transfer 192003 Lecture Computational Fluid Dynamics 192004 Lecture Adsorption 	
16. Abschätzung Arbeitsaufwand:	I Thermodynamics of Fluid Mixtures, lecture: 1.5 SWS = 21 hours, exercises: 0.5 SWS = 7 hours	
	II Adsorption, lecture: 0.5 SWS = 7 hours	
	III Flow with Heat Transfer, lecture: 1.0 SWS = 14 hours, exercise: 0.5 SWS = 7 hours	
	IV Computational Fluid Dynamics, lecture: 1.0 SWS = 14 hours, exercis 0.5 SWS = 7 hours	
	exam: 2hours	
	sum of attendance: 79 hours	
	self-study: 101 hours	

Stand: 25. März 2014 Seite 128 von 376

total: 180 hours

17. Prüfungsnummer/n und -name:	19201 Thermo and Fluid Dynamics (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Thermodynamics of Fluid Mixtures + Adsorption: weighted 0.5 Flow with Heat Transfer + Computational Fluid Dynamics: weighted 0.5
18. Grundlage für :	
19. Medienform:	black board and projector
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme

Stand: 25. März 2014 Seite 129 von 376

Modul: 12420 Windenergie 1 - Grundlagen Windenergie

2. Modulkürzel:	060320011	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Windenergie → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Windenergie → Kernfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Vorau	ssetzungen:	Technische Mechanik I	
12. Lernziele:		Windenergieanlagen auszuf lokalen Windpotenzials, des elektrischen Anlagenkonzep elektrischen Netz. • Ebenfalls können die Wirtsc	
13. Inhalt:		Ertragsberechung, Standort Funktion von Windenergiear Blattelement-Impulstheorie, Konstruktiver Aufbau: 1. Me	nziale, Windbeschreibung für wahl und Windparkaspekte, Typologie und nlagen, Aerodynamische Auslegung und Kennlinien und Leistungsbegrenzung, chanik, 2. Elektrisches System und stungen, Offshore-Windenergieanlagen, plitische Fragen

Stand: 25. März 2014 Seite 130 von 376

	Es werden Hörsaal- und Hausübungen sowie der Hochlaufversuch Böenwindkanal angeboten bzw. durchgeführt.	
14. Literatur:		
	 R. Gasch, J. Twele, Windkraftanlagen James F. Manwell, Jon G. McGowan, Anthony L. Rogers, Wind Ene Explained: Theory, Design and Application http://www.wind-energie.de/infocenter/technik 	
15. Lehrveranstaltungen und -formen:	 124201 Vorlesung Windenergienutzung I 124202 Übung Windenergienutzung I 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit Windenergienutzung I , Vorlesung: 24 Stunden	
	Selbststudium Windenergienutzung I , Vorlesung: 63 Stunden	
	Präsenzzeit Windenergienutzung I , Übung: 8 Stunden	
	Selbststudium Windenergienutzung I , Übung: 77 Stunden	
	Präsenzzeit Windkanalversuch: 3 Stunden	
	Bearbeitungszeit Versuchsauswertung: 5 Stunden	
	Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	12421 Windenergie 1 - Grundlagen Windenergie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Alle 4 Hausübungen und der Laborbericht während des Semesters sind Voraussetzung für die Teilnahme an der Prüfung. Die Prüfung umfasst einen Fragenteil (15min) und einen Rechenteil (45min)	
18. Grundlage für :	30880 Windenergie 3 - Entwurf von Windenergieanlagen30890 Windenergie 4 - Windenergie-Projekt	
9. Medienform:	PowerPoint, Tafelanschrieb	
20. Angeboten von:	Lehrstuhl Windenergie	
·		

Stand: 25. März 2014 Seite 131 von 376

122 Spezialisierungsfächer

Zugeordnete Module: 211 Erneuerbare thermische Energiesysteme

212 Feuerungs- und Kraftwerkstechnik

213 Gebäudeenergetik214 Kernenergietechnik

215 Strömungsmechanik und Wasserkraft216 Techniken zur effizienten Energienutzung

217 Thermische Turbomaschinen

218 Windenergie

Stand: 25. März 2014 Seite 132 von 376

211 Erneuerbare thermische Energiesysteme

Zugeordnete Module: 2111 Kernfächer mit 6 LP

2112 Ergänzungsfächer mit 6 LP2113 Ergänzungsfächer mit 3 LP

30560 Praktikum Erneuerbare Thermische Energiesysteme

Stand: 25. März 2014 Seite 133 von 376

2113 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30510 Geothermische Energienutzung

30520 Sonderprobleme der Gebäudeenergetik30530 Verbrennung und Verbrennungsschadstoffe

30540 Dampfturbinentechnologie

30550 Kraftstoffe aus Erneuerbaren Energien

36040 The biogas process

36750 Rationelle Wärmeversorgung

36880 Solartechnik II

Stand: 25. März 2014 Seite 134 von 376

Modul: 30540 Dampfturbinentechnologie

2. Modulkürzel:	042310016	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Norbert Sürken	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Thermische Turbomasch → Ergänzungsfächer mit 3	hinen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Ergänzungsfächer mit 3 	ches Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3 	ches Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Ergänzungsfächer mit 3 	ches Spezialisierungsfach hinen
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Gr	rundlagen, Technische Thermodynamik I+II
		Strömungsmechanik oder Ted	chnische Strömungslehre
12. Lernziele:		Der Studierende	
		 und technischen Vorgänge beherrscht die Thermodyna Rankine-Prozesses ist in der Lage, die Funktion Dampfturbinen- Komponent erkennen und zu analysiere 	ten und deren Zusammenwirken zu
		und kann diese begründen	
13. Inhalt:		Energieressourcen	
		Marktentwicklungen für Kra	ftwerke
		Historische Entwicklung der	Dampfturbine
		Dampfturbinenhersteller	

Stand: 25. März 2014 Seite 135 von 376

	Einsatzspektrum	
	Thermodynamischer Arbeitsprozess	
	Arbeitsverfahren und Bauarten	
	Leistungsregelung	
	Beschaufelungen	
	Betriebszustände	
	Turbinenläufer und Turbinengehäuse	
	Systemtechnik und Regelung	
	Werkstofftechnik	
14. Literatur:	Bell, R., Dampfturbinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart	
	 Traupel, W., Thermische Turbomaschinen, 4. Aufl., Bd. 1 u. 2, Springe 2001 	
	Dietzel, F., Dampfturbinen; 3. Aufl.; Hanser 1980	
15. Lehrveranstaltungen und -formen:	305401 Vorlesung Dampfturbinentechnologie	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n und -name:	30541 Dampfturbinentechnologie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript	
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratoriun	

Stand: 25. März 2014 Seite 136 von 376

Modul: 30510 Geothermische Energienutzung

2. Modulkürzel:	042400040	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		Apl. Prof.DrIng. Klaus Spindl	ler
9. Dozenten:		Dan BauerKlaus Spindler	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Ergänzungsfächer mit 3	ches Spezialisierungsfach Energiesysteme
11. Empfohlene Vorau	ssetzungen:	Empfohlen: Technische Thern Wärmeübertragung	nodynamik I/II; Grundlagen der
12. Lernziele:		zur Nutzung der oberflächenn können entsprechende Kreisla Sie beherrschen die Grundlag der Technik und können entsp entwerfen, planen und wärme thermodynamischen Verfahre Kraft-Wärme- Kopplung aus T Grundlagen der verschiedene	rundlagen und technischen Möglichkeiten ahen und tiefen Geothermie. Sie aufberechnungen durchführen. Jen nach dem geltenden Stand brechend geothermische Anlagen technisch auslegen. Sie kennen die n und Kreisläufe zur Stromerzeugung und Tiefengeothermie. Sie beherrschen die n Wärmepumpenprozesse und können utzung der Erdwärme auslegen und konomisch zu bewerten.
13. Inhalt:		Tiefengeothermie :	
		Grundlagen, Potenziale, Wa	ärmeleitung, Geologie
		 Grundwasserströmungen 	
		direkte Thermalwassernutzu	ung
		ORC-Prozesse • Kalina-Pro	ozesse • Hot-Dry-Rock-Verfahren
		Kraft-Wärme-Kopplung	
		Oberflächennahe Geothermie:	

- Thermodynamische Grundlagen, Ideal- Prozess, Theoretischer Vergleichsprozess der Kompressionswärmepumpe
- Realer Prozess der Kaltdampfkompressionswärmepumpe idealisierter Absorptionsprozess,
- Leistungszahl, Jahresnutzungsgrad,
- Arbeitsmittel und Komponenten für Kompressionswärmepumpen und Absorptionswärmepumpen

Stand: 25. März 2014 Seite 137 von 376

	 Auslegungsbeispiele und Dimensionierung für Wärmepumpen
	Wirtschaftlichkeit und Vergleich mit anderen Wärmeerzeugungsanlagen
	Kühlen mit Erdsonden
14. Literatur:	Powerpoint-Folien der Vorlesung, Daten- u. Arbeitsblätter
15. Lehrveranstaltungen und -formen:	305101 Vorlesung mit integrierten Übungen Geothermische Energienutzung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 h Selbststudium, Prüfungsvorber.: 62 h Gesamt: 90 h
17. Prüfungsnummer/n und -name:	30511 Geothermische Energienutzung (BSL), schriftliche Prüfung, 6 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 25. März 2014 Seite 138 von 376

Modul: 30550 Kraftstoffe aus Erneuerbaren Energien

2. Modulkürzel:	042500053	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Günter Scheffknecht	
9. Dozenten:		Michael Specht	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP	
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Ergänzungsfächer mit 3	hes Spezialisierungsfach Energiesysteme
11. Empfohlene Vorau	ssetzungen:	Empfohlen: Grundkenntnisse in Chemie und Physik	
12. Lernziele:		Studierenden	
		 besitzen vertiefte Kenntnisse über diverse Pfade zur Herstellung von Kraftstoffen aus Erneuerbaren Energien. 	
		 sind in der Lage, die energetischen Ressourcen (Biomasse, Strompotenziale aus Wind-, Solarenergie, etc.) und die stofflichen Ressourcen (Biomasse, Kohlendioxid, etc.) zur Herstellung von Sekundärenergieträgern zu bewerten. 	
		·	inftige Konzepte im Bereich der Mobilität z Lösungswege zu generieren.
			der saisonalen Speicherung von rm von flüssigen und gasförmigen
13. Inhalt:		Im Rahmen der Vorlesung we regenerativ erzeugter Kraftsto und Nachteile der verschieder Hierbei wird auf die vermieder Effizienz bei der Erzeugung de	rs Erneuerbaren Energien" (2 SWS): rden die aussichtsreichsten Optionen ffe, deren Herstellungspfade sowie die Vor nen Energieträger dargestellt. nen CO2-Emissionen, die energetische er Sekundärenergieträger in Abhängigkeit und der Prozessführung eingegangen.
		Brennstoffsynthese aus Synthesegas, Gaserzeugung 2. Thermochemische Konvers	verse Gaskonditionierungsprozesse, für Brennstoffzellensysteme ion von Biomasse, Erzeugung von llensysteme für Erdgas und regenerative
14. Literatur:			Transportation Fuels", A. Bandi, M. in", Energy Technologies, Subvolume C: , p. 414 (2006)
		 vollständiger ppt-Foliensatz 	

Stand: 25. März 2014 Seite 139 von 376

	 ausgewählte Literatur für die Anfertigung der selbstständigen Hausarbeit
15. Lehrveranstaltungen und -formen:	 305501 Vorlesung Kraftstoffe aus Erneuerbaren Energien 305503 Exkursion 1 zum ZSW, Abteilung Regenerative Energieträger und Verfahren: Besichtigung von Anlagen zur Erzeugung von Sekundärenergieträgern
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 36 h (= 28 h V + 8 h E) Selbststudium: 54 h Summe: 90 h
17. Prüfungsnummer/n und -name:	30551 Kraftstoffe aus Erneuerbaren Energien (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0,
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 140 von 376

Modul: 36750 Rationelle Wärmeversorgung

2. Modulkürzel:	042410031	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		Apl. Prof.DrIng. Klaus Spindler	
9. Dozenten:		Klaus Spindler	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP	
11. Empfohlene Voraussetzungen:		Technische Thermodynamik I/II Wärmeübertragung	
12. Lernziele:		Die Studierenden beherrschen die Grundlagen zur energieeffizienten Wärmeversorgung von Gebäuden. Sie sind mit den aktuellen Normen und Standards vertraut. Sie können den Wärme- und Feuchtetransport durch Wände berechnen und Dämmstärken durch Wirtschaftlich- keitsberechnungen optimieren. Sie können verschiedene Wärmeversorgungsanlagen energetisch, wirtschaftlich und ökologisch bewerten. Sie kennen die Vorgänge bei Verbrennungsprozessen und die Bewertungsgrößen von Heizkesseln. Sie haben einen Überblick übe verschiedene Wärmeerzeugungsund Wärmerück-gewinnungssysteme und deren Effizienz. Sie können wärmetechnische Komponenten und Systeme bilanzieren und Vorschläge für einen geeigneten ressourcenschonenden Einsatz machen.	
13. Inhalt:		Treibhaus- Problematik, Klim Formkoeffizient, negative Iso	eilung des Endenergieeinsatzes, abeeinflussung, Wärmedurchgang, lierwirkung, Wasserdampfdiffusion, Dampfdiffusion durch geschichtete

Diffusionswiderstandstaktor, Dampfdiffusion durch geschichtete ebene Wand, Feuchtigkeitsausscheidung, Glaser- Verfahren, feuchte Luft, h,x- Diagramm, Wirtschaftlichkeitsberechnungen, Wärmekosten einer Zentralheizung, Kostenrechnung für Wärmedämmung, Verbrennungsprozesse, Heizwert, Brennwert, Brennstoffe, Luftüberschuss, Zusammensetzung des feuchten und trockenen Rauchgases, Rechenbeispiel für Gasheizkessel, Kennwerte für Heizkessel, Kesselwirkungsgrad, Betriebsbereitschaftsverluste, Jahresnutzungsgrad, Teillastnutzungsgrad, Wärmeerzeugungsanlagen, Brennwerttechnik, Holzpelletfeuerung, Wärme-Kraftkopplung, Wärmepumpen, Jahresheizwärme- und Jahresheizenergiebedarf, Wärmedurchgang durch Bauteile, Luftwechsel, Lüftungswärmebedarf, Fugendurchlasskoeffizient, solare Wärmegewinne, Gesamtenergiedurchlassgrad, Energetische Bewertung heiz- und raumlufttechnischer Anlagen, Wärmedämmstandards, Wärmeschutzverordnung, Energieeinsparung in Gebäuden, Energieeinsparverordnung, Kontrollierte Lüftung mit Wärmerückgewinnung, Rekuperatoren, Regeneratoren, Wärmerohr, kreislaufverbundene Systeme, Rückwärmzahl, Rückfeuchtezahl, Rationelle Energienutzung in Schwimmbädern,

Stand: 25. März 2014 Seite 141 von 376

	Zentrale Wärmeversorgungskonzepte, Fernwärmeversorgung, Nahwärmeversorgung
14. Literatur:	Powerpoint-Folien der Vorlesung, Datenu. Arbeitsblätter
15. Lehrveranstaltungen und -formen:	367501 Vorlesung Rationelle Wärmeversorgung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 h Selbststudium, Prüfungsvorber.: 62 h Gesamt: 90h
17. Prüfungsnummer/n und -name:	36751 Rationelle Wärmeversorgung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Vorlesung als powerpoint-Präsentation mit Beispielen zur Anwendun des Stoffes, ergänzend Tafelanschrieb u. Overhead-Folien
20. Angeboten von:	

Stand: 25. März 2014 Seite 142 von 376

Modul: 36880 Solartechnik II

	042410025	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		Apl. Prof.DrIng. Klaus Spindler	
9. Dozenten:		Markus Eck	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	e Energiesysteme
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP 	
		M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifiso → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3	ches Spezialisierungsfach erkstechnik
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Die Studenten besitzen Grundkenntnisse der Funktion konzentrieren Solartechnik zur Erzeugung von Strom und Hochtemperaturwärme, Kenntnisse der Auslegungskonzepte, Werkstoffe und Bauweisen der solarspezifischen Subkomponenten: Kollektoren, Heliostat, Absorbei Receiver und Speicher.	
		solarspezifischen Subkompor	•
13. Inhalt:		solarspezifischen Subkompor Receiver und Speicher. Einführung und allgemeine Te • Potential und Markt solarthe	nenten: Kollektoren, Heliostat, Absorbe echnikübersicht ermischer Kraftwerke eg konzentrierter Solarstrahlung en Kraftwerkstechnik eaftwerkstechnik einenkollektoren und Absorber ceiver eratur-Wärmespeicher wählter Speichertechniken
		solarspezifischen Subkompor Receiver und Speicher. Einführung und allgemeine Te Potential und Markt solarthe Grundlagen der Umwandlur Übersicht zur Parabol-Rinne Übersicht zur Solar Turm Kr Auslegungskonzepte für Rine Auslegungskonzepte für Re Grundlagen von Hochtempe Auslegungskonzepte ausge	nenten: Kollektoren, Heliostat, Absorbe echnikübersicht ermischer Kraftwerke og konzentrierter Solarstrahlung en Kraftwerkstechnik aftwerkstechnik enenkollektoren und Absorber ceiver eratur-Wärmespeicher wählter Speichertechniken verksprojekten
14. Literatur:	en und -formen:	solarspezifischen Subkompor Receiver und Speicher. Einführung und allgemeine Te • Potential und Markt solarthe • Grundlagen der Umwandlur • Übersicht zur Parabol-Rinne • Übersicht zur Solar Turm Kr • Auslegungskonzepte für Rir • Auslegungskonzepte für Re • Grundlagen von Hochtempe • Auslegungskonzepte ausge • Übersichtzu aktuellen Kraftv	nenten: Kollektoren, Heliostat, Absorbe echnikübersicht ermischer Kraftwerke eg konzentrierter Solarstrahlung en Kraftwerkstechnik eaftwerkstechnik einenkollektoren und Absorber ceiver eratur-Wärmespeicher wählter Speichertechniken verksprojekten tation
14. Literatur: 15. Lehrveranstaltunge		solarspezifischen Subkompor Receiver und Speicher. Einführung und allgemeine Te Potential und Markt solarthe Grundlagen der Umwandlur Übersicht zur Parabol-Rinne Übersicht zur Solar Turm Kr Auslegungskonzepte für Rine Auslegungskonzepte für Re Grundlagen von Hochtempe Auslegungskonzepte ausge Übersichtzu aktuellen Kraftv Kopie der Powerpoint-Präsen 368801 Vorlesung Solartech	nenten: Kollektoren, Heliostat, Absorber echnikübersicht ermischer Kraftwerke eg konzentrierter Solarstrahlung en Kraftwerkstechnik eaftwerkstechnik einenkollektoren und Absorber ereiver eratur-Wärmespeicher wählter Speichertechniken verksprojekten entation entik II
13. Inhalt: 14. Literatur: 15. Lehrveranstaltunge 16. Abschätzung Arbe 17. Prüfungsnummer/r	itsaufwand:	solarspezifischen Subkompor Receiver und Speicher. Einführung und allgemeine Te Potential und Markt solarthe Grundlagen der Umwandlur Übersicht zur Parabol-Rinne Übersicht zur Solar Turm Kr Auslegungskonzepte für Rie Auslegungskonzepte für Re Grundlagen von Hochtempe Auslegungskonzepte ausge Übersichtzu aktuellen Kraftv Kopie der Powerpoint-Präsen 368801 Vorlesung Solartech 368802 Seminar Solarkraftv Präsenzzeit: 28 h Selbststudiumszeit / Nacharb Gesamt: 90h	nenten: Kollektoren, Heliostat, Absorbe echnikübersicht ermischer Kraftwerke ig konzentrierter Solarstrahlung en Kraftwerkstechnik aftwerkstechnik inenkollektoren und Absorber ceiver eratur-Wärmespeicher wählter Speichertechniken verksprojekten tation nnik II

Stand: 25. März 2014 Seite 143 von 376

19. Medienform: Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb

20. Angeboten von:

Stand: 25. März 2014 Seite 144 von 376

Modul: 30520 Sonderprobleme der Gebäudeenergetik

2. Modulkürzel:	041310005	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.DrIng. Michael Sc	hmidt	
9. Dozenten:		Michael Schmidt		
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Gebäudeenergetik → Ergänzungsfächer mit 3		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP 		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Gebäudeenergetik → Ergänzungsfächer mit 3 	ches Spezialisierungsfach	
11. Empfohlene Vorau	ssetzungen:	Heiz- und Raumlufttechnik		
12. Lernziele:		die Losung gebäudetechnisch Aufgaben speziell im Hinblick gebäude kennen gelernt.	r Gebäudeenergetik haben die Studente ner auf Sonderund Spezialräume bzw sonderlösungen konzipieren, eschreiben	
			zial- und Sonderfälle vertraut gen für solche fälle entwickeln und	
13. Inhalt:		 Sonderräume in der Heiz- ur spezielle technische Lösung alternative und regenerative energieeinsparendes Bauen 	en in der Anlagentechnik Energien	
14. Literatur:		Auflage, Berlin: Springer-Verla Rietschel, H.; Raumklimatec Maschinenbau Seite 714 Raum Springer-Verlag, 2004 Bach, H.; Hesslinger, S.: Wa Karlsruhe: C.F. Müller- Verlag Wagner, W.: Wärmeübertrag Würzburg: Vogel-Verlag, 1998	hnik Band 3: Modulhandbuch M.Sc. mheiztechnik -16. Auflage, Berlin: armwasserfußbodenheizung, 3. Auflage, gung -Grundlagen, 5. über. Auflage,	

Stand: 25. März 2014 Seite 145 von 376

15. Lehrveranstaltungen und -formen:	305201 Vorlesung Sonderprobleme der Gebäudeenergetik
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden
17. Prüfungsnummer/n und -name:	30521 Sonderprobleme der Gebäudeenergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 25. März 2014 Seite 146 von 376

Modul: 36040 The biogas process

2. Modulkürzel:	0212020009		5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP		6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0		7. Sprache:	Englisch
8. Modulverantwortlich	er:	Dr. Carl	a Cimatoribus	
9. Dozenten:		Carla C	imatoribus	
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	 → Ar → Co 	M.D. Energietechnik, Freas of Specialization ombustion and Power ective Modules (3 CP)	Plant Technology
		→ Sp → Er	M.D. Energietechnik, F bezialisierungsfächer neuerbare thermische gänzungsfächer mit 3	Energiesysteme
		→ Gr → Er	nergietechnik, PO 201 ruppe 1: Fachspezifisc neuerbare thermische gänzungsfächer mit 3	ches Spezialisierungsfach Energiesysteme
11. Empfohlene Vorau	ssetzungen:	,	sted) Chemistry and Bi nical and Biological Wa	ology for Environmental Engineers, aste Treatment
12. Lernziele:		 The student should be able to: Explain the biochemistry of the anaerobic digestion process Describe and discuss critically the process applications (Substrates, reactor types, biogas uses, emissions treatment) Deliver a basic design of a biogas plant (choice and dimensioning of the main equipment, safety concept, preliminary cost/profit estimations) Build a basic model of the anaerobic digestion process 		
13. Inhalt:		ApplicSubstrPlant cProcesLow-T	ations and plants cond	niogas processing and utilisation n, energy balance trol, safety concept
14. Literatur:		 Lecture notes Bischofsberger et al. Anaerobtechnik (in German) Tchobanoglous et al. Wastewater Engineering: Treatment and Re (in English, Chapt. 14-9, Anaerobic digestion of sludge) 		water Engineering: Treatment and Reuse
15. Lehrveranstaltunge	en und -formen:	360401	Lecture Biogas: prod	cess concepts and plant design
16. Abschätzung Arbei	tsaufwand:	Lecture	time: 28 h	
		Individu	al study: 62h	
		36041	The biogas process (E	BSL), schriftliche Prüfung, 60 Min.,
17. Prüfungsnummer/n	und -name:		Gewichtung: 1.0	,,

Stand: 25. März 2014 Seite 147 von 376

19. Medienform: PPt slides, black board

20. Angeboten von: Abfallwirtschaft

Stand: 25. März 2014 Seite 148 von 376

Modul: 30530 Verbrennung und Verbrennungsschadstoffe

2. Modulkürzel:	042200003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Andreas Kroner	nburg
9. Dozenten:		Andreas Kronenburg	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Feuerungs- und Kraftwei → Ergänzungsfächer mit 3	rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifischerneuerbare thermischer → Ergänzungsfächer mit 3 	hes Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwer → Ergänzungsfächer mit 3 	hes Spezialisierungsfach rkstechnik
11. Empfohlene Vorau	ssetzungen:	Ingenieurwissenschaftliche Gr	undlagen, Grundlagen in Thermodynam
12. Lernziele:		der Verbrennung und der Ents Verbrennungsprozess. Die Te	emisch-physikalischen Grundlagen stehung von Schadstoffen beim ilnehmer erwerben die Kompetenz, ergiewandlungen quantitativ ermitteln un
13. Inhalt:		Verbrennung und Verbrennu	ungsschadstoffe:
		Die chemischen und physika	alische Grundlagen der Verbrennung
		Laminare vorgemischte und	nicht-vorgemischte Flammen:
		Flammenstruktur und -geschwindigkeit	
		 Erhaltungsgleichungen für M 	Masse, Energie und Geschwindigkeit
		Turbulente vorgemischte un	d nicht-vorgemischte Flammen:
		Gleichungssysteme	
		Modellierungsstrategien	
		Entstehung von Schadstoffe	en
14. Literatur:		 Vorlesungsmanuskript S.R. Turns, "An Introduction 2000 	to Combustion", 2nd Edition, McGrawHi
15. Lehrveranstaltunge	en und -formen:		ung und Verbrennungsschadstoffe
9			

Stand: 25. März 2014 Seite 149 von 376

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 h Selbststudiumzeit/Nachbearbeitungszeit: 69 h Summe: 90 h
17. Prüfungsnummer/n und -name:	30531 Verbrennung und Verbrennungsschadstoffe (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen
20. Angeboten von:	

Stand: 25. März 2014 Seite 150 von 376

2112 Ergänzungsfächer mit 6 LP

Zugeordnete Module: 18160 Berechnung von Wärmeübertragern

Stand: 25. März 2014 Seite 151 von 376

Modul: 18160 Berechnung von Wärmeübertragern

2. Modulkürzel:	042410030	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	Dr. Wolfgang Heidemann		
9. Dozenten:		Wolfgang Heidemann		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 6 LP		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Wärme- u	nd Stoffübertragung	
12. Lernziele:		Erworbene Kompetenzen:		
		Dia Studiarandan		

Die Studierenden

• kennen die Grundgesetze der Wärmeübertragung und der Strömungen

 sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsaussagen und Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden

Stand: 25. März 2014 Seite 152 von 376

	 kennen unterschiedliche Methoden zur Berechnung von Wärmeübertragern kennen die Vor- und Nachteile verschiedener Wärmeübertragerbauformen 		
13. Inhalt:	Ziel der Vorlesung und Übung ist es einen wichtigen Beitrag zur Ingenieursausbildung durch Vermittlung von Fachwissen für die Berechnung von Wärmeübertragern zu leisten.		
	Die Lehrveranstaltung		
	 zeigt unterschiedliche Wärmeübertragerarten und Strömungsformen der Praxis, vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert, Kennzahlen, NTU-Diagramm, Zellenmethode behandelt Sonderbauformen und Spezialprobleme(Wärmeverluste), vermittelt Grundlagen zur Wärmeübertragung in Kanälen und im Mantelraum (einphasige Rohrströmung, Plattenströmung, Kondensation, Verdampfung), führt in Fouling ein (Verschmutzungsarten, Foulingwiderstände, Maßnahmen zur Verhinderung/ Minderung, Reinigungsverfahren), behandelt die Bestimmung von Druckabfall und die Wärmeübertragun durch berippte Flächen vermittelt die Berechnung von Regeneratoren 		
14. Literatur:	Vorlesungsmanuskript,		
	 empfohlene Literatur: VDI: VDI-Wärmeatlas, Springer Verlag, Berlin Heidelberg, New York. 		
15. Lehrveranstaltungen und -formen:	181601 Vorlesung Berechnung von Wärmeübertragern181602 Übung Berechnung von Wärmeübertragern		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h		
	Selbststudiumszeit / Nacharbeitszeit: 124 h		
	Gesamt: 180 h		
17. Prüfungsnummer/n und -name:	18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0		
18. Grundlage für :			
19. Medienform:	Vorlesung: Beamerpräsentation		
	Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware		
20. Angeboten von:			

Stand: 25. März 2014 Seite 153 von 376

2111 Kernfächer mit 6 LP

Zugeordnete Module: 12440 Einführung in die energetische Nutzung von Biomasse

15440 Firing Systems and Flue Gas Cleaning

30420 Solarthermie

30460 Biologische und chemische Verfahren für die industrielle Nutzung von Biomasse

(Energieträger und Chemierohstoffe)

Stand: 25. März 2014 Seite 154 von 376

Modul: 30460 Biologische und chemische Verfahren für die industrielle Nutzung von Biomasse (Energieträger und Chemierohstoffe)

2. Modulkürzel:	041400501	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	5.0	7. Sprache:	Deutsch	
3. Modulverantwortlich	er:	Prof.Dr. Thomas Hirth		
9. Dozenten:		Thomas HirthUrsula SchließmannSteffen Rupp		
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach	
11. Empfohlene Vorau	ssetzungen:	Empfohlen: Grundlagen Erner energetischen Nutzung von B	uerbare Energien Grundlagen der iomasse	
12. Lernziele:		Die Studierenden		
		Konversionsprozesse und F biologischen Verfahren zur	offquellen, Aufbereitungs- und Produkte einer Bioraffinerie - kennen die Herstellung von biogenen Energieträger anol, Algen) und Chemierohstoffen	
		 kennen die chemischen Ver Energieträgern (Biodiesel) u 	rfahren zur Herstellung von biogenen und Chemierohstoffen	
		 wissen um Einsatz der Biomasse und Anwendungen der biobasierte Energieträger und Chemierohstoffe 		
		 kennen die Auswirkungen der Konversionsprozesse im Hinblick auf Energieeffizienz und CO2- Reduktionsstrategie 		
		 kennen die Problematik Bio Energieträgern 	masse zu Lebensmittel bzw. zu	
13. Inhalt:		Nachhaltige Rohstoffversor	gung	
		Aufbau einer Bioraffinerie -	Rohstoffe, Prozesse und Produkte	
		 Biologische Verfahren zur F Chemierohstoffen 	Herstellung von Energieträgern und	
		Chemische Verfahren zur F Chemierohstoffen	lerstellung von Energieträgern und	
		Auswirkungen von Konvers	ionsprozessen auf die CO2 Bilanz	
14. Literatur:		Hirth, Thomas, Von der Erd Vorlesungsmanuskript.	ölraffinerie zur Bioraffinerie,	

Stand: 25. März 2014 Seite 155 von 376

	 Trösch, Walter, Hirth, Thomas, Biologische und chemische Verfahre zur industriellen Nutzung von Biomasse (Energieträger und
	Chemierohstoffe), Vorlesungsmanuskript.
	 Ulmann, Encyclopedia of Industrial Chemistry, Wiley-VCH.
	 Kamm, Gruber, Kamm Biorefineries - Industrial processes and products
15. Lehrveranstaltungen und -formen:	 304601 Vorlesung Nachhaltige Rohstoffversorgung - Von der Erdölraffinerie zur Bioraffinerie 304602 Vorlesung Biologische und chemische Verfahren zur
	industriellen Nutzung von Biomasse (Energieträger und Chemierohstoffe)
	• 304603 Exkursion
16. Abschätzung Arbeitsaufwand:	Präsenz: 70 h
	Selbststudium: 110 h
	Gesamt: 180 h
17. Prüfungsnummer/n und -name:	30461 Biologische und chemische Verfahren für die industrielle Nutzung von Biomasse (Energieträger und Chemierohstoffe) (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 25. März 2014 Seite 156 von 376

Modul: 12440 Einführung in die energetische Nutzung von Biomasse

2. Modulkürzel:	042500002	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtLudger EltropUwe Schnell	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	PO 2011
		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach rkstechnik
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahln	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		verstanden. Sie kennen Quali Biomasse, die wichtigsten Um Vergasung und Fermentation, die nachgeschalteten Prozess Sie können ihre erlangten Ker Einsatzes von Biomasse zur E	Grundlagen der Nutzung von Biomasse tät, Verfügbarkeit und Potentiale von wandlungsverfahren Verbrennung, die damit verbundenen Emissionen sow se zur Strom- und/oder Wärmeerzeugung nntnisse für die Beurteilung des verstärkte Energieerzeugung einsetzen. Des weitere zungskonzepte beurteilen und erstellen.
13. Inhalt:		I: Bereitstellung von biogen	en Energieträgern
			technische Grundlagen zur Produktion ur e als Brennstoff zur energetischen Nutzu

Stand: 25. März 2014 Seite 157 von 376

Auswirkungen

• technisch-wirtschaftliche Entwicklungsperspektiven und ökologische

20. Angeboten von:

	 Einordnung der systema Zusammenhänge 	analytischen und energiewirtschaftlichen	
	Rahmenbedingungen ei	ner Nutzung in Energiesystem	
	 Einführung in physikalise Umwandlungsverfahren 	ch-chemische und biochemische	
	II: Energetische Nutzung	von Biomasse	
	Brennstofftechnische Ch	narakterisierung von Biomasse	
	 Einführung in Verbrennu Fermentation 	ungs- und Vergasungstechnologien sowie die	
	 Emissionsverhalten und Einführung in die Abgasreinigung 		
	 Einführung in die Umwandlungsverfahren zur Erzeugung von Strom und/oder Wärme 		
14. Literatur:	Vorlesungsmanuskript		
		I., Hartmann, H. (Hrsg.) Energie aus rlag, Berlin, Heidelberg, New York, 2009	
15. Lehrveranstaltungen und -formen:	_	nrung in die energetische Nutzung von	
	Biomasse • 124402 Übung Einführun Biomasse	ng in die energetische Nutzung von	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h	
	Selbststudiumszeit / Nacha	arbeitszeit: 124 h	
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:		energetische Nutzung von Biomasse (PL), g, 120 Min., Gewichtung: 1.0	
18. Grundlage für :			
19. Medienform:	TafelanschriebPPT-PräsentationenSkripte zu den Vorlesung	gen	

Stand: 25. März 2014 Seite 158 von 376

Institut für Feuerungs- und Kraftwerkstechnik

Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel:	042500003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlich	ner:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtGünter BaumbachHelmut Seifert	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core Modules	
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Core/Elective Modules (t
		DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kernfächer mit 6 LP	
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc	

- → Gruppe 1: Fachspezifisches Spezialisierungsfach
- → Feuerungs- und Kraftwerkstechnik
- → Kernfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kern- / Ergänzungsfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kernfächer mit 6 LP

Stand: 25. März 2014 Seite 159 von 376

11. Empfohlene Voraussetzungen:	Fundamentals of Engineering Science and Natural Science, fundamentals of Mechanical Engineering, Process Engineering, Reacti Kinetics as well as Air Quality Control	
12. Lernziele:	The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and for different capacity ranges are best suited, and how furnaces and flames need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining polluta emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants' manufactures, operators and supervisory authorities	
13. Inhalt:	I: Combustion and Firing Systems I (Scheffknecht):	
	 Fuels, combustion process, science of flames, burners and furnaces, heat transfer in combustion chambers, pollutant formation and reduction in technical combustion processes, gasification, renewable energy fuels. 	
	II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):	
	 Methods for dust removal, nitrogen oxide reduction (catalytic/ non- catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants. Energy use and flue gas cleaning; residues from thermal waste treatment. 	
14. Literatur:	I:	
	 Lecture notes "Combustion and Firing Systems" 	
	• Skript	
	II:	
	 Text book "Air Quality Control" (Günter Baumbach, Springer publishers) 	
	 News on topics from internet (for example UBA, LUBW) 	
	III:	
	Lecture notes for practical work	
15. Lehrveranstaltungen und -formen:	 154401 Lecture Combustion and Firing Systems I 154402 Vorlesung Flue Gas Cleaning at Combustion Plants 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h V	
	Selbststudiumszeit / Nacharbeitszeit: 124 h	
	Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		

Stand: 25. März 2014 Seite 160 von 376

19. Medienform:	Black board, PowerPoint Presentations, Practical measurements
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 161 von 376

Modul: 30420 Solarthermie

2. Modulkürzel:	042400023	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	DrIng. Harald Drück	
9. Dozenten:		Harald Drück	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Kernfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahln 	
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Mathema	tik und Thermodynamik
12. Lernziele:		Erworbene Kompetenzen: Die Studierenden	
		 können die auf unterschied Erdoberfläche auftreffende 	lich orientierte Flächen auf der Solarstrahlung berechnen
		 kennen Methoden zur aktive Solarenergienutzung im Nie 	·
		 kennen Solaranlagen und d Trinkwassererwärmung, Ra 	leren Komponenten zur aumheizung und solaren Kühlung
		 kennen unterschiedliche Technologien zur Speicherung von Solarwärme. 	
		 kennen die Technologien ko von Strom und Hochtemper 	onzentrierender Solartechnik zur Erzeugun raturwärme
13. Inhalt:		zur Solarstrahlung vermittelt. Sonnenkollektoren, Bauforme	wärmeübertragungsvorgänge an en von Sonnenkollektoren, Wärmespeicher

Stand: 25. März 2014 Seite 162 von 376

(Technologien, Bauformen, Beurteilung) werden ausführlich hinsichtlich Grundlagen und Anwendung behandelt. Der Einsatz sowie der Aufbau von Solaranlagen zur Trinkwassererwärmung, zur kombinierten Trinkwassererwärmung und Heizungsunterstützung, zur Erwärmung von Freibädern und zur solaren Kühlung wird ausführlich diskutiert.

	Zusätzlich zur aktiven Solarenergienutzung sind die Grundlagen passiver Solarenergienutzung Gegenstand der Lehrveranstaltung. Im Hinblick auf die Erzeugung von Strom mittels solarthermischen Prozessen werden die aktuellen Technologien wie Parabolrinnen- und Solarturmkraftwerke erläutert und über aktuelle Kraftwerksprojekte berichtet.
14. Literatur:	J.A. Duffie, W.A. Beckman: Solar Engineering ofThermal Processes, Wiley-Interscience, ISBN 0-471-51056
	 Volker Quaschning: Regenerative Energiesysteme, Hanser Verlag. ISBN 978-3-446-40973-6
	 Norbert Fisch / Bruno Möws / Jürgen Zieger:Solarstadt Konzepte, Technologien, Projekte,W. Kolhammer, 2001 ISBN 3-17-015418-4
	 Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb und Aufgabenblättern
15. Lehrveranstaltungen und -formen:	304201 Vorlesung Solarthermie 304202 Übung mit Workshop Solarthermie
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 48 Stunden Selbststudium: 132 Stunden Summe: 180 Stunden
17. Prüfungsnummer/n und -name:	30421 Solarthermie (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Vorlesung als Powerpoint-Präsentation mit Beispielen zur Erläuterung und Anwendung des Vorlesungsstoffes ergänzend Tafelanschrieb
20. Angeboten von:	

Stand: 25. März 2014 Seite 163 von 376

Modul: 30560 Praktikum Erneuerbare Thermische Energiesysteme

2. Modulkürzel:	042400016	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Apl. Prof.DrIng. Klaus Spindl	ler
9. Dozenten:		Klaus Spindler	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Outgoing → Spezialisierungsfächer → Erneuerbare thermische	
		 M.Sc. Energietechnik, PO 201 → Spezialisierungsmodule → Gruppe 1: Fachspezifisc → Erneuerbare thermische 	ches Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:		rmodynamik, Solarthermie, Berechnung nepumpen, Brennstoffzellentechnik, Firing
12. Lernziele:		Die Studierenden sind in der L anzuwenden und in der Praxis	age, theoretische Vorlesungsinhalte sumzusetzen.
13. Inhalt:		Leistung eines Solarkollekto	nden untersuchen die thermische ors. Dabei werden bei unterschiedlichen größen erfasst und daraus die timmt.
		Wärmeübertrager: Es wird of Gleich- und Gegenstrombet	die Leistung eines Wärmeübertragers im trieb ermittelt.
		·	Leistungszahl einer Wasser/Wasser- denen Betriebszuständen bestimmt.
		IR-Kamera: Es wird das Ob Emissionsgrad einer Modell	erflächentemperaturfeld und der lfassade ermittelt.
		Brennstoffzelle: Es wird das Brennstoffzellen-Hybridsyst	s Betriebsverhalten eines PEM- ems näher untersucht.
			nktion und das Betriebsverhalten einer nit verschiedenen Expansionsorganen
		<u> </u>	ndikatordiagramm eines Modell- erfasst und die Abweichungen zum den erläutert.
		Kopplung an einem Mini-BH	s wird die Funktion der Kraft-Wärme- HKW bei verschiedenen Lastzuständen esamtenergiebilanz für das BHKW erstellt
			en in zwei Versuchen die Qualität der semissionen an verschiedenen Feuerung se)

Stand: 25. März 2014 Seite 164 von 376

14. Literatur:	Praktikumsunterlagen	
15. Lehrveranstaltungen und -formen:	 305601 Spezialisierungsfachversuch 1 305602 Spezialisierungsfachversuch 2 305603 Spezialisierungsfachversuch 3 305604 Spezialisierungsfachversuch 4 305605 Allgemeines Praktikum Maschinenbau 1 305606 Allgemeines Praktikum Maschinenbau 2 305607 Allgemeines Praktikum Maschinenbau 3 305608 Allgemeines Praktikum Maschinenbau 4 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n und -name:	30561 Praktikum Erneuerbare Thermische Energiesysteme (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Unbenotete Studienleistung (USL):Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.	
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:		

Stand: 25. März 2014 Seite 165 von 376

212 Feuerungs- und Kraftwerkstechnik

Zugeordnete Module: 2121 Kernfächer mit 6 LP

2122 Kern-/Ergänzungsfächer mit 6 LP

2123 Ergänzungsfächer mit 3 LP

30620 Praktikum Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 166 von 376

2123 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30530 Verbrennung und Verbrennungsschadstoffe

30540 Dampfturbinentechnologie30600 Basics of Air Quality Control30610 Regelungstechnik für Kraftwerke

36350 Kraftwerksabfälle

36790 Thermal Waste Treatment

36860 Konstruktion von Wärmeübertragern

36880 Solartechnik II

Stand: 25. März 2014 Seite 167 von 376

Modul: 30600 Basics of Air Quality Control

2. Modulkürzel:	042500026	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	Dr. Ulrich Vogt	
9. Dozenten:		Ulrich Vogt	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, → Areas of Specialization → Combustion and Powe → Elective Modules (3 CF	ı r Plant Technology
		DoubleM.D. Energietechnik, → Chalmers → Incoming → Specialization Modules	
		DoubleM.D. Energietechnik, → Spezialisierungsfächer → Feuerungs- und Kraftw → Ergänzungsfächer mit	verkstechnik
		 M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifis → Feuerungs- und Kraftw → Ergänzungsfächer mit 	sches Spezialisierungsfach verkstechnik
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		their sources and dependent the atmosphere. Thus the st	e have understood pollutants formation, cies as well the air pollutants behavior in udent has acquired the basis for further on of air pollution control studies and
13. Inhalt:		Lecture Basics of Air Qual	ity Control
		 Clean air and air pollution, definitions Natural sources of air pollutants History of air pollution and air quality control Pollutant formation during combustion and industrial processe Dispersion of air pollutants in the atmoshere: Meteorological influences, inversions Atmosheric chemical transformations Ambient air quality 	
14. Literatur:			ol" (Günter Baumbach, Springer Verlag); s on topics from internet (e.g. UBA, LUBW
15. Lehrveranstaltunge	en und -formen:	306001 Vorlesung Einführt	ung in die Luftreinhaltung
16. Abschätzung Arbei	itsaufwand:	Time of Attendance: 28 h Lecture Self study: 62 h = 90 h	
17. Prüfungsnummer/r	n und -name:	30601 Basics of Air Quality mündlich, 60 Min., G	Control (BSL), schriftlich, eventuell Gewichtung: 1.0
18. Grundlage für :			
19. Medienform:		Black board, PowerPoint Pre	esentations

Stand: 25. März 2014 Seite 168 von 376

20. Angeboten von:

Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 169 von 376

Modul: 30540 Dampfturbinentechnologie

2. Modulkürzel:	042310016	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Norbert Sürken	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Thermische Turbomasch → Ergänzungsfächer mit 3	hinen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Ergänzungsfächer mit 3 	ches Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3 	ches Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Ergänzungsfächer mit 3 	ches Spezialisierungsfach hinen
11. Empfohlene Vorau	ssetzungen:	Ingenieurwissenschaftliche Gr	rundlagen, Technische Thermodynamik I+II
		Strömungsmechanik oder Ted	chnische Strömungslehre
12. Lernziele:		Der Studierende	
		 und technischen Vorgänge beherrscht die Thermodyna Rankine-Prozesses ist in der Lage, die Funktion Dampfturbinen- Komponent erkennen und zu analysiere 	ten und deren Zusammenwirken zu
		und kann diese begründen	
13. Inhalt:		Energieressourcen	
		Marktentwicklungen für Kra	ftwerke
		Historische Entwicklung der	Dampfturbine
		Dampfturbinenhersteller	

Stand: 25. März 2014 Seite 170 von 376

	Einsatzspektrum
	Thermodynamischer Arbeitsprozess
	Arbeitsverfahren und Bauarten
	Leistungsregelung
	Beschaufelungen
	Betriebszustände
	Turbinenläufer und Turbinengehäuse
	Systemtechnik und Regelung
	Werkstofftechnik
14. Literatur:	Bell, R., Dampfturbinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
	 Traupel, W., Thermische Turbomaschinen, 4. Aufl., Bd. 1 u. 2, Springe 2001
	Dietzel, F., Dampfturbinen; 3. Aufl.; Hanser 1980
15. Lehrveranstaltungen und -formen:	305401 Vorlesung Dampfturbinentechnologie
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden
17. Prüfungsnummer/n und -name:	30541 Dampfturbinentechnologie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratoriun

Stand: 25. März 2014 Seite 171 von 376

Modul: 36860 Konstruktion von Wärmeübertragern

2. Modulkürzel:	042410035	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Klaus Spindle	er
9. Dozenten:		Klaus SpindlerWolfgang Heidemann	
10. Zuordnung zum Cւ Studiengang։	ırriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Feuerungs- und Kraftwei → Ergänzungsfächer mit 3	rkstechnik
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwei → Ergänzungsfächer mit 3	hes Spezialisierungsfach rkstechnik
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Wärme- u	nd Stoffübertragung
12. Lernziele:		Erworbene Kompetenzen:	
		 deren Einsatzmöglichkeiten Kenntnis der Werkstoffe Kup Graphit hinsichtlich Verarbei Druckbereich, Verschmutzu 	für Rohrverbindungen, Mantel, Stutzen, leich, etc. ahren ungen
13. Inhalt:		 Glatt- und Rippenrohre für Wärmeübertrager Rohrbündelwärmeübertrager Kupfer als Werkstoff im Apparatebau Technologie und Einsatzbereiche von Plattenwärmeübertrager Aussen- und innenberippte Aluminiumrohre für Wärmeübertrager Spezialwärmeübertrager für hochkorrosive Anwendungen Wärmeübertrager aus Kunststoff Graphit-Wärmeübertrager Auslegung und Anwendung von Lamellenrohrverdampfern Regenerative Wärmerückgewinnung Wärmeübertrager in Fahrzeugen Auslegung und Wirtschaftlichkeit von Kühltürmen Fertigung von Wärmeübertragern Verschmutzung und Reinigung von Wärmeübertragern 	
14. Literatur:		Vorlesungsunterlagen, VDI-Wärmeatlas, Springer Ver	rlag, Berlin Heidelberg, New York
15. Lehrveranstaltunge	en und -formen:	368601 Vorlesung Konstrukti	ion von Wärmeübertragern
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 28 h Selbststudium/Nacharbeitung Gesamt: 90 h	62 h

Stand: 25. März 2014 Seite 172 von 376

17. Prüfungsnummer/n und -name:	36861 Konstruktion von Wärmeübertragern (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Powerpoint-Präsentation ergänzt um Tafelskizzen und Overheadfolien
20. Angeboten von:	

Stand: 25. März 2014 Seite 173 von 376

Modul: 36350 Kraftwerksabfälle

2. Modulkürzel:	041210020	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		Roland Stützle	
10. Zuordnung zum Cເ Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Feuerungs- und Kraftwer → Ergänzungsfächer mit 3	rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Feuerungs- und Kraftwel → Ergänzungsfächer mit 3 	hes Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energie und Umwelt → Ergänzungsfächer mit 3 	gsfach mit Querschnittscharakter
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiesysteme und Energiesysteme und Energiesysteme und Energiesysteme und Energiesysteme und Energiesysteme und Energiesysteme 	gsfach mit Querschnittscharakter ergiewirtschaft
11. Empfohlene Voraussetzungen:		Grundkenntnisse der Abfallwir	tschaft, Chemie, Verbrennung
12. Lernziele:		Die Studierenden wissen, welche Reststoffe bei Kraftwerksprozessen anfallen und wie sie umweltfreundlich und den Vorschriften entspreche zu entsorgen sind. Sie können die verschiedenen Kraftwerksprozesse bezüglich ihrer Abfallintensität und Gefahrstoffklassen beurteilen, das für die jeweilige Anwendung geeignetste Verfahren auswählen und die entsprechenden Entsorgungswege beurteilen und wählen. Des Weiteren sind sie mit den gesetzlichen Grundlagen der Entsorgung von Kraftwerksabfällen vertraut und wissen, wie die rechtlichen Bestimmungen anzuwenden sind.	
13. Inhalt:		 Kraftwerksprozesse Kraftwerksreinigungsprozesse Reststoffanfall Verwertungsmöglichkeiten Qualitätsanforderungen Qualitätstests Beseitigung und rechtliche Aspekte 	
		Exkursion zu einer Kraftwerl	ksanlage
14. Literatur:		Vorlesungsmanuskript	
15. Lehrveranstaltunge	en und -formen:	Anlagen	ng von Stoffen aus energietechnischen g von Stoffen aus energietechnischen
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 28 h Selbststudium: 62 h Gesamt: 90 h	

Stand: 25. März 2014 Seite 174 von 376

17. Prüfungsnummer/n und -name:	36351 Kraftwerksabfälle (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Vorlesungsskript, Exkursion
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung

Stand: 25. März 2014 Seite 175 von 376

Modul: 30610 Regelungstechnik für Kraftwerke

2. Modulkürzel:	042500043	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlicher:		UnivProf.Dr. Günter Scheffknecht		
9. Dozenten:		Lutz Hanel		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Ergänzungsfächer mit 3 LP 		
11. Empfohlene Voraussetzungen:		Grundlagen der Thermodynar Mathematik	mik, Grundlagen der Regelungstechnik,	
12. Lernziele:		Die Absolventen des Moduls verstehen das Automatisierungssystem eines komplexen verfahrenstechnischen Prozesses. Sie können Automatisierungskonzepte bezüglich Aufwand, Zuverlässigkeit, Regelgüte und Sicherheit bewerten. Zusätzlich erhalten sie Einblick in die Auslegung und Umsetzung moderner Regelkonzepte in bestehende Kraftwerksanlagen, wie optimale Zustandsregler, prädiktive Regler und modellbasierte Ansätze. Ein hoher Praxisbezug wird durch die Einbeziehung konkreter Projekte hergestellt.		
13. Inhalt:		I: Grundlagen der Prozessautomatisierung - Mess- und Stellglieder - Anbindung an das Automatisierungssystem - BUS-Konzepte II: Blockführungsgrößenbildung		

- Hierarchische Strukturierung der Kraftwerksautomatisierung
- Betrachtung unterlagerter und überlagerter Regelkreise
- Vorsteuerungen und Regelungen

III: Moderne Blockführungskonzepte

- Klassische Blockregelung
- Modellgestützte Blockführungskonzepte
- Einbindung von Zustandsreglern
- Optimierungsansätze

IV: Block-An- und Abfahrsteuerung

- Klassische Block-An- und Abfahrsteuerung
- Modellgestütztes Blockanfahren

V: Technische und wirtschaftliche Bewertung des Blockregelverhaltens

- Regelgüteindikatoren
- Benchmarking von Kraftwerksanlagen
- Ist-Regelverhalten konkreter Kraftwerksanlagen

VI: Sicherheitsleittechnik

- Bewertung von Gefährdungspotentialen

Stand: 25. März 2014 Seite 176 von 376

	- Schutzsysteme - Redundanzkonzepte	
14. Literatur:	Vorlesungsskript, VDI/VDE-Richtlinienreihe 35xx, einschlägige Veröffentlichungen und Konferenzbeiträge, Effenberger - Dampferzeugung Klefenz - Die Regelung von Dampfkraftanlagen und weitere Lehrbücher	
15. Lehrveranstaltungen und -formen:	306101 Vorlesung Regelungstechnik für Kraftwerke	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 h Selbststudium: 62 h Summe: 90 h	
17. Prüfungsnummer/n und -name:	30611 Regelungstechnik für Kraftwerke (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Besuch des Heizkraftwerks	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 177 von 376

Modul: 36880 Solartechnik II

2. Modulkürzel:	042410025	5	. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6	. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7	. Sprache:	Deutsch	
8. Modulverantwortlicher:		Apl. Prof.D	Apl. Prof.DrIng. Klaus Spindler		
9. Dozenten:		Markus Ec	Markus Eck		
10. Zuordnung zum Curriculum in diesem Studiengang:		→ Spez → Erne	D. Energietechnik, F ialisierungsfächer uerbare thermische nzungsfächer mit 3	Energiesysteme	
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP			
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP 			
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP 			
11. Empfohlene Vorau	ssetzungen:				
12. Lernziele:		Die Studenten besitzen Grundkenntnisse der Funktion konzentrierende Solartechnik zur Erzeugung von Strom und Hochtemperaturwärme, Kenntnisse der Auslegungskonzepte, Werkstoffe und Bauweisen der solarspezifischen Subkomponenten: Kollektoren, Heliostat, Absorber, Receiver und Speicher.			
13. Inhalt:		Einführung und allgemeine Technikübersicht • Potential und Markt solarthermischer Kraftwerke • Grundlagen der Umwandlung konzentrierter Solarstrahlung • Übersicht zur Parabol-Rinnen Kraftwerkstechnik • Übersicht zur Solar Turm Kraftwerkstechnik • Auslegungskonzepte für Rinnenkollektoren und Absorber • Auslegungskonzepte für Receiver • Grundlagen von Hochtemperatur-Wärmespeicher • Auslegungskonzepte ausgewählter Speichertechniken • Übersichtzu aktuellen Kraftwerksprojekten			
14. Literatur:		Kopie der Powerpoint-Präsentation		tation	
15. Lehrveranstaltunge	en und -formen:	368801 Vorlesung Solartechnik II368802 Seminar Solarkraftwerke			
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit: 28 h Selbststudiumszeit / Nacharbeitszeit:62 h Gesamt: 90h			
17. Prüfungsnummer/r	n und -name:	36881 Solartechnik II (BSL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0			
		0.0	wiontang. 1.0		

Stand: 25. März 2014 Seite 178 von 376

19. Medienform: Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb

20. Angeboten von:

Stand: 25. März 2014 Seite 179 von 376

Modul: 36790 Thermal Waste Treatment

2. Modulkürzel:	042500031	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Englisch
8. Modulverantwortlich	er:	UnivProf.DrIng. Helmut Sei	fert
9. Dozenten:		Helmut Seifert	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Elective Modules (3 CP)	Plant Technology
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3	rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3 	hes Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energie und Umwelt → Ergänzungsfächer mit 3 	ngsfach mit Querschnittscharakter
11. Empfohlene Voraussetzungen:		Knowledge of chemical and m	echanical engineering, combustion and
12. Lernziele:		treatment which are used in place facilities of thermal treatment planning are present. They are system according to the given competence for the first calcul	different technologies for thermal waste lants worldwide: The functions of the plan and the combination for an efficient e able to select the appropriate treatment frame conditions. They have the ation and design of a thermal treatment garding firing system and flue gas cleaning
13. Inhalt:		students get a detailed insight treatment. The legal aspects f	ut the waste treatment possibilities, the to the different kinds of thermal waste or thermal treatment plants regarding hission limits are part of the lecture as we esses and calculations.
		 Development and state of thermal waste treatment Firing system for thermal waste 	ts of thermal waste treatment the art of the different technologies for vaste treatment reatment and observation of emission lim oustion aste treatment
		II: Excursion: • Thermal Waste Treatment	Plant

Stand: 25. März 2014 Seite 180 von 376

14. Literatur:	 Lecture Script 367901 Vorlesung Thermal Waste Treatment 367902 Exkursion Thermal Waste Treatment Plant 	
15. Lehrveranstaltungen und -formen:		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 36 h (=28 h V + 8 h E) Selbststudiumszeit / Nacharbeitszeit: 54 h Gesamt: 90h	
17. Prüfungsnummer/n und -name:	36791 Thermal Waste Treatment (BSL), schriftliche Prüfung, 60 Min. Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Black board, PowerPoint Presentations, Excursion	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 181 von 376

Modul: 30530 Verbrennung und Verbrennungsschadstoffe

2. Modulkürzel:	042200003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Andreas Kroner	nburg
9. Dozenten:		Andreas Kronenburg	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Ergänzungsfächer mit 3	rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Ergänzungsfächer mit 3 	ches Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP 	
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche G	rundlagen, Grundlagen in Thermodynam
12. Lernziele:		der Verbrennung und der Ents Verbrennungsprozess. Die Te	nemisch-physikalischen Grundlagen estehung von Schadstoffen beim eilnehmer erwerben die Kompetenz, ergiewandlungen quantitativ ermitteln un
13. Inhalt:		Verbrennung und Verbrenn	ungsschadstoffe:
		Die chemischen und physik	alische Grundlagen der Verbrennung
		Laminare vorgemischte und	I nicht-vorgemischte Flammen:
		Flammenstruktur und -gesc	hwindigkeit
		Erhaltungsgleichungen für I	Masse, Energie und Geschwindigkeit
		Turbulente vorgemischte und nicht-vorgemischte Flammen:	
		Gleichungssysteme	
		Modellierungsstrategien	
		Entstehung von Schadstoffe	en
14. Literatur:		 Vorlesungsmanuskript S.R. Turns, "An Introduction 2000 J. Warnatz, U.Maas, R.W.Di 	to Combustion", 2nd Edition, McGrawHibble "Verbrennung", 3. Auflage, Springe
45 obmisses-t-lt	on und farmari	2001	ung und Vorbronnungsster det #-
15. Lehrveranstaltunge	en una -iormen:	305301 Vorlesung Verbrenn	ung und Verbrennungsschadstoffe

Stand: 25. März 2014 Seite 182 von 376

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 h Selbststudiumzeit/Nachbearbeitungszeit: 69 h Summe: 90 h
17. Prüfungsnummer/n und -name:	30531 Verbrennung und Verbrennungsschadstoffe (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen
20. Angeboten von:	

Stand: 25. März 2014 Seite 183 von 376

2122 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 12440 Einführung in die energetische Nutzung von Biomasse

15440 Firing Systems and Flue Gas Cleaning

15960 Kraftwerksanlagen

15970 Modellierung und Simulation von Technischen Feuerungsanlagen

18160 Berechnung von Wärmeübertragern28550 Regelung von Kraftwerken und Netzen

30570 Dampferzeugung

30580 Einführung in die numerische Simulation von Verbrennungsprozessen

30590 Modellierung und Simulation turbulenter reaktiver Strömungen

Stand: 25. März 2014 Seite 184 von 376

Modul: 18160 Berechnung von Wärmeübertragern

2. Modulkürzel:	042410030	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Dr. Wolfgang Heidemann	
9. Dozenten:		Wolfgang Heidemann	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 6	Energiesysteme
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effiziente → Kern- / Ergänzungsfäche	n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifischer → Erneuerbare thermischer → Kern- / Ergänzungsfächer 	ches Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach erkstechnik
		 M.Sc. Energietechnik, PO 20^r → Gruppe 1: Fachspezifisc → Techniken zur effiziente → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakte → Energiespeicherung und -verteilung → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 	
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Wärme- u	ınd Stoffübertragung
12. Lernziele:		Erworbene Kompetenzen:	
		Die Chudierenden	

Die Studierenden

- kennen die Grundgesetze der Wärmeübertragung und der Strömungen
- sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsaussagen und Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden

Stand: 25. März 2014 Seite 185 von 376

	Wärmeübertragern • kennen die Vor- und Nac	
13. Inhalt:		ıng ist es einen wichtigen Beitrag zur n Vermittlung von Fachwissen für die
	Die Lehrveranstaltung	ortragorn za rolotom.
	zeigt unterschiedliche W	ärmeübertragerarten und Strömungsformen
	 Kennzahlen, NTU-Diagra behandelt Sonderbauforn vermittelt Grundlagen zur Kanälen und im Mantelra Plattenströmung, Konder führt in Fouling ein (Verso Foulingwiderstände, Maß Reinigungsverfahren), 	men und Spezialprobleme(Wärmeverluste), r Wärmeübertragung in num (einphasige Rohrströmung, nsation, Verdampfung), chmutzungsarten, snahmen zur Verhinderung/ Minderung, ng von Druckabfall und die Wärmeübertragun
14. Literatur:	 Vorlesungsmanuskript, 	
	 empfohlene Literatur: VD Heidelberg, New York. 	I: VDI-Wärmeatlas, Springer Verlag, Berlin
15. Lehrveranstaltungen und -formen:	181601 Vorlesung Berech181602 Übung Berechnur	nnung von Wärmeübertragern ng von Wärmeübertragern
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h
	Selbststudiumszeit / Nacha	rbeitszeit: 124 h
	Gesamt:	180 h
17. Prüfungsnummer/n und -name:	18161 Berechnung von W 70 Min., Gewichtun	ärmeübertragern (PL), schriftliche Prüfung, g: 1.0
18. Grundlage für :		
19. Medienform:	Vorlesung: Beamerpräsenta	ation
	Übung: Overhead-Projektor Berechnungssoftware	ranschrieb, Online-Demonstration von
20. Angeboten von:		

Stand: 25. März 2014 Seite 186 von 376

Modul: 30570 Dampferzeugung

2. Modulkürzel:	042500006	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffkr	necht
9. Dozenten:		Günter Scheffknecht	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kernfächer mit 6 LP 	hes Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:	Ingenieurwissenschaftliche Gr bzw. Energietechnik, Grundlag	undlagen, Grundlagen in Maschinenbau gen der Wärmeübertragung
12. Lernziele:		energietechnischen Anlagen. von Dampferzeugern, ihre spe Eignung für unterschiedliche e	ie Komponente "Dampferzeuger" in Sie sind in der Lage, verschiedene Typen ezifischen Eigenschaften sowie ihre energie- und kraftwerkstechnische Prozesserten. Ferner sind die Studierenden in der ipieren und zu berechnen.
13. Inhalt:		 Eigenschaften von Wasser I Übersicht Dampferzeugerbar Dampferzeuger, Verdampferzeuger, Verdampferzeuger, Verdampferzeuger, Son Feuerungen für Dampferzeuger Feuerungssysteme einschlie Verbrennungsrechnung, Sto Wärme- und Strömungstech Wirkungsgrad, Wärmebilanz Brennkammer, Luftvorwärm (Belastungskennzahlen, Wäßlanzierung eines Heizfläch und -gestaltung, Verdampfu Siedekrisen, Druckverlust, Schwingung), WDruckverlust, Möglichkeiten rauchgasseitige Schwingung Komponenten und Nebenar 	auarten: Rauchrohr- und Wasserrohr- rprinzipien (Umlauf- und " Einsatzgebiet), Ausführungsbeispiele, derbauarten uger: Übersicht über Brennstoffe und eßlich Nebensysteme, elementare offwerte von Rauchgasen nnik: Energiebilanz und z des Wasser/Dampfsystems und der ung, Brennkammerdimensionierung irmeübertragung durch Strahlung), nenabschnitts, Heizflächenanordnung ngsvorgang (Wärmeübergang, Stabilität, Strömungsverteilung, Värmeübergang durch Konvektion, der Dampftemperaturregelung,

Stand: 25. März 2014 Seite 187 von 376

	 und -zuteilung, Komponenten der Feuerungsanlage, Systeme zur Rauchgasreinigung, Wärmeverschiebesysteme Werkstoffe und Festigkeit: Berechnung der maximalen Drücke und Temperaturen, Spannungskategorien, Spannungshypothesen und Kesselformel, Spannungsbegrenzung, Werkstoffe, Erschöpfungsrechnung Betriebsweisen, Anfahren und Dynamik: Schaltungsvarianten (für Dampfkraftwerke), Belastungsweise, dynamische Merkmale eines Kraftwerksblocks, Blockregelung und Betriebsweisen, Laständerungsvermögen, Einzelregelungen, Anlagenschutz Speisewasserchemie und Korrosion: Chemie des Arbeitsmittels Wasser/Dampf, Korrosionen an von Wasser bzw. Dampf berührten Bauteilen, Korrosionen auf der Rauchgasseite Neuere Entwicklungen: senkrechte Verdampferberohrung für Zwangdurchlaufdampferzeuger, Kohlevortrocknung, höhere Dampfzustände und Werkstoffentwicklungen, alternative Dampferzeugerkonzepte, Abwärmenutzung, Konzepte mit CO2-Abscheidung
14. Literatur:	Vorlesungsmanuskript "Dampferzeugung"Übungsunterlagen "Dampferzeugung"
15. Lehrveranstaltungen und -formen:	305701 Vorlesung Dampferzeugung305702 Übung Dampferzeugung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h Gesamt: 180 h
17. Prüfungsnummer/n und -name:	30571 Dampferzeugung (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Übungen
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 188 von 376

Modul: 12440 Einführung in die energetische Nutzung von Biomasse

2. Modulkürzel:	042500002	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtLudger EltropUwe Schnell	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	PO 2011
		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Erneuerbare thermische Energiesysteme → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 	
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahln	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		verstanden. Sie kennen Quali Biomasse, die wichtigsten Um Vergasung und Fermentation, die nachgeschalteten Prozess Sie können ihre erlangten Ker Einsatzes von Biomasse zur E	Grundlagen der Nutzung von Biomasse tät, Verfügbarkeit und Potentiale von nwandlungsverfahren Verbrennung, die damit verbundenen Emissionen sowie se zur Strom- und/oder Wärmeerzeugung. Intnisse für die Beurteilung des verstärkten Energieerzeugung einsetzen. Des weiteren zungskonzepte beurteilen und erstellen.
13. Inhalt:		I: Bereitstellung von biogen	en Energieträgern
			technische Grundlagen zur Produktion und e als Brennstoff zur energetischen Nutzung,

Stand: 25. März 2014 Seite 189 von 376

Auswirkungen

• technisch-wirtschaftliche Entwicklungsperspektiven und ökologische

20. Angeboten von:

 Einordnung der systen Zusammenhänge 	nanalytischen und energiewirtschaftlichen
Rahmenbedingungen	einer Nutzung in Energiesystem
 Einführung in physikal Umwandlungsverfahre 	isch-chemische und biochemische en
II: Energetische Nutzur	ng von Biomasse
Brennstofftechnische (Charakterisierung von Biomasse
 Einführung in Verbrend Fermentation 	nungs- und Vergasungstechnologien sowie die
• Emissionsverhalten ur	nd Einführung in die Abgasreinigung
 Einführung in die Umw und/oder Wärme 	vandlungsverfahren zur Erzeugung von Strom
 Vorlesungsmanuskript 	
	M., Hartmann, H. (Hrsg.) Energie aus /erlag, Berlin, Heidelberg, New York, 2009
	ührung in die energetische Nutzung von
	ung in die energetische Nutzung von
Präsenzzeit:	56 h
Selbststudiumszeit / Nac	charbeitszeit: 124 h
Gesamt:	180 h
	e energetische Nutzung von Biomasse (PL), ing, 120 Min., Gewichtung: 1.0
TafelanschriebPPT-PräsentationenSkripte zu den Vorlesu	ungen
	Zusammenhänge Rahmenbedingungen Einführung in physikal Umwandlungsverfahre II: Energetische Nutzur Brennstofftechnische G Einführung in Verbren Fermentation Emissionsverhalten ur Einführung in die Umwund/oder Wärme Vorlesungsmanuskripf Lehrbuch: Kaltschmitt, Biomasse, Springer-V 124401 Vorlesung Einf Biomasse 124402 Übung Einführt Biomasse Präsenzzeit: Selbststudiumszeit / Nac Gesamt: 12441 Einführung in die schriftliche Prüfu Tafelanschrieb PPT-Präsentationen

Stand: 25. März 2014 Seite 190 von 376

Institut für Feuerungs- und Kraftwerkstechnik

Ш

Modul: 30580 Einführung in die numerische Simulation von Verbrennungsprozessen

2. Modulkürzel:	042200102	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlich	ner:	UnivProf.Dr. Andreas Krone	nburg
9. Dozenten:		Andreas KronenburgOliver Thomas Stein	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core/Elective Modules (Plant Technology
		DoubleM.D. Energietechnik, F → Chalmers → Incoming → Specialization Modules	PO 2011
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	erkstechnik
		 M.Sc. Energietechnik, PO 20¹ → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach erkstechnik
		 M.Sc. Energietechnik, PO 20¹ → Gruppe 2: Spezialisierur → Thermofluiddynamik → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter
11. Empfohlene Vorau	ussetzungen:	Fundierte Grundlagen in Math Vertiefungsmodul: Grundlage (beglei-tend)	nematik, Physik, Informatik n technischer Verbrennungsvorgänge I +
		science	mics, chemistry, mathematics, computer ndamentals I+II or Chemistry and Physics
12. Lernziele:		vereinfachter Verbrennungspr	dlagen der numerischen Simulation rozesse. Sie haben erste Erfahrungen rbrennungssystemen und deren

Sie können selbstständig einfachste Modellsysteme programmieren und Simulati-onen durchführen. Diese sind zur Vertiefung in Form von Studien-/Masterarbeiten geeignet.

Participants shall know the fundamentals of the numerical simulations of simplified combustion processes. They have gained a first experience in the modelling of combustion systems and model implementation. Students are able to program simple reactors, carry out simulations and

Stand: 25. März 2014 Seite 191 von 376

evaluate the results. These skills can be extended within Bachelor-
Master projects.

13. Inhalt:

- Wiederholung der Grundlagen der Verbrennung: Thermodynamik, Gas-gemische, Chemische Reaktionen/Gleichgewicht, Stöchiometrie, Flammen-typen, Mathematische Beschreibung von Massen-/ Impulserhaltung, Wärme-/Stofftransport
- Vereinfachte Reaktorbeschreibungen: Rührreaktoren (0D), Plug Flow Reaktor (1D), einfache laminare Vormisch- und Diffusionsflammen (1D)
- Grundlagen der numerischen Simulation: Grundgleichungen, Modellbildung, Diskretisierung, Implementierung
- Orts-/Zeitdiskretisierung, Anfangs-/Randbedingungen, explizite/implizite Lö-sungsverfahren

Übung: Implementierung und Simulation einfacher Probleme mit Matlab

- Revision of combustion fundamentals: thermodynamics, (ideal) gas mixtures, chemical kinetics/equilibrium, stoichiometry, combustion modes, conservation principles (mass, momentum, energy), heat and mass transfer
- Simplified reactors: batch reactors/well-stirred flow reactors (0D), plug flow reactors, laminar premixed and non-premixed flames (1D)
- Fundamentals of numerical simulation: conservation equations, modelling, discretisation, implementation, solution algorithms
- Spatial/temporal discretisation: Initial/boundary conditions, explicit/implicit solvers, stability criteria

Tutorials: Modelling, implementation and simulation of basic algorithms and reac-tors (MATLAB/Cantera)

14. Literatur:

- Vorlesungsfolien
- S.R. Turns, "An Introduction to Combustion: Concepts and Applications", 2nd Edition, McGraw Hill (2006)
- J. Warnatz, U. Maas, R.W. Dibble, "Verbrennung", 4th Edition, Springer (2010)
- J.H. Ferziger, M. Peric, "Computational Methods for Fluid Dynamics", 3rd Edition, Springer (2002)

15. Lehrveranstaltungen und -formen:

- 305801 Vorlesung Einführung in die numerische Simulation von Verbrennungsprozessen
- 305802 Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:

I Einführung in die numerische Simulation von Verbrennungsprozessen, Vorle-sung: 2.0 SWS = 28 Stunden

II Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen, Übung: 2.0 SWS = 28 Stunden

Summe Präsenzzeit: 56 Stunden Selbststudium: 134 Stunden Gesamt: 180 Stunden

Time of attendance:

I Introduction to numerical simulation of combustion processes, lecture: 2.0 SWS = 28 hours

II Introduction to numerical simulation of combustion processes, exercise: 2.0 SWS = 28 hours

Stand: 25. März 2014 Seite 192 von 376

	sum of attendance: 56 hours self-study: 134 hours total: 180 hours
17. Prüfungsnummer/n und -name:	30581 Einführung in die numerische Simulation von Verbrennungsprozessen (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen
20. Angeboten von:	

Stand: 25. März 2014 Seite 193 von 376

Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel:	042500003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlich	ner:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter ScheffknechtGünter BaumbachHelmut Seifert	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core Modules	
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Core/Elective Modules (t
		DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach rkstechnik
		M.Sc. Energietechnik, PO 201	1

- → Gruppe 1: Fachspezifisches Spezialisierungsfach
- → Feuerungs- und Kraftwerkstechnik
- → Kernfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kern- / Ergänzungsfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kernfächer mit 6 LP

Stand: 25. März 2014 Seite 194 von 376

11. Empfohlene Voraussetzungen:	Fundamentals of Engineering Science and Natural Science, fundamentals of Mechanical Engineering, Process Engineering, Reactio Kinetics as well as Air Quality Control	
12. Lernziele:	The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and for different capacity ranges are best suited, and how furnaces and flames need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollutant emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants' manufactures, operators and supervisory authorities.	
13. Inhalt:	I: Combustion and Firing	Systems I (Scheffknecht):
	heat transfer in combustion	ss, science of flames, burners and furnaces, on chambers, pollutant formation and mbustion processes, gasification, renewable
	II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):	
	catalytic), flue gas desulfe	I, nitrogen oxide reduction (catalytic/ non- urisation (dry and wet), processes for the lutants. Energy use and flue gas cleaning; aste treatment.
14. Literatur:	l:	
	Lecture notes "Combustic	on and Firing Systems"
	• Skript	
	II:	
	 Text book "Air Quality Control" (Günter Baumbach, Springer publishers) 	
	 News on topics from internet (for example UBA, LUBW) 	
	III:	
	Lecture notes for practical work	
15. Lehrveranstaltungen und -formen:	• 154401 Lecture Combusti • 154402 Vorlesung Flue G	on and Firing Systems I as Cleaning at Combustion Plants
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h V
	Selbststudiumszeit / Nacharbeitszeit: 124 h	
	Gesamt:	180 h
17. Prüfungsnummer/n und -name:	15441 Firing Systems and Prüfung, 120 Min.,	Flue Gas Cleaning (PL), schriftliche Gewichtung: 1.0
18. Grundlage für :		

Stand: 25. März 2014 Seite 195 von 376

19. Medienform:	Black board, PowerPoint Presentations, Practical measurements
20 Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 196 von 376

Modul: 15960 Kraftwerksanlagen

2. Modulkürzel:	042500011	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Uwe Schnell	l
9. Dozenten:		Uwe Schnell Arnim Wauschkuhn	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach rkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Feuerungs- und Kraftwe → Kernfächer mit 6 LP 	ches Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:	_	nd naturwissenschaftliche Grundlagen, , Verfahrenstechnik, Thermodynamik
12. Lernziele:		Die Studierenden des Moduls haben die Energieerzeugung mit Kohle und/oder Erdgas in Kraftwerken verstanden. Sie kennen die verschiedenen Kraftwerks-, Kombiprozesse und CO ₂ -Abscheideprozesse. Sie sind in der Lage, die Klimawirksamkeit und die Wirtschaftlichkeit der einzelnen Kraftwerksprozesse zu beurteilen und fü den jeweiligen Fall die optimierte Technik anzuwenden.	
13. Inhalt:		Kraftwerksanlagen I (Schne	II):
		CO ₂ -Anreicherungs- und Ab auf der Basis von Stein- und	en, Energiebedarf und -ressourcen, oscheideverfahren, Referenzkraftwerk d Braunkohle, Wirkungsgradsteigerung pfparameter, Prinzipien des Gas- und

Dampfturbinenkraftwerks.

Kraftwerksanlagen II (Schnell):

• Erdgas-/Kohle-Kombi- und Verbundkraftwerke, Kombinierte Kraftwerksprozesse (insbes. Kohledruckvergasung), Vergleich von Kraftwerkstechnologien.

Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik (Wauschkuhn):

• Grundlagen und Methoden der Investitionsrechnung, Investitionsund Betriebskosten von Kraftwerken, Bestimmung der

Stand: 25. März 2014 Seite 197 von 376

	Wirtschaftlichkeit von Kraftwerken und Beispiele zur Anwendung Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik.	
14. Literatur:	 Vorlesungsmanuskript "Kraftwerksanlagen I" Vorlesungsmanuskript "Kraftwerksanlagen II" Vorlesungsmanuskript "Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik" Weiterführende Literaturhinweise in den Vorlesungen 	
15. Lehrveranstaltungen und -formen:	 159601 Vorlesung Kraftwerksanlagen I 159602 Vorlesung Kraftwerksanlagen II 159603 Vorlesung Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 70 h Selbststudiumszeit / Nacharbeitszeit: 110 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	15961 Kraftwerksanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Skripte zu den Vorlesungen, Tafelanschrieb	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 198 von 376

Modul: 30590 Modellierung und Simulation turbulenter reaktiver Strömungen

2. Modulkürzel:	042200103	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlich	er:	UnivProf.Dr. Andreas Kroner	hburg
9. Dozenten:		Andreas Kronenburg Oliver Thomas Stein	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (6)	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Thermofluiddynamik → Kern- / Ergänzungsfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Vertiefungsmodul: Grundlager Modul: Einführung in die nume Verbrennungsprozessen	n technischer Verbrennungsvorgänge I + II erische Simulation von
12. Lernziele:		Verbrennungssysteme ausein der Turbulenz und deren num Simulation vertraut. Sie kenne	mit der Komplexität der Modellierung realer andergesetzt. Sie sind mit den Grundzüger erischen n verschiedene Ansätze zur Modellierung d in der Lage dieses Wissen in vertiefender
13. Inhalt:		 Wiederholung der Grundlagen der numerischen Strömungssimulatio Kontinuumsgleichungen/Skalargleichungen, Orts- /Zeitdiskretisierun Stabilität - Grundzüge reaktiver Strömungen: Reaktionskinetik, Verbrennungsmoden: vorgemischt / nicht-vorgemischt / teilvorgemischt, Phänomenologie / mathematische Beschreibung Grundlagen der Turbulenz und Turbulenzsimulation: Reynoldszahl, turbulente Skalen, Energiekaskade, Kolmogorov,RANS / LES / DNS Ansätze zur Modellierung turbulenter Flammen, u.a. Mixedis- Burnt, Gleichgewichtschemie, Flamelets, CMC, EBU, BML, FSD, G-Gleichung, PDF, LEM Modellierung komplexer Geometrien von praktischer Relevanz Schwerpunkt LES: gefilterte Gleichungen, Feinskalenmodellierung, Schließung Beispiele: Verdrallte Gasflammen, Simulation von Kohle-Verbrennur 	
		Übung: Implementierung und Simulation mit Matlab/OpenFOAM	
14. Literatur:		Vorlesungsmanuskript	

Stand: 25. März 2014 Seite 199 von 376

	 J.H. Ferziger, M. Peric, "Computational Methods for Fluid Dynamics, 3 Edition, Springer, 2002 T. Poinsot, D. Veynante, "Theoretical and Numerical Combustion", 2n Edition, RT Edwards Inc, 2005 	
15. Lehrveranstaltungen und -formen:	 305901 Vorlesung Modellierung und Simulation turbulenter reaktiv Strömungen 305902 Computerübungen in Kleingruppen Modellierung und Simulation turbulenter reaktiver Strömungen 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudiumszeit/Nachbearbeitungszeit: 138 h Summe: 180 h	
17. Prüfungsnummer/n und -name:	30591 Modellierung und Simulation turbulenter reaktiver Strömunge (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests	
18. Grundlage für :		
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen	
20. Angeboten von:	Institut für Technische Verbrennung	

Stand: 25. März 2014 Seite 200 von 376

Modul: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

2. Modulkürzel:	042500012	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Uwe Schnel	I
9. Dozenten:		 Uwe Schnell Benedetto Risio Oliver Thomas Stein	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core/Elective Modules (Plant Technology
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	erkstechnik
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche G Mathematik, Physik und Inforr	rundlagen, fundierte Grundlagen in matik.
		Fundamentals of engineering mathematics, physics, and inf	sciences and profound knowledge of formation technology.
12. Lernziele:		Modellierung und Simulation von der Turbulenzmodellierung ver welchen Verwendungszweck, geeignet ist. Sie können erste und Feuerungssimulation real	haben die Prinzipien und Möglichkeiten de von Feuerungsanlagen sowie insbesondere erstanden. Sie können beurteilen für welche Simulationsmethode am besten e einfache Anwendungen der Verbrennungs lisieren und verfügen über die Basis zur thoden, z.B. in einer studentischen Arbeit.
		Students will learn the principles and the possibilities of modelling and simulation of technical combustion systems. They will study which models and which simulation methods are suitable for different applications. They will be able to perform simple combustion simulations and based on this knowledge they will have the prerequisites for applying these fundamentals, e.g. in the frame of a student's project.	
13. Inhalt:			eaustausch, Brennstoffabbrand und nmen und Feuerräumen: Grundlagen,

Stand: 25. März 2014

II: Simulations- und Optimierungsmethoden für die Feuerungstechnik

Seite 201 von 376

• Einsatzfelder für technische Flammen in der Energie- und Verfahrenstechnik, Techniken zur Abbildung industrieller

Feuerungssysteme, Aufbau und Funktion moderner
Höchstleistungsrechner, Algorithmen und Programmiertechnik für die
Beschreibung von technischen Flammen auf Höchstleistungsrechnern,
Besuch des Virtual-Reality (VR)-Labors des HLRS und Demonstration
der VR-Visualisierung für industrielle Feuerungen, Methoden zur
Bestimmung der Verlässlichkeit feuerungstechnischer Vorhersagen
(Validierung) an Praxis-Beispielen, Optimierung in der Feuerungstechnik:
Gradientenverfahren, Evolutionäre Verfahren und Genetische
Algorithmen

III: Grundlagen technischer Verbrennungsvorgänge III (Stein):

- Lösung nicht-linearer Gleichungssysteme
- Verfahren zur Zeitdiskretisierung
- Homogene Reaktoren
- Eindimensionale Reaktoren/Flammen

I: Combustion and Firing Systems II (Schnell): Fundamentals of model descriptions for turbulent reacting fluid flow, radiative heat transfer, combustion of fuels, and pollutant formation in flames and furnaces.

II: Simulation and Optimization Methods for Combustion Systems (Risio): Applications of technical flames in energy technology and process engineering, techniques for "mapping" of industrial combustion systems on computers, design and operation of state-of-the art super computers at HLRS University of Stuttgart, algorithms and programming paradigms for modelling technical flames on super computers, visit of the Virtual Reality (VR) laboratory at HLRS, demonstration of VR visualization of industrial flames, methods for determining the reliability of predictions ("validation") using exemplary technical flames, and optimization methods (gradient methods, evolutionary methods and genetic algorithms).

III: Fundamentals of Technical Combustion Processes III (Stein): Solution of non-linear equation systems
Methods for temporal discretization
Homogeneous reactors
One-dimensional reactors/flames

14. Literatur:

- Vorlesungsmanuskript "Verbrennung & Feuerungen II"
- Vorlesungsmanuskript "Simulations- und Optimierungsmethoden für die Feuerungstechnik"
- Vorlesungsfolien "Grundlagen technischer Verbrennungsvorgänge III"
- S.R. Turns, "An Introduction to Combustion: Concepts and Applications", 2nd Edition, McGraw Hill (2006)
- J. Warnatz, U. Maas, R.W. Dibble, "Verbrennung", 4th Edition, Springer (2010)
- J.H. Ferziger, M. Peric, "Computational Methods for Fluid Dynamics", 3rd Edition, Springer (2002)

15. Lehrveranstaltungen und -formen:

- 159701 Vorlesung Verbrennung und Feuerungen II
- 159702 Vorlesung Simulations- und Optimierungsmethoden für die Feuerungstechnik
- 159703 Vorlesung Grundlagen technischer Verbrennungsvorgänge III

Stand: 25. März 2014 Seite 202 von 376

20. Angeboten von:

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 62 h
Selbststudium: 118 h
Gesamt: 180 h

Time of attendance: 62 hrs
Time outside classes: 118 hrs
Total time: 180 hrs

17. Prüfungsnummer/n und -name:

15971 Modellierung und Simulation von Technischen
Feuerungsanlagen (PL), schriftlich oder mündlich,
Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und
Praktikum, Computeranwendungen

Stand: 25. März 2014 Seite 203 von 376

Modul: 28550 Regelung von Kraftwerken und Netzen

2. Modulkürzel:	042500042	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffk	necht
9. Dozenten:		Florian Gutekunst	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	erkstechnik
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach erkstechnik
		M.Sc. Energietechnik, PO 2011, 5. Semester → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Kern- / Ergänzungsfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011, 5. Semester → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 	
11. Empfohlene Voraussetzungen:		Keine	
12. Lernziele:		netzseitigen Automatisierungs der Stromerzeugung. Sie sind internationalen Spezifikatione Regelaufgaben in der Strome	kennen die klassischen kraftwerksund s- und Regelungsaufgaben im Bereich I mit den aktuellen nationalen und n und Richtlinien für die Standard- rzeugung vertraut und können bestehend ungen auf das Verbundsystem bewerten.
13. Inhalt:		I: Einführung: Aufbau elektrischer Energieversorgungssysteme I.1: Verbundnetzgliederung I.2: Netzpartner I.3: Europäisches Verbundnetz und Verbundnetze weltweit II: Dynamisches Verhalten der Netzpartner II.1a: fossile Dampfkraftwerke II.1b: Kernkraftwerke II.1c: Solarthermische Kraftwerke II.1d: Wasserkraftwerke II.1e: Windkraftanlagen II.1f: weitere dezentrale Erzeuger II.2: Verbraucher II.3: Netzbetriebsmittel/Leistungselektronik III: Netzregelung und Systemführung III.1: Frequenz-Wirkleistungs-Regelung III.2: Spannungsregelung III.3: Dynamisches Netzverhalten III.4: Monitoring	

Stand: 25. März 2014 Seite 204 von 376

	IV: Aktuelle Herausforderungen IV.1: Einbindung erneuerbarer Energien IV.2: Ausweitung des europäischen Stromhandels IV.3: Erweiterungen des europäischen Verbundnetzes IV.4: Möglichkeiten zur Minderung von CO2 Emissionen bei der el. Energieerzeugung mittels CCS (Carbon Capture and Storage) V: Übung V.1: Fossil befeuerte Kraftwerke V.2: Kernkraftwerke und Wasserkraftwerke V.3: Leistungs-Frequenzregelung V.4: Lastflussrechnung	
14. Literatur:	Vorlesungsskript, VDI/VDE-Richtlinienreihe 35xx, Nationale und internationale Netzcodes (TransmissionCode, DistributionCode, UCTE Operation Handbook)	
15. Lehrveranstaltungen und -formen:	285501 Vorlesung Regelung von Kraftwerken und Netzen	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	28551 Regelung von Kraftwerken und Netzen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :	28550 Regelung von Kraftwerken und Netzen	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen	
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 205 von 376

2121 Kernfächer mit 6 LP

Zugeordnete Module: 15440 Firing Systems and Flue Gas Cleaning

15960 Kraftwerksanlagen 30570 Dampferzeugung

Stand: 25. März 2014 Seite 206 von 376

Modul: 30570 Dampferzeugung

2. Modulkürzel:	042500006	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Günter Scheffkı	necht
9. Dozenten:		Günter Scheffknecht	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	rkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Grundlag	rundlagen, Grundlagen in Maschinenbau gen der Wärmeübertragung
12. Lernziele:		energietechnischen Anlagen. von Dampferzeugern, ihre spe Eignung für unterschiedliche e	lie Komponente "Dampferzeuger" in Sie sind in der Lage, verschiedene Typen ezifischen Eigenschaften sowie ihre energie- und kraftwerkstechnische Prozesse erten. Ferner sind die Studierenden in der zipieren und zu berechnen.
13. Inhalt:		Eigenschaften von Wasser Ubersicht Dampferzeugerbaten Dampferzeuger, Verdampfer Zwangdurchlaufverdampfer Abhitzedampferzeuger, Sor Feuerungen für Dampferzeuger Feuerungssysteme einschlit Verbrennungsrechnung, Ste Wärme- und Strömungstech Wirkungsgrad, Wärmebilans Brennkammer, Luftvorwärm (Belastungskennzahlen, Wäßlianzierung eines Heizfläch und -gestaltung, Verdampfusiedekrisen, Druckverlust, Stomponentenauslegung), Verdampfusiedekrisen, Möglichkeiten rauchgasseitige Schwingun Komponenten und Nebenar	r, Einsatzgebiet), Ausführungsbeispiele, inderbauarten uger: Übersicht über Brennstoffe und eßlich Nebensysteme, elementare offwerte von Rauchgasen innik: Energiebilanz und z des Wasser/Dampfsystems und der nung, Brennkammerdimensionierung ärmeübertragung durch Strahlung), henabschnitts, Heizflächenanordnung ungsvorgang (Wärmeübergang, Stabilität, Strömungsverteilung, Värmeübergang durch Konvektion, in der Dampftemperaturregelung,

Stand: 25. März 2014 Seite 207 von 376

	 und -zuteilung, Komponenten der Feuerungsanlage, Systeme zur Rauchgasreinigung, Wärmeverschiebesysteme Werkstoffe und Festigkeit: Berechnung der maximalen Drücke und Temperaturen, Spannungskategorien, Spannungshypothesen und Kesselformel, Spannungsbegrenzung, Werkstoffe, Erschöpfungsrechnung Betriebsweisen, Anfahren und Dynamik: Schaltungsvarianten (für Dampfkraftwerke), Belastungsweise, dynamische Merkmale eines Kraftwerksblocks, Blockregelung und Betriebsweisen, Laständerungsvermögen, Einzelregelungen, Anlagenschutz Speisewasserchemie und Korrosion: Chemie des Arbeitsmittels Wasser/Dampf, Korrosionen an von Wasser bzw. Dampf berührten Bauteilen, Korrosionen auf der Rauchgasseite Neuere Entwicklungen: senkrechte Verdampferberohrung für Zwangdurchlaufdampferzeuger, Kohlevortrocknung, höhere Dampfzustände und Werkstoffentwicklungen, alternative Dampferzeugerkonzepte, Abwärmenutzung, Konzepte mit CO2-Abscheidung
14. Literatur:	Vorlesungsmanuskript "Dampferzeugung"Übungsunterlagen "Dampferzeugung"
15. Lehrveranstaltungen und -formen:	305701 Vorlesung Dampferzeugung305702 Übung Dampferzeugung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudiumzeit/Nachbearbeitungszeit: ca. 124 h Gesamt: 180 h
17. Prüfungsnummer/n und -name:	30571 Dampferzeugung (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Übungen
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 208 von 376

Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel:	042500003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlicher:		UnivProf.Dr. Günter Scheffknecht	
9. Dozenten:		Günter ScheffknechtGünter BaumbachHelmut Seifert	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Areas of Specialization → Combustion and Power → Core Modules	
		DoubleM.D. Energietechnik, F → Areas of Specialization → Energy and Environmen → Core/Elective Modules (ıt
		DoubleM.D. Energietechnik, F → Areas of Specialization → Thermofluid Dynamics → Core/Elective Modules (
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Kernfächer mit 6 LP	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche	erkstechnik
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach erkstechnik
		M.Sc. Energietechnik, PO 201→ Gruppe 1: Fachspezifisch	

- → Feuerungs- und Kraftwerkstechnik
- → Kernfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kern- / Ergänzungsfächer mit 6 LP

M.Sc. Energietechnik, PO 2011

- → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter
- → Energie und Umwelt
- → Kernfächer mit 6 LP

Stand: 25. März 2014 Seite 209 von 376

11. Empfohlene Voraussetzungen:	Fundamentals of Engineering Science and Natural Science, fundamentals of Mechanical Engineering, Process Engineering, Reaction Kinetics as well as Air Quality Control		
12. Lernziele:	generation with combustion plants for the different fuels different capacity ranges are need to be designed that a emissions could be achieve cleaning techniques have to emissions. Thus, the studer for the application and evaluation plants for further Energy and Environment ar	have understood the principles of heat plants and can assess which combustion - oil, coal, natural gas, biomass - and for e best suited, and how furnaces and flames high energy efficiency with low pollutant ed. In addition, they know which flue gas to be applied to control the remaining pollutant ents acquired the necessary competence uation of air quality control measures in er studies in the fields of Air Quality Control, and, finally, they got the competence for ctures, operators and supervisory authorities.	
13. Inhalt:	I: Combustion and Firing	Systems I (Scheffknecht):	
	 Fuels, combustion process, science of flames, burners and furnaces, heat transfer in combustion chambers, pollutant formation and reduction in technical combustion processes, gasification, renewable energy fuels. 		
	II: Flue Gas Cleaning for Combustion Plants (Baumbach/Seifert):		
	catalytic), flue gas desulfu	I, nitrogen oxide reduction (catalytic/ non- urisation (dry and wet), processes for the lutants. Energy use and flue gas cleaning; aste treatment.	
14. Literatur:	l:		
	 Lecture notes "Combustion and Firing Systems" 		
	• Skript		
	II:		
	 Text book "Air Quality Control" (Günter Baumbach, Springer publishers) 		
	News on topics from internet (for example UBA, LUBW)		
	III:		
	Lecture notes for practical	al work	
15. Lehrveranstaltungen und -formen:	• 154401 Lecture Combusti • 154402 Vorlesung Flue G	on and Firing Systems I as Cleaning at Combustion Plants	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h V	
	Selbststudiumszeit / Nacharbeitszeit: 124 h		
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:	15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0		
18. Grundlage für :			

Stand: 25. März 2014 Seite 210 von 376

19. Medienform:	Black board, PowerPoint Presentations, Practical measurements
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik

Stand: 25. März 2014 Seite 211 von 376

Modul: 15960 Kraftwerksanlagen

2. Modulkürzel:	042500011	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlicher:		Apl. Prof.DrIng. Uwe Schnell		
9. Dozenten:		Uwe Schnell Arnim Wauschkuhn		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, I → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäch	erkstechnik	
		DoubleM.D. Energietechnik, I → Spezialisierungsfächer → Feuerungs- und Kraftwe → Kernfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifist → Feuerungs- und Kraftwe → Kern- / Ergänzungsfäch 	ches Spezialisierungsfach erkstechnik	
		M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifise → Feuerungs- und Kraftwe → Kernfächer mit 6 LP	ches Spezialisierungsfach	
11. Empfohlene Vorau	ssetzungen:	_	nd naturwissenschaftliche Grundlagen, ı, Verfahrenstechnik, Thermodynamik	
12. Lernziele:		Kohle und/oder Erdgas in Kra die verschiedenen Kraftwerks Abscheideprozesse. Sie sind	in der Lage, die Klimawirksamkeit und die en Kraftwerksprozesse zu beurteilen und fü	
13. Inhalt:		Kraftwerksanlagen I (Schne	ell):	
		CO ₂ -Anreicherungs- und A auf der Basis von Stein- un	en, Energiebedarf und -ressourcen, bscheideverfahren, Referenzkraftwerk id Braunkohle, Wirkungsgradsteigerung ipfparameter, Prinzipien des Gas- und	

Dampfturbinenkraftwerks.

Kraftwerksanlagen II (Schnell):

• Erdgas-/Kohle-Kombi- und Verbundkraftwerke, Kombinierte Kraftwerksprozesse (insbes. Kohledruckvergasung), Vergleich von Kraftwerkstechnologien.

Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik (Wauschkuhn):

• Grundlagen und Methoden der Investitionsrechnung, Investitionsund Betriebskosten von Kraftwerken, Bestimmung der

Seite 212 von 376 Stand: 25. März 2014

Wirtschaftlichkeit von Kraftwerken und Beispiele zur Anwendun Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik.	
 Vorlesungsmanuskript "Kraftwerksanlagen I" Vorlesungsmanuskript "Kraftwerksanlagen II" Vorlesungsmanuskript "Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik" Weiterführende Literaturhinweise in den Vorlesungen 	
 159601 Vorlesung Kraftwerksanlagen I 159602 Vorlesung Kraftwerksanlagen II 159603 Vorlesung Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik 	
Präsenzzeit: 70 h Selbststudiumszeit / Nacharbeitszeit: 110 h Gesamt: 180 h	
15961 Kraftwerksanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0	
PPT-Präsentationen, Skripte zu den Vorlesungen, Tafelanschrieb	
Institut für Feuerungs- und Kraftwerkstechnik	

Stand: 25. März 2014 Seite 213 von 376

Modul: 30620 Praktikum Feuerungs- und Kraftwerkstechnik

2. Modulkürzel:	042500007		5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP		6. Turnus:	jedes Semester
4. SWS:	0.0		7. Sprache:	Deutsch
8. Modulverantwortlicher:		Univ	-Prof.Dr. Günter Scheffk	knecht
9. Dozenten:				
10. Zuordnung zum Curriculum in diesem Studiengang:		→ →	oleM.D. Energietechnik, Chalmers Incoming Practical Work	PO 2011
		→ →	oleM.D. Energietechnik, Incoming Areas of Specialization Combustion and Power	
		→ →	oleM.D. Energietechnik, Outgoing Spezialisierungsfächer Feuerungs- und Kraftwo	
		→ →	c. Energietechnik, PO 20 Spezialisierungsmodule Gruppe 1: Fachspezifis Feuerungs- und Kraftwo	e ches Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Spez	rialisierungsfach Feuerur	ngs- und Kraftwerkstechnik
12. Lernziele:		Prak	tische Vertiefung der in d	den Vorlesungen vermittelten Lehrinhalte
13. Inhalt:			nd folgende 4 Spezi alis ils eine Ausarbeitung an	sierungsfachversuche zu belegen, dazu ist zufertigen:
		2) 3) 4)	Numerische Simulation e	
			uchsbeispiel: Bestimmur feuerungslangen	ng von Abgasemissionen aus
		und Quel Scha hier Kohl beid Hauj ein T	anderen industriellen len zur anthropogenen Ladstoffen bestehen aus Kohlenmonoxid, Schenwasserstoffverbindungen letztgenannten Stoffgotoxidationsprodukt fossi reibhauspotential. Zur Entinuierlich und kontinui	tragen neben dem Kraftfahrzeugverkehr uftverunreinigung bei. Die Emissionen an wefeldioxid, Partikeln, gen und Stickstoffoxiden. Die ruppen verfügen ähnlich wie das ler Energieträger, das Kohlendioxid über rfassung der Emissionen sind verschiedene erlich arbeitende Messverfahren entwickelt

Stand: 25. März 2014 Seite 214 von 376

über der Abbrandzeit aufgetragen werden.

worden. Die wichtigsten kontinuierlichen arbeitenden Messverfahren werden in diesem Praktikumsversuch angewendet. Im Anschluss an die Messung wird ein Diagramm erstellt, in dem die Konzentrationswerte

4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:

- APMB 1
- APMB 2
- APMB 3
- APMB 4

14. Literatur:	Praktikumsunterlagen (online verfügbar)		
15. Lehrveranstaltungen und -formen:	• 306201 Spezialisierungsfachversuch1		
•	306202 Spezialisierungsfachversuch2		
	 306203 Spezialisierungsfachversuch3 		
	 306204 Spezialisierungsfachversuch4 		
	 306205 Praktische Übungen: Allgemeines Praktikum Maschinenbar (APMB) 1 		
	 306206 Praktische Übungen: Allgemeines Praktikum Maschinenbar (APMB) 2 		
	 306207 Praktische Übungen: Allgemeines Praktikum Maschinenbar (APMB) 3 		
	 306208 Praktische Übungen: Allgemeines Praktikum Maschinenbar (APMB) 4 		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 30 Stunden		
	Selbststudium: 60 Stunden		
	Summe: 90 Stunden		
17. Prüfungsnummer/n und -name:	30621 Praktikum Feuerungs- und Kraftwerkstechnik (USL), Sonstiges, Gewichtung: 1.0, Schriftliche Ausarbeitung		
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:	Institut für Feuerungs- und Kraftwerkstechnik		

Stand: 25. März 2014 Seite 215 von 376

213 Gebäudeenergetik

Zugeordnete Module: 2131 Kernfächer mit 6 LP

2132 Kern- / Ergänzungsfächer mit 6 LP2133 Ergänzungsfächer mit 3 LP

30680 Praktikum Gebäudeenergetik

Stand: 25. März 2014 Seite 216 von 376

2133 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30520 Sonderprobleme der Gebäudeenergetik

30650 Ausgewählte Energiesysteme und Anlagen

30660 Luftreinhaltung am Arbeitsplatz30670 Simulation in der Gebäudeenergetik

33160 Planung von Anlagen der Heiz- und Raumlufttechnik

Stand: 25. März 2014 Seite 217 von 376

Modul: 30650 Ausgewählte Energiesysteme und Anlagen

2. Modulkürzel:	041310007	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.DrIng. Michael So	chmidt	
9. Dozenten:		Michael Schmidt		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Gebäudeenergetik → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Gebäudeenergetik		
		→ Ergänzungsfächer mit 3	BLP	
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		Im Modul ausgewählte Energiesysteme und Anlagen haben die Studenten die Systematik energetischer Anlagen differenziert nach Ein- und Mehrwegeprozesse und die Methoden zu deren energetischer Bewertung kennengelernt. Erworbene Kompetenzen: Die Studenten • sind mit den Anlagen der Energiewandlung vertraut, • beherrschen die Methoden zur Bewertung • kennen die Einbettung in übergeordnete gekoppelte und entkoppelte		
13. Inhalt:		Versorgungssysteme Energietechnische Begriffe	_	
13. Innait.		 Energietechnische Bewertungsverfahren Einwegprozess zur Wärme- und Stromerzeugung Mehrwegprozesse zur gekoppelten Erzeugung und zur Nutzung vor Umweltenergien 		
14. Literatur:		 Rietschel, H.; Esdorn H.: Raumklimatechnik Band 1 Grundlagen -1 Auflage, Berlin: Springer-Verlag, 1994 Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004 Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag, 1998 		
15. Lehrveranstaltunge	en und -formen:	306501 Vorlesung Ausgewä	ahlte Energiesysteme und Anlagen	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden		
17. Prüfungsnummer/r	und -name:	30651 Ausgewählte Energie Prüfung, 30 Min., Ge	systeme und Anlagen (BSL), mündliche wichtung: 1.0	
18. Grundlage für :				
19. Medienform:		Vorlesungsskript		

Stand: 25. März 2014 Seite 218 von 376

Stand: 25. März 2014 Seite 219 von 376

Modul: 30660 Luftreinhaltung am Arbeitsplatz

2. Modulkürzel:	041310004	5. Modulo	dauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus):	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprach	ne:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.DrIng.	Michael Schmi	dt
9. Dozenten:		Michael Schmidt		
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energi → Spezialisierur → Gebäudeenel → Ergänzungsfä	ngsfächer rgetik	2011
		M.Sc. Energietechr → Gruppe 1: Fa → Gebäudeener → Ergänzungsfä	chspezifisches rgetik	s Spezialisierungsfach
		M.Sc. Energietechr → Gruppe 2: Sp → Energie und l → Ergänzungsfä	ezialisierungsf Jmwelt	ach mit Querschnittscharakter
11. Empfohlene Vorau	ssetzungen:			
12. Lernziele:		Systematik der Lös	sungen zur Arbeitsplatz so I die zugehörig naftlichen Grun	
			veiligen Anford	einhaltung am Arbeitsplatz vertraut erungen die technischen Lösunger n auslegen
13. Inhalt:		 Arten, Ausbreitung und Grenzwerte von Luftfremdstoffen Bewertung der Schadstofferfassung Luftströmung an Erfassungseinrichtungen Luftführung, Luftdurchlässe Auslegung nach Wärme- und Stofflasten Bewertung der Luftführung Abnahme von Leitungsmessungen 		
14. Literatur:		 Industrial Ventilation Design Guidebook, Edited by Howard D. Goodfellow, Esko Tähti, ISBN: 0-12-289676-9, Academic Press 		
15. Lehrveranstaltunge	en und -formen:	306601 Vorlesunç	g Luftreinhaltur	ng am Arbeitsplatz
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden		
17. Prüfungsnummer/ı	n und -name:	30661 Luftreinhalt Min., Gewid	-	splatz (BSL), mündliche Prüfung, 3
18. Grundlage für:				

Stand: 25. März 2014 Seite 220 von 376

19. Medienform: Vorlesungsskript

20. Angeboten von:

Stand: 25. März 2014 Seite 221 von 376

Modul: 33160 Planung von Anlagen der Heiz- und Raumlufttechnik

2. Modulkürzel:	041310011	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.DrIng. Michael Sc	chmidt
9. Dozenten:		Michael Schmidt	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Gebäudeenergetik → Ergänzungsfächer mit 3	
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Gebäudeenergetik → Ergänzungsfächer mit 3 	ches Spezialisierungsfach
11. Empfohlene Vorau	ıssetzungen:	Grundlagen der Heiz- und Ra	umlufttechnik
12. Lernziele:		Raumlufttechnik" vermittelt wurden, haben die Studenten Planung von heizund raumlufttechnischen Anlagen praktischen Entwurfsübung haben die Studenten auf Basi gebäudetechnischen Anlagen (Heizflächen, Rohrnetz, Wärn ausgewählt. Erworbene Kompetenzen: Die Studenten • sind mit der praktischen Anve kennen die Grundzüge der F	neerzeuger, Speicher dimensioniert und vendung der Anlagenauslegung vertraut, Heizlastberechnung tze, Wärmeerzeuger und Wärmespeicher
13. Inhalt:		 Pflichtenhefterstellung Heizlastberechnung Heizflächendimensionierung Rohrnetzberechnung Wärmeerzeugerdimensionie Wärmespeicherdimensionie Auswahl geeigneter Kompor Anfertigen von Skizzen und raumlufttechnischen Anlagen 	erung rung nenten auf Basis der Berechnungen
14. Literatur:		Heizung und Klimatechnik, OI Rietschel, H.; Esdorn H.: Ra Auflage, Berlin: Springer-Verla Rietschel, H.; Raumklimatech Auflage, Berlin: Springer- Verlage,	chnik Band 3: Raumheiztechnik -16. lag, 2004 armwasserfußbodenheizung, 3. Auflage,

Stand: 25. März 2014 Seite 222 von 376

Karlsruhe: C.F. Müller-Verlag, 1981

 Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag,1998 Arbeitskreis der Dozenten für Klimatechnik: Lehrbuch der Klimatechnik, Bd.1-Grundlagen. Bd.2-Berechnung und Regelung. Bd.3- Bauelemente. Karlsruhe: C.F. Müller-Verlag, 1974-1977 Knabe, G.: Gebäudeautomation. Verlag für Bauwesen, Berlin 1992
 331601 Vorlesung Planung von Anlagen der Heiz- und Raumlufttechnik 331602 Übung Planung von Anlagen der Heiz- und Raumlufttechnik
Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden
33161 Planung von Anlagen der Heiz- und Raumlufttechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
Tafelaufschrieb, Handout, Overheadfolien

Stand: 25. März 2014 Seite 223 von 376

Modul: 30670 Simulation in der Gebäudeenergetik

2. Modulkürzel:	041310006	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	ner:	UnivProf.DrIng. Michael Sch	nmidt	
9. Dozenten:		Michael Bauer		
10. Zuordnung zum C Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Gebäudeenergetik → Ergänzungsfächer mit 3 I		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Gebäudeenergetik → Ergänzungsfächer mit 3 I 	nes Spezialisierungsfach	
11. Empfohlene Vorau	ıssetzungen:	Heiz- und Raumlufttechnik		
12. Lernziele:		Im Modul Simulation der Gebäudeenergetik haben die Studenten die Simulationsansätze der Gebäude- und Anlagensimulation - sowohl gekoppelt als auch entkoppelt - sowie die Simulation von Gebäudedurchströmungund von Raumströmung kennen gelernt und die dazu notwendigen Kenntnisse der Modellierungsmethoden erworben. Erworbene Kompetenzen: Die Studenten • sind mit den Simulationsmethoden vertraut, • können grundlegende Fragen zum Gebäudeund Anlagenverhalten sowie zur Gebäudeund Raumdurchströmung per Simulation lösen.		
13. Inhalt:		 Simulationsmodelle notwendige Eingabedaten Anwendungsfälle thermisch-energetische Simu Strömungssimulation 	ılation von Gebäuden und Anlagen	
14. Literatur:			Michael Schwarz "Green Building - itektur", EAN: 9783766717030, ISBN: 0.W. GmbH, Mai 2007	
15. Lehrveranstaltung	en und -formen:	306701 Vorlesung Simulation	n in der Gebäudeenergetik	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden		
17. Prüfungsnummer/	n und -name:	30671 Simulation in der Gebä Prüfung, 30 Min., Gew	äudeenergetik (BSL), mündliche ichtung: 1.0	
18. Grundlage für:				
19. Medienform:		Präsentation		
13. Mediemom.				

Stand: 25. März 2014 Seite 224 von 376

Modul: 30520 Sonderprobleme der Gebäudeenergetik

2. Modulkürzel:	041310005	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Michael Sc	hmidt
9. Dozenten:		Michael Schmidt	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Gebäudeenergetik → Ergänzungsfächer mit 3	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Erneuerbare thermische → Ergänzungsfächer mit 3 	ches Spezialisierungsfach Energiesysteme
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Gebäudeenergetik → Ergänzungsfächer mit 3 	ches Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:	Heiz- und Raumlufttechnik	
12. Lernziele:		die Losung gebäudetechnisch Aufgaben speziell im Hinblick gebäude kennen gelernt.	r Gebäudeenergetik haben die Studente ner auf Sonderund Spezialräume bzw sonderlösungen konzipieren, eschreiben
			zial- und Sonderfälle vertraut gen für solche fälle entwickeln und
13. Inhalt:		 Sonderräume in der Heiz- ur spezielle technische Lösung alternative und regenerative energieeinsparendes Bauen 	en in der Anlagentechnik Energien
14. Literatur:		Auflage, Berlin: Springer-Verla Rietschel, H.; Raumklimatec Maschinenbau Seite 714 Raum Springer-Verlag, 2004 Bach, H.; Hesslinger, S.: Wa Karlsruhe: C.F. Müller- Verlag Wagner, W.: Wärmeübertrag Würzburg: Vogel-Verlag, 1998	hnik Band 3: Modulhandbuch M.Sc. mheiztechnik -16. Auflage, Berlin: armwasserfußbodenheizung, 3. Auflage, gung -Grundlagen, 5. über. Auflage,

Stand: 25. März 2014 Seite 225 von 376

15. Lehrveranstaltungen und -formen:	305201 Vorlesung Sonderprobleme der Gebäudeenergetik
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden
17. Prüfungsnummer/n und -name:	30521 Sonderprobleme der Gebäudeenergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 25. März 2014 Seite 226 von 376

2132 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 30630 Heiz- und Raumlufttechnik

30640 Energetische Anlagenbewertung und Lüftungskonzepte

Stand: 25. März 2014 Seite 227 von 376

Modul: 30640 Energetische Anlagenbewertung und Lüftungskonzepte

2. Modulkürzel:	041310008	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ier:	UnivProf.DrIng. Michael Sc	hmidt
9. Dozenten:		Michael Schmidt	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Gebäudeenergetik → Kern- / Ergänzungsfäche	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Gebäudeenergetik → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		die Studenten im Teil 1 die Systematik energetischer in Mehrwegeprozesse und die Michael zu deren energetischer Bewei Systematik der Lösungen zur Luftreinhaltung am Arbeitsplat kennen gelernt und die zugeh ingenieurwissenschaftlichen Gerworbene Kompetenzen: Die Studenten sind mit den Anlagen der Ene beherrschen die Methoden zur Lersorgungssysteme sind mit den Methoden zur L	rtung kennen gelernt. Im Teil 2 die iz sowie dazu erforderlichen Anlagen örigen Grundlagen erworben. ergiewandlung vertraut, zur Bewertung ergeordnete gekoppelte und entkoppelte uftreinhaltung am Arbeitsplatz vertraut, forderungen die technischen Lösungen
13. Inhalt:		 Energietechnische Begriffe Energietechnische Bewertun Einwegprozess zur Wärme- Mehrwegprozesse zur gekop Umweltenergien Arten, Ausbreitung und Gren Bewertung der Schadstofferf Luftströmung an Erfassungs Luftführung, Luftdurchlässe Auslegung nach Wärme- und Bewertung der Luftführung 	und Stromerzeugung opelten Erzeugung und zur Nutzung von nzwerte von Luftfremdstoffen fassung einrichtungen
14. Literatur:		Auflage, Berlin: Springer-Verla	hnik Band 3: Raumheiztechnik -16.

Stand: 25. März 2014 Seite 228 von 376

	 Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag,1998 Industrial Ventilation Design Guidebook, Edited by Howard D. Goodfellow, Esko Tähti, ISBN: 0-12-289676-9, Academic Press 	
15. Lehrveranstaltungen und -formen:	 306401 Vorlesung Ausgewählte Energiesysteme und Anlagen 306402 Vorlesung Luftreinhaltung am Arbeitsplatz 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden Selbststudium: 138 Stunden Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	30641 Energetische Anlagenbewertung und Lüftungskonzepte (PL) mündliche Prüfung, 60 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Vorlesungsskript	
20. Angeboten von:		

Stand: 25. März 2014 Seite 229 von 376

Modul: 30630 Heiz- und Raumlufttechnik

2. Modulkürzel:	041310003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Michael Sch	nmidt
9. Dozenten:		Michael Schmidt	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Gebäudeenergetik → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Gebäudeenergetik → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Gebäudeenergetik → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifiscl → Gebäudeenergetik → Kernfächer mit 6 LP 	
11. Empfohlene Vorau	ssetzungen:	Grundlagen der Heiz- und Rau	ımlufttechnik
12. Lernziele:		Anlagenkomponenten der Heiz Raumlufttechnik kennen gelerr ingenieurwissenschaftlichen G	nt und die zugehörigen
		vertraut	n und Auslegungen der Komponenten erungen die Systemlösung konzipieren, di len und auslegen
13. Inhalt:		 Berechnung, Konstruktion un Anlagenelementen Raumheiz- und -kühlflächen Luftdurchlässe, Luftkanäle Apparate zur Luftbehandlung Rohrnetz, Armaturen, Pumpe Kessel, Wärmepumpe, Kälter Aufbau, Betriebsverhalten un Anlagen sowie Solarsystemen Abnahme von Leitungsmesse 	en maschine nd Energiebedarf von Heiz- und RLT-
14. Literatur:		Auflage, Berlin: Springer-Verla	nnik Band 3: Raumheiztechnik -16.

Stand: 25. März 2014 Seite 230 von 376

18. Grundlage für :	Vorlesungsskript
17. Prüfungsnummer/n und -name:	30632 Heiz- und Raumlufttechnik mündlich (PL), mündliche Prüfung Gewichtung: 1.0
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden Selbststudium: 138 Stunden Summe: 180 Stunden
15. Lehrveranstaltungen und -formen:	306301 Vorlesung Heiz- und Raumlufttechnik306302 Praktikum Heiz- und Raumlufttechnik
	 - Bach, H.; Hesslinger, S.: Warmwasserfußbodenheizung,3. Auflage, Karlsruhe: C.F. Müller-Verlag, 1981 - Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag,1998 - Knabe, G.: Gebäudeautomation. Verlag für Bauwesen, Berlin 1992

Stand: 25. März 2014 Seite 231 von 376

2131 Kernfächer mit 6 LP

Zugeordnete Module: 13060 Grundlagen der Heiz- und Raumlufttechnik

30630 Heiz- und Raumlufttechnik

Stand: 25. März 2014 Seite 232 von 376

Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

2. Modulkürzel:	041310001	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
3. Modulverantwortlich	er:	UnivProf.DrIng. Michael Sch	nmidt
9. Dozenten:		Michael Schmidt	
10. Zuordnung zum Cւ Studiengang։	urriculum in diesem	DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Gebäudeenergetik → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifiscl → Gebäudeenergetik → Kernfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Voraussetzungen:		 Höhere Mathematik I + II Technische Mechanik I + II 	
12. Lernziele:		Studenten die Anlagen und de und Klimatisierung von Räume ingenieurwissenschaftlichen G	r- und Raumlufttechnik haben die ren Systematik der Heizung, Lüftung en kennen gelernt und die zugehörigen rundkenntnisse erworben. Auf dieser Bas legungen der Anlagen vornehmen.
		Erworbene Kompetenzen: Die Studenten	
		 kennen die thermodynamisc feuchter Luft, der Verbrennu verstehen den Zusammenha funktion und den Innenlaster 	Methoden zur Anlagenauslegung vertrau hen Grundoperationen der Behandlung ng und des Wärme- und Stofftransportes ang zwischen Anlagenauslegung und n, den meteorologischen hermischen sowie lufthygienischen
13. Inhalt:		 Systematik der heiz- und rur Strömung in Kanälen und Ra Wärmeübergang durch Kons Wärmeleitung Thermodynamik feuchter Lu Verbrennung meteorologische Grundlager Anlagenauslegung thermische und lufthygienisch 	äumen vektion und Temperaturstrahlung ft
14. Literatur:		Recknagel, H.; Sprenger, E.	; Schramek, ER.: Taschenbuch für

Stand: 25. März 2014 Seite 233 von 376

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

• Rietschel, H.; Esdorn H.: Raumklimatechnik Band 1 Grundlagen -16. Auflage, Berlin: Springer-Verlag, 1994 • Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004 • Bach, H.; Hesslinger, S.: Warmwasserfußbodenheizung, 3.Auflage, Karlsruhe: C.F. Müller-Verlag, 1981 • Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag, 1998 • Arbeitskreis der Dozenten für Klimatechnik: Lehrbuch der Klimatechnik, Bd.1-Grundlagen. Bd.2-berechnung und Regelung. Bd.3-Bauelemente. Karlsruhe: C.F. Müller-Verlag, 1974-1977 • Knabe, G.: Gebäudeautomation. Verlag für Bauwesen, Berlin 1992 15. Lehrveranstaltungen und -formen: Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik Präsenzzeit: 42 h Selbststudiumszeit / Nacharbeitszeit: 138 h Gesamt: 180 h Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche 13061

Prüfung, 120 Min., Gewichtung: 1.0

Vorlesungsskript

Stand: 25. März 2014 Seite 234 von 376

Modul: 30630 Heiz- und Raumlufttechnik

2. Modulkürzel:	041310003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Michael Sch	nmidt
9. Dozenten:		Michael Schmidt	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Gebäudeenergetik → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Gebäudeenergetik → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Gebäudeenergetik → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifiscl → Gebäudeenergetik → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Grundlagen der Heiz- und Rau	ımlufttechnik
12. Lernziele:		Anlagenkomponenten der Heiz Raumlufttechnik kennen gelerr ingenieurwissenschaftlichen G	nt und die zugehörigen
		vertraut	n und Auslegungen der Komponenten erungen die Systemlösung konzipieren, di len und auslegen
13. Inhalt:		 Berechnung, Konstruktion un Anlagenelementen Raumheiz- und -kühlflächen Luftdurchlässe, Luftkanäle Apparate zur Luftbehandlung Rohrnetz, Armaturen, Pumpe Kessel, Wärmepumpe, Kälter Aufbau, Betriebsverhalten un Anlagen sowie Solarsystemen Abnahme von Leitungsmesse 	en maschine nd Energiebedarf von Heiz- und RLT-
14. Literatur:		Auflage, Berlin: Springer-Verla	nnik Band 3: Raumheiztechnik -16.

Stand: 25. März 2014 Seite 235 von 376

	- Bach, H.; Hesslinger, S.: Warmwasserfußbodenheizung,3. Auflage,
	Karlsruhe: C.F. Müller-Verlag, 1981 - Wagner, W.: Wärmeübertragung -Grundlagen, 5. über. Auflage, Würzburg: Vogel-Verlag,1998 - Knabe, G.: Gebäudeautomation. Verlag für Bauwesen, Berlin 1992
15. Lehrveranstaltungen und -formen:	306301 Vorlesung Heiz- und Raumlufttechnik 306302 Praktikum Heiz- und Raumlufttechnik
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden Selbststudium: 138 Stunden Summe: 180 Stunden
17. Prüfungsnummer/n und -name:	30632 Heiz- und Raumlufttechnik mündlich (PL), mündliche Prüfung Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Vorlesungsskript
20. Angeboten von:	

Stand: 25. März 2014 Seite 236 von 376

Modul: 30680 Praktikum Gebäudeenergetik

041310009	5. Moduldauer:	1 Semester	
3.0 LP	6. Turnus:	jedes Semester	
0.0	7. Sprache:	Deutsch	
er:	UnivProf.DrIng. Michael Schmidt		
	Michael Schmidt		
urriculum in diesem	DoubleM.D. Energietechnik, F → Outgoing → Spezialisierungsfächer → Gebäudeenergetik	PO 2011	
	 M.Sc. Energietechnik, PO 20 → Spezialisierungsmodule → Gruppe 1: Fachspezifiso → Gebäudeenergetik 	•	
ssetzungen:	Spezialisierungsfach Gebäudeenergetik		
	Die Studierenden sind in der Lage theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.		
	zudem unter http://www.uni-stuttgart.de/ma linksunddownloads.html		
	3.0 LP 0.0 er: urriculum in diesem	3.0 LP 6. Turnus: 7. Sprache: UnivProf.DrIng. Michael Some Michael Schmidt DoubleM.D. Energietechnik, Interpretation of the properties of the prope	

Aus den folgenden **Spezialisierungsfachversuchen sind 4** auszuwählen dazu ist jeweils eine Ausarbeitung anzufertigen:

- Wärmeerzeuger
- Simulation
- Thermostatventile
- Heizkörper
- Rohrhydraulik
- Thermokamera
- · Maschinelle Lüftung
- Freie Lüftung

Beispiele:

1. Versuch "Wärmeerzeuger":

Zur Wärmeerzeugung werden hauptsächlich zentrale Wärmeerzeuger eingesetzt. Dabei stellen die öl- bzw. gasgefeuerten Warmwasser-Heizkessel den größten Anteil. Die nachfolgenden Untersuchungen werden daher an einem Warmwasser-Kessel durchgeführt. Es werden der Wirkungsgrad und Nutzungsgrad eines Wärmeerzeugers, sowie dessen Abgas-Emission bestimmt.

2. Versuch "Maschinelle Lüftung":

Aufgabe der Lüftungstechnik ist es, Räume zu klimatisieren bzw. zu belüften. Die Raumluftströmung ist dabei so einzustellen, dass Anforderungen an die thermische Umgebung und / oder die Stoffgrenzwerte eingehalten werden. Dazu ist es notwendig, die sich einstellende Raumluftströmung abhängig vom Zuluftstrom

Stand: 25. März 2014 Seite 237 von 376

und der Art der Luftführung zu kennen. Bei der Konzeption und Planung raumlufttechnischer Anlagen behilft man sich damit, die Raumluftströmung im Labor nachzubilden. Für vorgegebene Randbedingungen wird die günstigste Anordnung und Auslegung der Luftdurchlässe ermittelt. Es werden verschiedene Lüftführungen vorgestellt und anhand eines Beispiels demonstriert.

4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:

- APMB 1
- APMB 2
- APMB 3
- APMB 4

	- ALMD 4		
14. Literatur:	Praktikums - Unterlagen		
15. Lehrveranstaltungen und -formen:	 306801 Spezialisierungsfachversuch 1 306802 Spezialisierungsfachversuch 2 306803 Spezialisierungsfachversuch 3 306804 Spezialisierungsfachversuch 4 306805 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1 306806 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2 306808 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4 		
16. Abschätzung Arbeitsaufwand:	30 Std. Präsenz Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden Gesamt: 90 Stunden		
17. Prüfungsnummer/n und -name:	30681 Praktikum Gebäudeenergetik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben		
18. Grundlage für :			
19. Medienform:	Handout		
20. Angeboten von:			

Stand: 25. März 2014 Seite 238 von 376

214 Kernenergietechnik

Zugeordnete Module: 2141 Kernfächer mit 6 LP

2142 Kern- / Ergänzungsfächer mit 6 LP
 2143 Ergänzungsfächer mit 3 LP
 30730 Praktikum Kernenergietechnik

Stand: 25. März 2014 Seite 239 von 376

2143 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30710 Strahlenschutz

30720 Simulation der Ausbreitung radioaktiver Schadstoffe

Stand: 25. März 2014 Seite 240 von 376

Modul: 30720 Simulation der Ausbreitung radioaktiver Schadstoffe

2. Modulkürzel:	041610006	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Jörg Sta	rflinger
9. Dozenten:		Walter ScheuermannJörg Starflinger	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik → Spezialisierungsfäche → Kernenergietechnik → Ergänzungsfächer mit	er
		 M.Sc. Energietechnik, PO 2 → Gruppe 1: Fachspezif → Kernenergietechnik → Ergänzungsfächer mit 	isches Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Mathematik, Physik, Inform	Grundlagen, fundierte Grundlagen in atik
12. Lernziele:		von komplexen Vorgängen Schadstoffe sowie Grundla verstanden. Sie verfügen ül	uls haben die Methoden zur Simulation am Beispiel der Ausbreitung radioaktiver gen und Methoden des Software- Engineering ber Grundkenntnisse zur Modellierung und tiefte Anwendungen, z.B. in einer Studien-
13. Inhalt:		 Eigenschaften Bildung komplexer Modell Methoden und Verfahren der Komplexität des Softwa Physikalischen Grundlage 	des Software- Engineering zu Beherrschung
14. Literatur:		Vorlesungsmanuskript	
15. Lehrveranstaltung	en und -formen:	307201 Vorlesung Simula Schadstoffe	tion der Ausbreitung radioaktiver
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit: 21 h Selbststudiumzeit: 69 h Gesamt: 90 h	
17. Prüfungsnummer/ı	n und -name:		breitung radioaktiver Schadstoffe (BSL), , 30 Min., Gewichtung: 1.0
18. Grundlage für :			
19. Medienform:		Tafelanschrieb, PPT-Präse Praktikum, Computeranwer	ntationen, Skripte zu Vorlesungen und ndungen
20. Angeboten von:		Institut für Kernenergetik ur	nd Energiesysteme

Stand: 25. März 2014 Seite 241 von 376

Modul: 30710 Strahlenschutz

2. Modulkürzel:	041610005	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlicher:		UnivProf.DrIng. Jörg Starflin	ger	
9. Dozenten:		Jörg StarflingerTalianna Schmidt		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PC → Spezialisierungsfächer → Kernenergietechnik → Ergänzungsfächer mit 3 L		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisch → Kernenergietechnik → Ergänzungsfächer mit 3 L 	es Spezialisierungsfach	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energie und Umwelt → Ergänzungsfächer mit 3 LP 		
11. Empfohlene Vorau	ssetzungen:	Ingenieurwissenschaftliche Gru Physik	ındlagen, Grundlagen in Mathematik,	
12. Lernziele:		Die Studierenden können		

- die verschiedenen Arten ionisierender Strahlung benennen und nach ihren Eigenschaften bewerten, insbesondere in Bezug auf Schutzmechanismen und Strahlenschäden.
- die Erzeugung verschiedener Arten ionisierender Strahlung erläutern, die Eigenschaften bestimmter Arten ionisierender Strahlung aus der Erzeugung der Strahlung ableiten.
- eine Eigenschaften von Nukliden anhand von grundlegenden physikalischen Zusammenhängen erklären. Sie können ferner die Nachschlagewerke für physikalische Eigenschaften von Atomen und Atomkernen benennen und Informationen daraus ablesen.
- verbreitete, robuste Messprinzipien für den Nachweis ionisierender Strahlung benennen und erläutern. Die Studierenden können ferner konkrete, in der Praxis verwendete Messgeräte für ionisierende Strahlung den Messprinzipien zuordnen und ihren Aufbau und die Funktionsweise erklären.
- die relevanten Größen zu Radioaktivität, ionisierender Strahlung und Strahlenexposition sowie die zugehörigen Einheiten benennen und deren Verwendung erklären. Die Studierenden können die Relevanz einzelner dieser Größen für verschiedene Aspekte des Strahlenschutzes bewerten.
- Quellen und Bedeutung verschiedener natürlicher und künstlicher Quellen von Strahlenexpositionen der Bevölkerung und beruflich strahlenexponierter Personen benennen.

Stand: 25. März 2014 Seite 242 von 376

- -die gesetzlichen Regelwerke zum Strahlenschutz benennen und nach deren Hierarchie und praktischer Bedeutung für den Strahlenschutz bewerten. Die Studierenden können zentrale Regelungen des Strahlenschutzes wie Grenzwerte und Strahlenschutzgrundsätze benennen und einer gesetzlichen Regelung als Quelle zuordnen.
- die Ausbreitungswege von natürlicher sowie in Unfällen ausgetretener Radioaktivität erläutern.
- die konkreten Auswirkungen und Symptome von Strahlenexpositionen benennen, in verschiedene Schädigungskategorien einordnen. Die Studierenden können aus applizierter Dosis mittels Dosis-Wirkungs-Beziehungen Wahrscheinlichkeit und Schwere von Strahlenschäden einer gegebenen Strahlenexposition abschätzen.
- Wirkmechanismen von ionisierender Strahlung am Menschen benennen und die resultierenden Strahlenschäden bewerten.
- Das Risiko von Strahlenschäden im Kontext anderer schädlicher Einflüsse auf den Menschen bewerten.

Die Studierenden können

- die verschiedenen Arten ionisierender Strahlung benennen und nach ihren Eigenschaften bewerten, insbesondere in Bezug auf Schutzmechanismen und Strahlenschäden.
- die Erzeugung verschiedener Arten ionisierender Strahlung erläutern, die Eigenschaften bestimmter Arten ionisierender Strahlung aus der Erzeugung der Strahlung ableiten.
- eine Eigenschaften von Nukliden anhand von grundlegenden physikalischen Zusammenhängen erklären. Sie können ferner die Nachschlagewerke für physikalische Eigenschaften von Atomen und Atomkernen benennen und Informationen daraus ablesen.
- verbreitete, robuste Messprinzipien für den Nachweis ionisierender Strahlung benennen und erläutern. Die Studierenden können ferner konkrete, in der Praxis verwendete Messgeräte für ionisierende Strahlung den Messprinzipien zuordnen und ihren Aufbau und die Funktionsweise erklären.
- die relevanten Größen zu Radioaktivität, ionisierender Strahlung und Strahlenexposition sowie die zugehörigen Einheiten benennen und deren Verwendung erklären. Die Studierenden können die Relevanz einzelner dieser Größen für verschiedene Aspekte des Strahlenschutzes bewerten.
- Quellen und Bedeutung verschiedener natürlicher und künstlicher Quellen von Strahlenexpositionen der Bevölkerung und beruflich strahlenexponierter Personen benennen.
- -die gesetzlichen Regelwerke zum Strahlenschutz benennen und nach deren Hierarchie und praktischer Bedeutung für den Strahlenschutz bewerten. Die Studierenden können zentrale Regelungen des Strahlenschutzes wie Grenzwerte und Strahlenschutzgrundsätze benennen und einer gesetzlichen Regelung als Quelle zuordnen.
- die Ausbreitungswege von natürlicher sowie in Unfällen ausgetretener Radioaktivität erläutern.

Stand: 25. März 2014 Seite 243 von 376

	 die konkreten Auswirkungen und Symptome von Strahlenexpositionen benennen, in verschiedene Schädigungskategorien einordnen. Die Studierenden können aus applizierter Dosis mittels Dosis-Wirkungs-Beziehungen Wahrscheinlichkeit und Schwere von Strahlenschäden einer gegebenen Strahlenexposition abschätzen. Wirkmechanismen von ionisierender Strahlung am Menschen benennen und die resultierenden Strahlenschäden bewerten. Das Risiko von Strahlenschäden im Kontext anderer schädlicher Einflüsse auf den Menschen bewerten.
13. Inhalt:	 Physikalische Grundlagen zu ionisierender Strahlung Strahlenmesstechnik Gesetzliche Grundlagen zu Strahlenschutz Natürliche und zivilisatorische Strahlenbelastung Ausbreitung radioaktiver Stoffe in die Umwelt Radiologische Auswirkung von Emissionen Biologische Strahlenwirkung
14. Literatur:	
15. Lehrveranstaltungen und -formen:	307101 Vorlesung Strahlenschutz
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 h Selbststudiumzeit: 69 h Gesamt: 90 h
17. Prüfungsnummer/n und -name:	30711 Strahlenschutz (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPT-Präsentationen, PPT-Skripte zu Vorlesungen
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme

Stand: 25. März 2014 Seite 244 von 376

2142 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 14110 Kerntechnische Anlagen zur Energieerzeugung

30690 Thermofluiddynamik kerntechnischer Anlagen

30700 Reaktorphysik und -sicherheit

Stand: 25. März 2014 Seite 245 von 376

Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

2. Modulkürzel:	041610001	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester	
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlich	ner:	UnivProf.DrIng. Jörg Starfli	nger	
9. Dozenten:		Jörg Starflinger		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kern- / Ergänzungsfäche		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kernfächer mit 6 LP	PO 2011	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Kernenergietechnik → Kernfächer mit 6 LP 		
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahln		
11. Empfohlene Voraussetzungen:		Vorlesungen: Experimentalph Strömungslehre	ysik, Thermodynamik, Mathematik,	
12. Lernziele:		Die Studierenden		
		zeigen, bei welchen Nukliden wird. Sie verstehen den Mass der Einstein'schen Formel. Sie	nd die Bindungsenergie. Sie können durch Fusion oder Spaltung Energie "fre endefekt und den Zusammengang mit e können die Bethe-Weizsäcker-Formel otope in Isobarenketten identifizieren.	
		erläutern. Sie kennen das Ges	können die verschieden Zerfallsarten setz des radioaktiven Zerfalls. Sie klidkarte und können sogenannte	
			odellvorstellung der Kernspaltung de Spaltproduktausbeutekurve, die	

Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte

- wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Terme benennen und erläutern.

Neutronen sind und woher diese stammen.

Stand: 25. März 2014 Seite 246 von 376

- können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.
- verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperiode erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.
- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.
- können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.
- können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren können, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.
- können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nukleare Zwischenkühlsystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzboriersystem beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.
- im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.
- Das Defense-in-Depth Prinzip als Staffelung des Sicherheitssystems beschreiben, die fünf Sicherheitsebenen identifizieren und zugehörige Gegenmaßnahmen erläutern. Sie können das Barrierenprinzip für DWR und SWR anhand von Beispielen erläutern.
- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.

Stand: 25. März 2014 Seite 247 von 376

- können generell die Reaktorentwicklung (Generationen 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.
- verstehen die Ziele von Gen IV Reaktoren, können Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen reproduzieren und Beispiele angeben. Sie verstehen das Konzept und die Idee eines ADS-Reaktors als ein mögliches Konzept zur Verringerung der Radiotoxizität des Abfalls.
- Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.
- den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.
- können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.
- Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrierenkonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt:

Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuklidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)
- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILIAS

14. Literatur:

• W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:

141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:

45 h Präsenzzeit

45 h Vor-/Nacharbeitungszeit

90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:

14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

Stand: 25. März 2014 Seite 248 von 376

18. Grundlage für :	26000 Kernenergietechnik
19. Medienform:	ppt-Präsentation
	Manuskripte online
	Tafel + Kreide
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme

Stand: 25. März 2014 Seite 249 von 376

Modul: 30700 Reaktorphysik und -sicherheit

2. Modulkürzel:	041610004	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlicher:		UnivProf.DrIng. Jörg Starflinger	
9. Dozenten:		Jörg Starflinger Michael Buck	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kern- / Ergänzungsfäch	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kern- / Ergänzungsfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik, Informatik und aus Modul "Kerntechnische Anlage zur Energieerzeugung"	
12. Lernziele:		Die Studierenden	

- verstehen den Kernaufbau und die Bindungsenergie. Sie können zeigen, bei welchen Nukliden durch Fusion oder Spaltung Energie "frei" wird. Sie verstehen den Massendefekt und den Zusammengang mit
- wird. Sie verstehen den Massendefekt und den Zusammengang mit der Einstein'schen Formel. Sie können die Bethe-Weizsäcker-Formel anwenden und die stabilen Isotope in Isobarenketten identifizieren.
- verstehen Radioaktivität und können die verschieden Zerfallsarten erläutern. Sie kennen das Gesetz des radioaktiven Zerfalls. Sie verstehen den Aufbau der Nuklidkarte und können sogenannte Zerfallsketten nachvollziehen.
- können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind und woher diese stammen.
- wissen, was Wirkungsquerschnitte sind. Sie verstehen die Stoßrate und Neutronenstromdichte. Sie kennen den Verlauf der Wirkungsquerschnitte verschiedener Materialien über der Neutronenenergie. Sie verstehen, was Resonanzen sind, können die Breit-Wigner-Formel anwenden und die Näherungen für verschiedene Fälle der Neutronenenergie. Sie verstehen den Doppler-Effekt. Sie können die Energieverteilung der Neutronen nachvollziehen, die mittlere und wahrscheinliche Energie und Geschwindigkeit im Maxwell-Spektrum angeben.
- können Stoßgesetze der klassischen Mechanik auf Neutronen anwenden, den maximalen und minimalen Energieverlust pro Stoß herleiten, die Lethargie definieren, sowie das Bremsvermögen und Bremsverhältnis für ausgewählte Stoßpartner angeben.

Stand: 25. März 2014 Seite 250 von 376

- verstehen den Transportquerschnitt, k\u00f6nnen die Neutronenstromdichte durch eine Oberfl\u00e4che bestimmen und das Fick'sche Gesetz der Diffusion anwenden.
- verstehen die Eingruppen-Neutronen-Diffusionstheorie, k\u00f6nnen die Reaktorgleichung herleiten und deren Anwendung auf eine ebene Platte. Sie k\u00f6nnen die Reaktorgleichung in Zylinderkoordinaten nachvollziehen und f\u00fcr verschiedene Geometrie die kleinste kritische Geometrie berechnen.
- verstehen den Einfluss des Neutronenreflektors auf den Neutronenfluss. Sie können die Zwei-Gruppen-Neutronendiffusionstheorie nachvollziehen und ein einfaches ein-dimensionales Beispiel nachrechnen.
- verstehen den Aufbau der Transportgleichung.
- verstehen den Einfluss der verzögerten Neutronen und die Reaktivität. Sie verstehen die Punktkinetik und die Sprungantwort bei Reaktivitäseintrag. Sie können Reaktivitöätsrückwirkungen (Void-Effekt, Doppler-Effekt, Dichte-Effekt) anhand von Beispielen erläutern und können die Regelung des Reaktors über Turbinenventil (DWR) und Umwälzpumpen (SWR) erklären.
- den Einfluss von "Reaktorgiften" (Sm-149 und Xe-135) auf die Reaktivität nachvollziehen.
- verstehen den Abbrand von Kernbrennstoff und die daraus resultierenden Bauweisen von Reaktoren mit kontinuierlicher und diskontinuierlicher Brennstoffzufuhr, können den Aufbau von "minoren Aktiniden" im Brennelement erklären und die Entstehung der Nachzerfallswärme erläutern.

Reaktorsicherheit:

- erkennen das Gefährdungspotenzial von Radioaktivität und verstehen den Analyseweg. Sie können die zwölf Sicherheitsprinzipien erläutern.
- verstehen das Prinzip der gestaffelten Sicherheit, können die fünf Sicherheitsebenen und das Barrierenprinzip erklären und gegenüber der gestaffelten Sicherheit abgrenzen können. Sie können Beispiele für Grundsätze und Maßnahmen zur Erhaltung der Barrieren angeben.
- können das Sicherheitssystem des DWR/SWR anschaulich erläutern
- verstehen die Phänomene im Kern bei Ausfall der Kühlung und können diese erläutern. Sie unterscheiden die frühe und späte Phase voneinander. Sie können sog. In-Vessel-Phänomene wie Brennstabversagen, Abschmelzen, Schüttbettbildung, Wiederaufschmelzen, Poolbildung erläutern.
- verstehen Ex-Vessel Phänomene inkl. Austrag von Schmelze in das Containment und damit einhergehende Phänomene, sowie Schmelze-Wasser-Reaktionen bis hin zu Dampfexplosionen. Sie können den Ablauf von Beton-Schmelze Wechselwirkung, die Limitierung der Kühlbarkeit von Schmelze und die daraus resultierende Notwendigkeit der Erhaltung der Kühlbarkeit poröser Strukturen erläutern.
- können die Wasserstofferzeugung und-verbrennung im Verlauf eines Kernschmelzunfalls und den Analyseweg bzw. die -methode

Stand: 25. März 2014 Seite 251 von 376

nachvollziehen. Sie kennen die Kriterien für Flammbeschleunigung u	ınd
die möglichen Auswirkungen auf Menschen und Umwelt.	

- verstehen die Ausbreitung von radioaktiven Schadstoffen im Falle einer Freisetzung, k\u00f6nnen dazu den Atmosph\u00e4renaufbau nachvollziehen und die Depositionsmechanismen und -pfade bis hin zur Aufnahme in der K\u00f6rper erl\u00e4utern.
- verstehen die Ansätze zu Risiko und Sicherheitsanalysen, kennen die INES-Skala
- verstehen die Wirkprinzipien passiver Systeme und können diese anhand von Beispielen erläutern

13. Inhalt:

Die o.g. Lernziele werden in zwei Vorlesungsteilen vermittelt:

I Reaktorphysik

- Grundlagen der Kernspaltung
- Kernreaktionen/Wirkungsquerschnitte
- Neutronenbremsung
- Neutronendiffusion in elementarer Behandlung
- Eingruppen-Näherung
- Transiente Vorgänge
- Langzeitverhalten, Abbrand, Xenondynamik

II Reaktorsicherheit

- Grundzüge der Reaktorsicherheit, Sicherheitsprinzipen, Barrienenprinzip, Defense-in-Depth
- Sicherheitssystem von DWR und SWR inkl. passiver Wirkmechanismen
- Ablauf und physikalische Phänomene bei schweren Störfällen mit Kernschmelzen
- Sicherheitsanalysen: Probabilistische Sicherheitsanalysen, Deterministische Sicherheitsanalysen, Risiko

III Demonstrationsversuch am SUR Nullleistungsreaktor

- Beispiele aus der Neutronenphysik werden bei einem Demonstrationsversuch am SUR-Nullleistungsreaktor anschaulich erläutert.

14. Literatur:

Skript der verwendeten PPT-Materialien zur Vorlesung Reaktorphysik und Reaktorsicherheit

Literatur:

- Emendörfer, Höcker: Theorie der Kernreaktoren. Band -1 der stationäre Reaktor. BI Wissenschaftsverlag
- Emendörfer, Höcker: Theorie der KernreakModulhandbuch M.Sc. Maschinenbau Seite 731 toren. Band -2 der instationäre Reaktor. BI Wissenschaftsverlag.
- Smidt: Reaktortechnik. Band 1+2. Verlag Wissenschaft + Technik
- Lederer/Wildberg: Reaktorhandbuch. Hanser-Verlag München Wien
- Ziegler:Lehrbuch der Reaktortechnik Bd 1+2. Springer Verlag
- Henry: Nuclear Reactor Analysis
- Lamarsh: Introduction to Nuclear Engineering. Addison Wesley

15. Lehrveranstaltungen und -formen:

307001 Vorlesung Reaktorphysik und -sicherheit

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h Selbststudiumzeit: 138 h

Stand: 25. März 2014 Seite 252 von 376

	Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	30701 Reaktorphysik und -sicherheit (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen mit MATLAB	
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme	

Stand: 25. März 2014 Seite 253 von 376

Modul: 30690 Thermofluiddynamik kerntechnischer Anlagen

2. Modulkürzel: 041610003		5. Moduldauer:	1 Semester
3. Leistungspunkte: 6.0 LP		6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.DrIng. Eckart Lau	rien
9. Dozenten:		Eckart Laurien Rudi Kulenovic	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kernfächer mit 6 LP	PO 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Kernenergietechnik → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:			rundlagen, fundierte Grundlagen aus agen zur Energieerzeugung" und ılation"
12. Lernziele:		Die Studierenden besitzen Kenntnisse über den Aufbau und die Thermohydraulik von Siede- und Druckwasserreaktoren, die Gundlagen der Thermofluiddynamik sowie in die für Auslegung und den Sicherheitsnachweis erforderlichen Vorhersage- und Analysemethoden und Messmethoden. Des Weiteren besitzen die Teilnehmer spezielle in der Energietechnik benötigte Ansätze und Methoden der mehrdimensionalen, numerischen Modellierung von Zweiphasenströmungen mit Berücksichtigung von Verdampfungs- ur Kondensationsvorgängen.	
13. Inhalt:		I Vorlesungsteil Thermohydraulik der Kernreaktoren 1. Einführung 1.1 Der Europäische Druckwasserreaktor EPR 1.2 Aufgaben 1.3 Modellierung eines Druckwasserreaktors 1.4 Siedewasserreaktoren 1.5 Simulation eines Siedewasserreaktors 2. Primärkreislauf 2.1 Berechnung ein es Kühlkreislaufs 2.2 Systemcodes zur Simulation kerntechnischer Anlagen 2.3 Anwendungsbeispiel: Station Blackout 2.4 Versuchsanlagen: PKL, UPTF, Frecon 2.5 Berechnung von Vorgängen im Kühlkreislauf mit CFD 2.6 Gegengerichtete Schichtenströmung im heißen Strang 2.7 Thermische Ermüdung: Theorie und Experiment 3. Reaktorkern	

Stand: 25. März 2014 Seite 254 von 376

- 3.1 Modellierung als poröses Medium
- 3.2 Strömungssieden: LFD und DNB
- 3.3 Unterkanalanaylse
- 3.4 CFD der Strömungsvorgänge im Kern
- 3.5 Modellierung der Kühlbarkeit eines fragmentierten Kerns
- 3.6 Debris-Bed Experiment
- 4. Sicherheitsbehälter
 - 4.1 Thermohydraulische Phänomene im Sicherheitsbehälter
 - 4.2 Versuchsanlagen: Thal, Panda
 - 4.3 CFD-Anwendung im Sicherheitsbehälter
 - 4.4 Ähnlichkeit und Dimensionsanalyse

II Vorlesungsteil Modellierung von Zweiphasenströmung

- 1. Einführung
 - 1.1 Charakterisierung von Zweiphasenströmungen
 - 1.2 Mehrdimensionale Modellierung einer Blasenfahne
 - 1.3 Modellierung aufwärts gerichtete Rohrströmung
- 2. Strömungen mit Wärme- und Stoffübergang
 - 2.1 Beispiele
 - 2.2 Direktkontaktwärme- und -stoffübergang
 - 2.3 Anwendungen
- 3. Strömungen mit freier Oberfläche
 - 3.1 Mikroskopische Vorgänge in Zweiphasenströmungen
 - 3.2 Schichtenströmungen
- 4. Theorie
 - 4.1 Modellgleichungen
 - 4.2 Zweiphasen-Turbulenzmodellierung

20. Angeboten von:			
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen		
18. Grundlage für :			
17. Prüfungsnummer/n und -name:	30691 Thermofluiddynamik kerntechnischer Anlagen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudiumzeit: 138 h Gesamt: 180 h		
15. Lehrveranstaltungen und -formen:	306901 Vorlesung Thermofluidddynamik kerntechnischer Anlagen		
	- E. Laurien und H. Oertel jr.: Numerische Strömungsmechanik, 3. Auflage, Vieweg+Teubner, 2010		
	- http://www.ike.unistuttgart.de/lehre/M2P-index.html		
	- http://www.ike.uni-stuttgart.de/lehre/TKRindex.html		
14. Literatur:	Alle Vorlesungsfolien online verfügbar:		

Stand: 25. März 2014 Seite 255 von 376

2141 Kernfächer mit 6 LP

Zugeordnete Module: 14110 Kerntechnische Anlagen zur Energieerzeugung

30690 Thermofluiddynamik kerntechnischer Anlagen

31450 Simulation kerntechnischer Anlagen (Anlagendynamik)

Stand: 25. März 2014 Seite 256 von 376

Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

2. Modulkürzel:	041610001	5. Moduldauer:	1 Semester	
3. Leistungspunkte: 6.0 LP		6. Turnus:	jedes Semester	
4. SWS:	4.0	7. Sprache:	Nach Ankuendigung	
8. Modulverantwortlicher:		UnivProf.DrIng. Jörg Starfli	nger	
9. Dozenten:		Jörg Starflinger		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Kernenergietechnik → Kern- / Ergänzungsfächer mit 6 LP		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kernfächer mit 6 LP	PO 2011	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 20¹ → Gruppe 1: Fachspezifisc → Kernenergietechnik → Kernfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Voraussetzungen:		Vorlesungen: Experimentalph Strömungslehre	ysik, Thermodynamik, Mathematik,	
12. Lernziele:		Die Studierenden		
		zeigen, bei welchen Nukliden wird. Sie verstehen den Mass der Einstein'schen Formel. Sie	ind die Bindungsenergie. Sie können durch Fusion oder Spaltung Energie "fro endefekt und den Zusammengang mit e können die Bethe-Weizsäcker-Formel otope in Isobarenketten identifizieren.	
		erläutern. Sie kennen das Ge	können die verschieden Zerfallsarten setz des radioaktiven Zerfalls. Sie klidkarte und können sogenannte	

- wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Terme benennen und erläutern.

- können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte

Neutronen sind und woher diese stammen.

Stand: 25. März 2014 Seite 257 von 376

- können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.
- verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperiode erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.
- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.
- können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.
- können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren können, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.
- können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nukleare Zwischenkühlsystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzboriersystem beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.
- im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.
- Das Defense-in-Depth Prinzip als Staffelung des Sicherheitssystems beschreiben, die fünf Sicherheitsebenen identifizieren und zugehörige Gegenmaßnahmen erläutern. Sie können das Barrierenprinzip für DWR und SWR anhand von Beispielen erläutern.
- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.

Stand: 25. März 2014 Seite 258 von 376

- können generell die Reaktorentwicklung (Generationen 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.
- verstehen die Ziele von Gen IV Reaktoren, können Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen reproduzieren und Beispiele angeben. Sie verstehen das Konzept und die Idee eines ADS-Reaktors als ein mögliches Konzept zur Verringerung der Radiotoxizität des Abfalls.
- Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.
- den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.
- können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.
- Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrierenkonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt:

Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuklidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)
- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILIAS

14. Literatur:

• W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:

141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:

45 h Präsenzzeit

45 h Vor-/Nacharbeitungszeit

90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:

14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

Stand: 25. März 2014 Seite 259 von 376

18. Grundlage für :	26000 Kernenergietechnik	
19. Medienform:	ppt-Präsentation	
	Manuskripte online	
	Tafel + Kreide	
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme	

Stand: 25. März 2014 Seite 260 von 376

Modul: 31450 Simulation kerntechnischer Anlagen (Anlagendynamik)

2. Modulkürzel:	041610099	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.DrIng. Jörg Starfli	nger
9. Dozenten:		Michael Buck Jörg Starflinger	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Kernenergietechnik → Kernfächer mit 6 LP	PO 2011
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kernfächer mit 6 LP 	
11. Empfohlene Vorau	ssetzungen:	Ingenieurwissenschaftliche Gr Mathematik, Physik, Informati	rundlagen, fundierte Grundlagen in k.
		Es wird empfohlen, die Vorlesung "Kerntechnische Anlagen zur Energieerzeugung" gehört zu haben, da Aufbau und Funktion der simulierten Druckwasserreaktoren bekannt sein sollte.	
12. Lernziele:		der Modellierung und Simulati insbesondere der Thermohydiverstanden. Sie haben Einblic für Auslegung und Genehmigt herangezogen werden. Sie körealisieren und auf ihrer Grund durchführen. Sie verfügen dar	haben die Prinzipien und Möglichkeiten on von Kerntechnischen Anlagen, raulik sowie der Neutronenkinetik, ik in wesentliche Simulationswerkzeuge, die ung von Kernkraftwerken in Deutschland onnen erste einfache Anlagenmodelle dlage Simulationen zur Anlagendynamik mit über die Basis zur vertieften Anwendung udien- oder in der Masterarbeit.
13. Inhalt:		I: Vorlesung "Simulation kernt	echnischer Anlagen":
		 Aufbau und Funktion von Leichtwasserreaktoren, wesentliche Komponenten Grundlagen der Modellierung thermohydraulischer Netzwerke: Massen- Impuls- und Energiebilanzen, Zweiphasenströmungen, Wärmeübertragung mit Phasenwechsel Numerische Lösungsmethoden: örtliche und zeitliche Diskretisierun Löser für (nicht-)lineare Gleichungssysteme, Differentialgleichungel Überblick über die international eingesetzten Systemcodes für die kerntechnische Anlagensimulation Einführung in die Simulation mit dem deutschen Systemcode ATHLET: Modellierung der Anlagenkomponenten, Modellierung der Neutronenkinetik, Modellierung logischer Komponenten (Steuerung Reaktorschutzsystem), Durchführung einer Simulation, Visualisieru von Ergebnissen 	

Stand: 25. März 2014 Seite 261 von 376

• Beispiele für Transienten und Störfallszenarien als

Fragestellungen (z.B. CFD-Analysen)

Auslegungsgrundlage der Sicherheitssysteme von Kernkraftwerken
Ausblick auf die Simulation schwerer Störfälle: Integralcode ASTEC
Ansätze zur Simulation mit detaillierteren Methoden für spezielle

II: Praktische Übungen am Computer:

- Erstellung einfacher Simulationsmodelle für Einzelkomponenten mit MATLAB
- Aufbau eines Anlagenmodells für einen Druckwasserreaktor auf Basis des Simulationssystems ATHLET und Visualisierung mit ATLAS
- Untersuchungen zum dynamischen Anlagenverhalten durch Simulation von Transienten und Leckstörfällen mit dem ATHLET-Anlagenmodell

14. Literatur:	I: Vorlesungsmanuskript "Simulation kerntechnischer Anlagen"	
15. Lehrveranstaltungen und -formen:	314501 Vorlesung und Übung Simulation kerntechnischer Anlagen	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: ca. 48 h Selbststudiumzeit/Nachbearbeitungszeit: ca. 132 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	31451 Simulation kerntechnischer Anlagen (PL), schriftliche Prüf 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Übungen, Computeranwendungen	
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme	

Stand: 25. März 2014 Seite 262 von 376

Modul: 30690 Thermofluiddynamik kerntechnischer Anlagen

2. Modulkürzel: 041610003		5. Moduldauer:	1 Semester	
3. Leistungspunkte: 6.0 LP		6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.DrIng. Eckart Laurie	en	
9. Dozenten:		Eckart Laurien Rudi Kulenovic		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PC → Spezialisierungsfächer → Kernenergietechnik → Kern- / Ergänzungsfächer		
		DoubleM.D. Energietechnik, PC → Spezialisierungsfächer → Kernenergietechnik → Kernfächer mit 6 LP	D 2011	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisch → Kernenergietechnik → Kern- / Ergänzungsfächer 	es Spezialisierungsfach	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik → Kernfächer mit 6 LP 		
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Gru Modulen "Kerntechnische Anlaç "Numerischer Strömungssimula		
12. Lernziele:		Thermohydraulik von Siede- un Gundlagen der Thermofluiddyn und den Sicherheitsnachweis e Analysemethoden und Messme Teilnehmer spezielle in der Ene Methoden der mehrdimensiona	amik sowie in die für Auslegung	
13. Inhalt:		2.3 Anwendungsbeispiel: St2.4 Versuchsanlagen: PKL,2.5 Berechnung von Vorgär	wasserreaktor EPR ckwasserreaktors wasserreaktors lkreislaufs ation kerntechnischer Anlagen tation Blackout UPTF, Frecon ngen im Kühlkreislauf mit CFD ntenströmung im heißen Strang	

Stand: 25. März 2014 Seite 263 von 376

3. Reaktorkern

- 3.1 Modellierung als poröses Medium
- 3.2 Strömungssieden: LFD und DNB
- 3.3 Unterkanalanaylse
- 3.4 CFD der Strömungsvorgänge im Kern
- 3.5 Modellierung der Kühlbarkeit eines fragmentierten Kerns
- 3.6 Debris-Bed Experiment
- 4. Sicherheitsbehälter
 - 4.1 Thermohydraulische Phänomene im Sicherheitsbehälter
 - 4.2 Versuchsanlagen: Thal, Panda
 - 4.3 CFD-Anwendung im Sicherheitsbehälter
 - 4.4 Ähnlichkeit und Dimensionsanalyse

II Vorlesungsteil Modellierung von Zweiphasenströmung

- 1. Einführung
 - 1.1 Charakterisierung von Zweiphasenströmungen
 - 1.2 Mehrdimensionale Modellierung einer Blasenfahne
 - 1.3 Modellierung aufwärts gerichtete Rohrströmung
- 2. Strömungen mit Wärme- und Stoffübergang
 - 2.1 Beispiele
 - 2.2 Direktkontaktwärme- und -stoffübergang
 - 2.3 Anwendungen
- 3. Strömungen mit freier Oberfläche
 - 3.1 Mikroskopische Vorgänge in Zweiphasenströmungen
 - 3.2 Schichtenströmungen
- 4. Theorie
 - 4.1 Modellgleichungen
 - 4.2 Zweiphasen-Turbulenzmodellierung

20. Angeboten von:			
19. Medienform:	Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen		
18. Grundlage für :			
17. Prüfungsnummer/n und -name:	30691 Thermofluiddynamik kerntechnischer Anlagen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudiumzeit: 138 h Gesamt: 180 h		
15. Lehrveranstaltungen und -formen:	306901 Vorlesung Thermofluidddynamik kerntechnischer Anlagen		
	- E. Laurien und H. Oertel jr.: Numerische Strömungsmechanik, 3. Auflage, Vieweg+Teubner, 2010		
	- http://www.ike.unistuttgart.de/lehre/M2P-index.html		
	- http://www.ike.uni-stuttgart.de/lehre/TKRindex.html		
14. Literatur:	Alle Vorlesungsfolien online verfügbar:		

Stand: 25. März 2014 Seite 264 von 376

Modul: 30730 Praktikum Kernenergietechnik

2. Modulkürzel:	041610007	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester		
4. SWS:	0.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	er:	UnivProf.DrIng. Jörg Starfl	inger		
9. Dozenten:		Talianna SchmidtRudi KulenovicJörg Starflinger	Rudi Kulenovic		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, I → Outgoing → Spezialisierungsfächer → Kernenergietechnik			
		 M.Sc. Energietechnik, PO 2011 → Spezialisierungsmodule → Gruppe 1: Fachspezifisches Spezialisierungsfach → Kernenergietechnik 			
11. Empfohlene Vorau	ssetzungen:				
12. Lernziele:		Die Studierenden sind in der anzuwenden und in der Praxi	Lage, theoretische Vorlesungsinhalte s umzusetzen.		
13. Inhalt:		Im Spezialisierungsfach "Kerr Spezialisierungsfachversuche	nenergietechnik" sind folgende 4 e am IKE zu belegen:		
		Kernreaktor SUR100Radioaktivität und StrahlenschutzKühlbarkeit von SchüttungenAlpha- und Gamma-Spektrometrie			
		4 weitere Versuche sind aus Maschinenbau (APMB) zu ab	dem Angebot des Allgemeinen Praktikums solvieren:		
		APMB 1APMB 2APMB 3APM	1B 4		
			lnen Praktika erfolgt über ILIAS. Dort sind id Vorbereitungsunterlagen verfügbar.		
		In einem Kolloquium vor dem eigentlichen praktischen Versuch wird überprüft, ob die für den Versuch notwenigen Grundlagen vorhanden sind (Vorbereitungsunterlagen lesen und verstehen!).			
		Für jeden Praktikumsversuch ist eine Ausarbeitung anzufertigen und b der Betreuerin bzw. beim Betreuer abzugeben. Erst danach wird das Testat ausgestellt.			
		Eine Übersicht zu den APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/ linksunddownloads.html			
14. Literatur:		Praktikumsunterlagen (ILIAS)			
15. Lehrveranstaltungen und -formen:			hversuch 2 hversuch 3		

Stand: 25. März 2014 Seite 265 von 376

	 307307 Allgemeinen Praktikums Maschinenbau (APMB) 3 307308 Allgemeinen Praktikums Maschinenbau (APMB) 4 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 30 h Selbststudiumzeit/Nachbearbeitungszeit: 60 h Gesamt: 90 h	
17. Prüfungsnummer/n und -name:	30731 Praktikum Kernenergietechnik (USL), mündliche Prüfung Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.	
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme	

Stand: 25. März 2014 Seite 266 von 376

215 Strömungsmechanik und Wasserkraft

Zugeordnete Module: 2151 Kernfächer mit 6 LP

2152 Kern- / Ergänzungsfächer mit 6 LP

2153 Ergänzungsfächer mit 3 LP

30780 Praktikum Strömungsmechanik und Wasserkraft

Stand: 25. März 2014 Seite 267 von 376

2153 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30740 Strömungsmesstechnik

30750 Meeresenergie

30760 Die Rolle der Wasserkraft im Strommix der Klimapolitik unter den Aspekten

Soziales, Ökologie und Ökonomie

30770 Planung von Wasserkraftanlagen

Stand: 25. März 2014 Seite 268 von 376

Modul: 30760 Die Rolle der Wasserkraft im Strommix der Klimapolitik unter den Aspekten Soziales, Ökologie und Ökonomie

2. Modulkürzel:	042000600	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Stefan Ried	delbauch
9. Dozenten:		Hans Peter Schiffer	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik und → Ergänzungsfächer mit 3	d Wasserkraft
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Strömungsmechanik und Wasserkraft → Ergänzungsfächer mit 3 LP 	
11. Empfohlene Vorau	ssetzungen:	keine	
12. Lernziele:		Die Studierenden kennen das Spannungsfeld zwischen Technik, Umwelt und Sozialem. Sie verfügen über Kenntnisse des weltweitem Energiebedarfs und der Stromerzeugung. Sie kennen den Zusammenhang zwischen Energie und Armut. Sie verfügen über Kenntnisse der verschiedenen Stromerzeugungsarten und kennen die Wirkung der Wasserkraft für eine nachhaltige Entwicklung. Schließlich verfügen sie über Kenntnisse der "Sustainability Guidelines" der International Hydro Association.	
13. Inhalt:		Die Rolle der Wasserkraft im S Aspekten Soziales, Ökologie	Strommix der Klimapolitik unter den und Ökonomie.
		Nachhaltigkeit betrachtet - auc	Vasserkraft in den drei Dimensionen der ch im Lichte der Argumente ihrer Kritiker rbaren und fossilen Energiequellen der
		europäischer und deutscher E	d Wirksamkeit der Klimapolitik auf globald bene untersucht sowie die (begrenzte) die Erreichung der klimapolitischen Ziele
		Angesichts der enormen Umwälzungen beim Stromversorgungssyste durch die deutsche Energiewende werden innovative Optionen der Wasserkraft erläutert, die ihre zukünftige Rolle erweitern können.	
		Stromversorgung nahe gebrac in diesem Bereich durchaus b	auch nicht-technische Aspekte der cht, die eine zukünftige Berufstätigkeit eeinflussen, und Nicht-Technikern wird en der Stromversorgung im Zeichen von e geboten.
		Inhalt:	
		Kapitel 1: Einführung in die Te Wasserspeicherung)	echnologie (Wasserkraftnutzung,

Stand: 25. März 2014 Seite 269 von 376

	Kanital O. Caniala Appaleta (Unacialluma Datallimuma dan Datraffan an
	Kapitel 2: Soziale Aspekte (Umsiedlung, Beteiligung der Betroffenen, benefit sharing)
	Kapitel 3: Ökologische Aspekte (Fischmigration, Überflutung, CO2/CH
	Emission)
	Kapitel 4: Ökonomische Aspekte (Stromgestehungskosten, Netz-
	Zusatzleistungen,
	Pumpspeicher-Anlagen)
	Kapitel 5: Stärken und Schwächen der Wasserkraft im Blick auf
	nachhaltige Entwicklung
	Kapitel 6: Der Strommix der Klimapolitik (Global, in Europa, in Deutschland),
	die Rolle der Wasserkraft für die Erreichung der
	klimapolitischen Ziele
	Kapitel 7: Die Wasserstoff-Wirtschaft
	Kapitel 8: Monitoring der Energiewende in Deutschland
14. Literatur:	Vorlesungsmitschrift "Die Rolle der Wasserkraft im Strommix der Klimapolitik "
15. Lehrveranstaltungen und -formen:	307601 Verlesung Die Rolle der Wasserkraft
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden
ŭ	Selbststudium: 69 Stunden
	Summe: 90 Stunden
17. Prüfungsnummer/n und -name:	30761 Die Rolle der Wasserkraft im Strommix der Klimapolitik unter
	den Aspekten Soziales, Ökologie und Ökonomie (BSL),
	mündliche Prüfung, 20 Min., Gewichtung: 1.0,
18. Grundlage für :	
19. Medienform:	PPT-Präsentationen, Tafelanschrieb
20. Angeboten von:	

Stand: 25. März 2014 Seite 270 von 376

Modul: 30750 Meeresenergie

2. Modulkürzel:	042000600	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	DrIng. Albert Ruprecht	
9. Dozenten:		Albert Ruprecht	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik un → Ergänzungsfächer mit 3	d Wasserkraft
		 M.Sc. Energietechnik, PO 20^o → Gruppe 1: Fachspezifiso → Strömungsmechanik un → Ergänzungsfächer mit 3 	ches Spezialisierungsfach d Wasserkraft
11. Empfohlene Vorau	ssetzungen:	keine	
12. Lernziele:		Meeresenergie. Sie erlernen o Stand der Technik in den einz Einblick in die einzelnen	nen Überblick über die Nutzung der den zelnen Teilbereichen und sie erhalten einen n Herausforderungen bei der Nutzung der
13. Inhalt:		-Einführung in Meeresenergie -Gezeitenkraftwerke -Strömungskraftwerke -Wellenenergienutzung -Osmose-Kraftwerke -Nutzung thermischer Meeres -Projektbeispiele	
14. Literatur:		Vorlesungsmanuskript "Meeresenergie"	
15. Lehrveranstaltungen und -formen:		307501 Vorlesung Meeresenergie307502 Seminar Meeresenergie (1Tag)	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 h Selbststudium: 69 h Summe: 90 h	
17. Prüfungsnummer/n und -name:		30751 Meeresenergie (BSL) Gewichtung: 1.0	, mündliche Prüfung, 20 Min.,
18. Grundlage für :			
19. Medienform:		PPT-Präsentationen, Tafelans	schrieb
20. Angeboten von:			

Stand: 25. März 2014 Seite 271 von 376

Modul: 30770 Planung von Wasserkraftanlagen

2. Modulkürzel:	042000700	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Stefan Rie	delbauch
9. Dozenten:		Stephan Heimerl	
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik un → Ergänzungsfächer mit 3	d Wasserkraft
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Strömungsmechanik und → Ergänzungsfächer mit 3 	ches Spezialisierungsfach d Wasserkraft
11. Empfohlene Vorau	ssetzungen:	keine	
12. Lernziele:		Der Studierende erlernt anhand von Beispielen aus der Praxis die wesentlichen Aspekte von Planung, Bau und Betrieb von Wasserkraftanlagen in Deutschland und im Ausland aus der Sicht des Wasserbauingenieurs. Auf diese Weise ist der Studierende in Verbindung mit den im Hauptstudium erlernten maschinentechnischen Grundlagen als Kernelement derartiger Energieerzeugungsanlagen in der Lage, das Umfeld von Wasserkraftanlagen zu beurteilen, dies in die Projektierungsüberlegungen einfliessen zu lassen und so über eine gesamtheitliche Sichtweise der komplexen Strukturen zu verfügen.	
13. Inhalt:		Die Vorlesung stellt die für die Planung von Wasserkraftanlagen erforderliche Ermittlung der natürlichen Grundlagen sowie die notwendigen Planungsschritte bis hin zur Realisierung anhand konkreter Beispiele vor. Schwerpunkte sind dabei die komplexen genehmigungsrechtlichen Randbedingungen sowie die damit eng zusammenhängende Festlegung umweltrelevanter Maßnahmen im Umfeld der Wasserkraftanlage, wie z. B. Fischaufstiegs- und Fischabstiegsanlagen. Des Weiteren werden die unterschiedlichen Randbedingungen und Ansätze bei Wasserkraftplanungen in unterschiedlichen Ländern mitte Fallbeispielen in Deutschland, der Türkei sowie Zentralafrika dargestel Hierbei wird auch auf die international üblichen Standards zur Bewertu von Wasserkraftprojekten im Rahmen von vertieften Prüfungen, den se "Due Diligences", eingegangen.	
14. Literatur:			y von Wasserkraftanlagen" merl, S.: Wasserkraftanlagen - Planung, Berlin, Heidelberg, New York: Springer-
15. Lehrveranstaltunge	en und -formen:	• 307701 Verlesung Planung • 307702 Exkursion Planung •	von Wasserkraftanlagen von Wasserkraftanlagen (1Tag)
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden	

Stand: 25. März 2014 Seite 272 von 376

17. Prüfungsnummer/n und -name:	30771 Planung von Wasserkraftanlagen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPT-Präsentationen, Tafelanschrieb
20. Angeboten von:	

Stand: 25. März 2014 Seite 273 von 376

Modul: 30740 Strömungsmesstechnik

2. Modulkürzel:	042000500	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	Oliver Kirschner		
9. Dozenten:		Oliver Kirschner		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik un → Ergänzungsfächer mit 3	d Wasserkraft	
		 M.Sc. Energietechnik, PO 20: → Gruppe 1: Fachspezifisc → Strömungsmechanik un → Ergänzungsfächer mit 3 	ches Spezialisierungsfach d Wasserkraft	
11. Empfohlene Vorau	ssetzungen:	Ingenieurwissenschaftliche G Strömungslehre	rundlagen, fundierte Grundlagen in	
12. Lernziele:		Strömungsmesstechnik. Sie s Lage grundlegende Messung hydraulischen Strömungsmas	Die Studierenden des Moduls erlernen die Grundlagen der Strömungsmesstechnik. Sie sind in der Lage grundlegende Messungen in der Strömungsmechanik und an hydraulischen Strömungsmaschinen durchzuführen und die Qualität von Messergebnissen zu beurteilen.	
13. Inhalt:		Ähnlichkeitsgesetzen für die I der Visualisierung von Ström Geschwindigkeits- und Durch auf die Besonderheiten der M	eeignete Auswahl und Anwendung von Durchführung von Modellversuchen. Neber ungen wird die Durchführung von Druck-, flussmessungen behandelt. Speziell wird lesstechnik in hydraulischen Anlagen nenten in Kraftwerken und Laboren	
14. Literatur:		Vorlesungsmanuskript "Mess	verfahren in der Strömungsmechanik"	
		zur Vertiefung:		
		2006 Ruck, B.: Lasermethoden in c Stuttgart, 1990 Raffel, M.; Willert, C.; Werele	echnik, Springer-Verlag, zweite Auflage, der Strömungsmeßtechnik, ATFachverlag, y, S.; Kompenhans J.: "Particle Image "; Springer-Verlag, Second Edition, 2007	
15. Lehrveranstaltungen und -formen:		307401 Vorlesung Strömung	gsmesstechnik	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 h Selbststudium: 69 h Summe: 90 h		
17. Prüfungsnummer/n und -name:		30741 Strömungsmesstechr Gewichtung: 1.0	nik (BSL), mündliche Prüfung, 20 Min.,	
18. Grundlage für :				
19. Medienform:		Präsentation mit Beamer, Taf Ausstellungsstücke	el, Vorführung von Messgeräten,	

Stand: 25. März 2014 Seite 274 von 376

20. Angeboten von:

Stand: 25. März 2014 Seite 275 von 376

2152 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

17600 Numerische Strömungsmechanik

Stand: 25. März 2014 Seite 276 von 376

Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

2. Modulkürzel:	042000100	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Stefan Ried	delbauch
9. Dozenten:		Stefan Riedelbauch	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Strömungsmechanik und → Kern- / Ergänzungsfäche	d Wasserkraft
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Strömungsmechanik und → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Strömungsmechanik und → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach d Wasserkraft
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Strömungsmechanik und → Kernfächer mit 6 LP 	hes Spezialisierungsfach
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahlm	
11. Empfohlene Voraussetzungen:		Wahlpflichtmodul Gruppe 1	(Strömungsmechanik)
		 Technische Strömungslehre Strömungsmechanik 	e (Fluidmechanik 1) oder
12. Lernziele:		Wasserkraftanlagen und die G Strömungsmaschinen. Sie sin Vorauslegungen von hydrauli	
13. Inhalt:		Kreiselpumpen und Pumpentu Bauarten und deren Kennwert Kavitationserscheinungen vord die Auslegung von hydraulisch damit zusammenhängenden kamit zusammenhängenden kamit der Berechnung	rundlagen von Kraftwerken, Turbinen, urbinen. Dabei werden die verschiedener te, Verluste sowie die dort auftretenden gestellt. Es wird eine Einführung in nen Strömungsmaschinen und die Kennlinien und Betriebsverhalten und Konstruktion einzelner Bauteile die Auslegung von hydraulischen

Stand: 25. März 2014 Seite 277 von 376

	Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise "Hydrodynamische Getriebe und Absperr- und Regelorgane behandelt.
14. Literatur:	Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
	C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
	W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverla
	J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
	J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag
15. Lehrveranstaltungen und -formen:	141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
	 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
	 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h
17. Prüfungsnummer/n und -name:	14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,
18. Grundlage für :	29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen
19. Medienform:	Tafel, Tablet-PC, Powerpoint Präsentation
20. Angeboten von:	

Stand: 25. März 2014 Seite 278 von 376

Modul: 17600 Numerische Strömungsmechanik

2. Modulkürzel:	042000300	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	DrIng. Albert Ruprecht	
9. Dozenten:		Albert Ruprecht	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, → Spezialisierungsfächer → Strömungsmechanik u → Kern- / Ergänzungsfäc	nd Wasserkraft
		DoubleM.D. Energietechnik, → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäc	•
		 M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifis → Strömungsmechanik u → Kern- / Ergänzungsfäc 	sches Spezialisierungsfach nd Wasserkraft
		 M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifis → Windenergie → Kern- / Ergänzungsfäc 	sches Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche u Höhere Mathematik	und naturwissenschaftliche Grundlagen,
12. Lernziele:		Berechnung von Strömunge von Strömungsproblemen m problemspezifische Modelle	lie Grundlagen der numerischen n sowie das Vorgehen bei der Lösung hittels CFD. Sie sollten in der Lage sein, und Algorithmen auszuwählen und zu Voraussetzung zu einer richtigen Anwendu ungssoftware.
13. Inhalt:		 Einführung in die numerisch Navier-Stokes-Gleichunge Turbulenzmodelle, Finite Differenzen, Finite N Lineare Gleichungslöser, Algorithmen zur Strömung CFD-Anwendungen. 	on, /olumen, Finite Elemente,
14. Literatur:		Vorlesungsmanuskript "Nu	umerische Strömungsmechanik"
15. Lehrveranstaltungen und -formen:		176001 Vorlesung Numerische Strömungsmechanik176002 Übung Numerische Strömungsmechanik	
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit: 42 h	
		Selbststudiumszeit / Nacharl	beitszeit: 138 h
		Gesamt: 180 h	
17. Prüfungsnummer/n und -name:		17601 Numerische Strömu Min., Gewichtung: 1.	ngsmechanik (PL), mündliche Prüfung, 40.0

Stand: 25. März 2014 Seite 279 von 376

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Computerübungen

20. Angeboten von:

Stand: 25. März 2014 Seite 280 von 376

2151 Kernfächer mit 6 LP

Zugeordnete Module: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

Stand: 25. März 2014 Seite 281 von 376

Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

2. Modulkürzel:	042000100	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.DrIng. Stefan Rie	delbauch
9. Dozenten:		Stefan Riedelbauch	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik un → Kern- / Ergänzungsfäch	d Wasserkraft
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Strömungsmechanik un → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Strömungsmechanik un → Kern- / Ergänzungsfäch 	ches Spezialisierungsfach d Wasserkraft
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Strömungsmechanik und → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 20° → Vertiefungsmodule → Pflichtmodule mit Wahln 	
11. Empfohlene Voraussetzungen:		Wahlpflichtmodul Gruppe 1	(Strömungsmechanik)
		 Technische Strömungslehre Strömungsmechanik 	e (Fluidmechanik 1) oder
12. Lernziele:		Wasserkraftanlagen und die C Strömungsmaschinen. Sie sin Vorauslegungen von hydraul	- · · · · · · · · · · · · · · · · · · ·
13. Inhalt:		Kreiselpumpen und Pumpenti Bauarten und deren Kennwer Kavitationserscheinungen vor die Auslegung von hydraulisc damit zusammenhängenden I gegeben. Mit der Berechnung	Grundlagen von Kraftwerken, Turbinen, urbinen. Dabei werden die verschiedene te, Verluste sowie die dort auftretenden gestellt. Es wird eine Einführung in hen Strömungsmaschinen und die Kennlinien und Betriebsverhalten und Konstruktion einzelner Bauteile die Auslegung von hydraulischen

Stand: 25. März 2014 Seite 282 von 376

	Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise "Hydrodynamische Getriebe und Absperr- und Regelorgane behandelt.
14. Literatur:	Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
	C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
	W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverla
	J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
	J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag
15. Lehrveranstaltungen und -formen:	141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
	 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
	141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h
17. Prüfungsnummer/n und -name:	14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,
18. Grundlage für :	29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen
19. Medienform:	Tafel, Tablet-PC, Powerpoint Präsentation
20. Angeboten von:	

Stand: 25. März 2014 Seite 283 von 376

Modul: 30780 Praktikum Strömungsmechanik und Wasserkraft

2. Modulkürzel:	042000900	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Oliver Kirschner	
9. Dozenten:		Oliver Kirschner	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Incoming → Practical Work	PO 2011
		DoubleM.D. Energietechnik, F → Outgoing → Spezialisierungsfächer → Strömungsmechanik und	
		 M.Sc. Energietechnik, PO 20¹ → Spezialisierungsmodule → Gruppe 1: Fachspezifisc → Strömungsmechanik und 	ches Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Strömungslehre	
12. Lernziele:			Lage grundlegende Messungen in der nydraulischen Strömungsmaschinen
13. Inhalt:		Nähere Informationen zu den zudem unter http://www.uni-stuttgart.de/ma linksunddownloads.html	Praktischen Übungen: APMB erhalten Siabau/msc/msc_mach/
		Im Rahmen des Praktikums was auch Leistungs- und Wirkungs von hydraulischen Strömungs	•
14. Literatur:		Versuchsunterlagen, Versuch	sbeschreibung
15. Lehrveranstaltungen und -formen:		(APMB) 1	nversuch 2 nversuch 3
		• 307807 Praktische Übungen (APMB) 3	a: Allgemeines Praktikum Maschinenbau a: Allgemeines Praktikum Maschinenbau
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Summe: 90 Stunden	

Stand: 25. März 2014 Seite 284 von 376

17. Prüfungsnummer/n und -name:	30781 Praktikum Strömungsmechanik und Wasserkraft (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.	
18. Grundlage für :		
19. Medienform:	Einführung mit Beamer-Präsentation, Vorführung der verwendeten Messgeräte, Versuchsaufbau	
20. Angeboten von:		

Stand: 25. März 2014 Seite 285 von 376

216 Techniken zur effizienten Energienutzung

Zugeordnete Module: 2161 Kernfächer mit 6 LP

2162 Kern- / Ergänzungsfächer mit 6 LP

2163 Ergänzungsfächer mit 3 LP

30810 Praktikum: Techniken zur effizienten Energienutzung

Stand: 25. März 2014 Seite 286 von 376

2163 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 36760 Wärmepumpen

36780 Kraft-Wärme-Kältekopplung (BHKW) 36830 Lithiumbatterien: Theorie und Praxis

36850 Elektrochemische Energiespeicherung in Batterien

36870 Kältetechnik

45710 Energieeffizienz in der Industrie

Stand: 25. März 2014 Seite 287 von 376

Modul: 36850 Elektrochemische Energiespeicherung in Batterien

2. Modulkürzel:	042411045	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Andreas Friedrich	
9. Dozenten:		Andreas FriedrichBirger Horstmann	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Ergänzungsfächer mit 3 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Techniken zur effiziente → Ergänzungsfächer mit 3 	ches Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Ergänzungsfächer mit 3 LP 	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energiesysteme und En → Ergänzungsfächer mit 3 	ngsfach mit Querschnittscharakter ergiewirtschaft
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Die Teilnehmer/innen haben Kenntnisse in Grundlagen und Anwendungen der Batterietechnik. Sie verstehen das Prinzip der elektrochemischen Energieumwandlung und sind in der Lage, Zellspannung und Energiedichte mit Hilfe thermodynamischer Daten zu errechnen. Sie kennen Aufbau und Funktionsweise von typischen Batterien (Alkali- Mangan, Zink-Luft) und Akkumulatoren (Blei, Nickel- Metallhydrid, Lithium). Sie verstehen die Systemtechnik und Anforderungen typischer Anwendungen (portable Geräte, Fahrzeugtechnik, Pufferung regenerativer Energien, Hybridsysteme). Sie haben grundlegende Kenntnisse von Herstellungsverfahren, Sicherheitstechnik und Entsorgung.	
13. Inhalt:		 Grundlagen: Elektrochemische Thermodynamik, Elektrolyte, Grenzflächen, elektrochemische Kinetik Primärzellen: Alkali-Mangan Sekundärzellen: Blei-Säure, Nickel-Metallhydrid, Lithium-Ionen Anwendungen: Systemtechnik, Hybridisierung, portable Geräte, Fahrzeugtechnik, regenerative Energien Herstellung, Sicherheitstechnik und Entsorgung 	
14. Literatur:		Skript zur Vorlesung; A. Jossen und W. Weydanz, Moderne Akkumulatoren richtig einsetze (2006).	
15. Lehrveranstaltunge	en und -formen:	368501 Vorlesung Elektrochemische Energiespeicherung in Batterien	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 28 h Vor- / Nachbereitung: 62 h	

Stand: 25. März 2014 Seite 288 von 376

	Gesamtaufwand: 90 h
17. Prüfungsnummer/n und -name:	36851 Elektrochemische Energiespeicherung in Batterien (BS schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Tafelanschrieb und Powerpoint-Präsentation
20. Angeboten von:	

Stand: 25. März 2014 Seite 289 von 376

Modul: 45710 Energieeffizienz in der Industrie

2. Modulkürzel:	041210026	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		Alois KesslerMarkus Blesl	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Techniken zur effizienten → Ergänzungsfächer mit 3	n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifiscl → Techniken zur effizienten → Ergänzungsfächer mit 3 	hes Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiesysteme und Ene → Ergänzungsfächer mit 3 	gsfach mit Querschnittscharakter ergiewirtschaft
11. Empfohlene Vorau	ssetzungen:	Grundlagen der Energiewirtsch "Energiewirtschaft und Energieversorgung")	naft und Energieversorgung (z.B. Modul
12. Lernziele:		Struktur des Energieverbrauch Industrie. Darauf aufbauend er	Grundverständnis hinsichtlich der is und der Verfahrensprozesse in der lernen die sie Grundlagen der industrieller n und können die wichtigsten Methoden zu
		und Fähigkeit zur Durchführ 50001	oren auf den Energieverbrauch "Hemmnisse für
13. Inhalt:		Branchen. Technologische Op	ergieintensive und nicht energieintensive tionen zur Optimierung von fahrenstechnische Prozesse in
		Metallerzeugung und -verartChemische IndustrieSteine und ErdenLebensmittelindustrie	peitung
		Potentiale, Hemmnisse und Mo Deutschland	öglichkeiten für die Industrie in
14. Literatur:			

Stand: 25. März 2014 Seite 290 von 376

15. Lehrveranstaltungen und -formen:	457101 Vorlesung Energieeffizienz in der Industrie
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 h Selbststudium: 62 h Gesamtzeit: 90 h
17. Prüfungsnummer/n und -name:	45711 Energieeffizienz in der Industrie (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitende Manuskript
20. Angeboten von:	

Stand: 25. März 2014 Seite 291 von 376

Modul: 36780 Kraft-Wärme-Kältekopplung (BHKW)

2. Modulkürzel:	042410036	5. Moduldau	uer: 1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Apl. Prof.DrIng. Klau	us Spindler
9. Dozenten:		Klaus Spindler	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energiete → Spezialisierungs → Techniken zur e → Ergänzungsfäch	sfächer Iffizienten Energienutzung
			spezifisches Spezialisierungsfach Ifizienten Energienutzung
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Kraft-Wärme-Kälte-Ko KWK-Anlagen ausleg bewerten. Sie kennen beherrschen die Verfa kennen den prinzipiel	ben Kenntnis über verschiedene Koppelprozesse opplung und deren Bewertungsgrößen. Sie könne en und energetisch, ökologisch und ökonomisch die entsprechenden Regeln und Normen. Sie ahren und Methoden für die Projektierung und len Ablauf der Inbetriebnahme und Abnahme von ärme- und Kältekopplung.
13. Inhalt:		Wärmeauskopplung, Leistung, Wirkungsgra Immissionen, TA Luft, Verfahren zur Mindere Primärenergieeinspar Kälteerzeugung mit B Kälte- Kopplung, Wirt Planung, Auslegung u Auslegung, Genehmig Angebotsvergleich, A	eines BHKWs, Motorische Antriebe, Brennstoffe, Hydraulische Integration des BHKW, Generatorer ade, Nutzungsgrade, Emissionen und Verfahren zur Emissionsminderung, TA Lärm, ung von Schallemissionen, Umweltaspekte, rung, Emissionsentlastung durch BHKW, HKW, Wärme-Kälte- Kopplung, Kraft-Wärmeschaftlichkeitsrechnungen, Steuerliche Aspekte, und Genehmigung, Fahrweisen, Bedarfsanalyse ugung und Rahmenbedingungen, Ausschreibung, uftragsvergabe, Verträge, Inbetriebnahme, g, Einsatzfelder und Anwendungsbeispiele
14. Literatur:		Powerpoint-Folien de	r Vorlesung, Daten- u. Arbeitsblätter
15. Lehrveranstaltunge	en und -formen:	367801 Vorlesung n Kältekopplu	nit integrierten Übungen Kraft-Wärme- ng (BHKW)
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 28 h Selbststudium, Prüfungsvorber.: 62 h Gesamt: 90 h	
17. Prüfungsnummer/r	n und -name:		Kältekopplung (BHKW) (BSL), mündliche lin., Gewichtung: 1.0
18. Grundlage für :			
19. Medienform:			oint-Präsentation mit Beispielen zur Anwendung nd Tafelanschrieb u. Overhead-Folien
20. Angeboten von:			

Stand: 25. März 2014 Seite 292 von 376

Modul: 36870 Kältetechnik

2. Modulkürzel:	042410034	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Klaus Spindl	er
9. Dozenten:		Thomas Brendel Klaus Spindler	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Techniken zur effizienter → Ergänzungsfächer mit 3	n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Techniken zur effizienter → Ergänzungsfächer mit 3 	hes Spezialisierungsfach า Energienutzung
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Physik un	d Thermodynamik
12. Lernziele:		Die Studierenden	
		kennen alle Komponenten everstehen die volkswirtscha	Anlagen berechnen und bewerten
13. Inhalt:		Der Einfluss der Kälteerzeugu und Folgen und Maßnahmen I Kälteerzeugung werden vorge erklärt, Anlagenbeispiele geze erklärt. Auf die Kältemittel und	ältetechnik im globalen Umfeld erläutert. ng auf die Umwelt wird betrachtet besprochen. Die Verfahren zur stellt. Kennzahlen und Wirkungsgrade eigt und Anlagen komponenten die Verdichter wird besonders bildet eine Übersicht über alternative e z.B. Absorptionstechnik.
14. Literatur:			
		VorlesungsskriptH.L. von Cube u.a.: Lehrbuc Verlag, 4. Aufl. 1997	ch der Kältetechnik Bd. 1 u. 2, C.F. Müller
15. Lehrveranstaltunge	en und -formen:	368701 Vorlesung Kältetech	nik
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 28h Selbststudium: 62 h Gesamt: 90 h	
17. Prüfungsnummer/r	n und -name:	36871 Kältetechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0	
18. Grundlage für :			
19. Medienform:		Vorlesung als Powerpoint-Präsentation mit Beispielen zur Erläuterung und Anwendung des Vorlesungsstoffes, ergänzend Tafelanschrieb u. Overhead-Folien	
		Overneau-i olieri	

Stand: 25. März 2014 Seite 293 von 376

Modul: 36830 Lithiumbatterien: Theorie und Praxis

3. Leistungspunkte: 3.0 LF 4. SWS: 2.0 8. Modulverantwortlicher: 9. Dozenten: 10. Zuordnung zum Curriculum Studiengang: 11. Empfohlene Voraussetzung 12. Lernziele:	in diesem	6. Turnus: 7. Sprache: UnivProf.Dr. Andreas Friedrich Andreas Friedrich DoubleM.D. Energietechnik, PO 2 → Spezialisierungsfächer → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP Die Teilnehmer/innen haben Ken	nergienutzung s Spezialisierungsfach nergienutzung fach mit Querschnittscharakter erteilung	
8. Modulverantwortlicher: 9. Dozenten: 10. Zuordnung zum Curriculum Studiengang:		UnivProf.Dr. Andreas Friedrich Andreas Friedrich DoubleM.D. Energietechnik, PO 2 → Spezialisierungsfächer → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP	2011 nergienutzung s Spezialisierungsfach nergienutzung fach mit Querschnittscharakter erteilung	
9. Dozenten: 10. Zuordnung zum Curriculum Studiengang: 11. Empfohlene Voraussetzung		Andreas Friedrich DoubleM.D. Energietechnik, PO 2 → Spezialisierungsfächer → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP	nergienutzung s Spezialisierungsfach nergienutzung fach mit Querschnittscharakter erteilung	
10. Zuordnung zum Curriculum Studiengang: 11. Empfohlene Voraussetzung		DoubleM.D. Energietechnik, PO 2 → Spezialisierungsfächer → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP	nergienutzung s Spezialisierungsfach nergienutzung fach mit Querschnittscharakter erteilung	
Studiengang: 11. Empfohlene Voraussetzung		→ Spezialisierungsfächer → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP	nergienutzung s Spezialisierungsfach nergienutzung fach mit Querschnittscharakter erteilung	
	en:	 → Gruppe 1: Fachspezifisches → Techniken zur effizienten E → Ergänzungsfächer mit 3 LP M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsf → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP 	nergienutzung fach mit Querschnittscharakter erteilung	
	en:	 → Gruppe 2: Spezialisierungst → Energiespeicherung und -ve → Ergänzungsfächer mit 3 LP 	erteilung 	
	en:	Die Teilnehmer/innen haben Ken		
12. Lernziele:		Die Teilnehmer/innen haben Ken		
12. Lemziele:		Die Teilnehmer/innen haben Kenntnisse in der theoretischen Beschreibung und den experimentellen Eigenschaften von Lithiumbatterien. Sie kennen unterschiedliche zum Einsatz kommende Aktivmaterialien und können deren Vor- und Nachteile bewerten. Sie haben eine Handfertigkeit in der experimentellen Charakterisierung von Lithiumbatterien erlangt und können die Leistung einer Zelle anhand von Kennlinien bewerten. Sie sind mit dem inneren Aufbau von Batterien vertraut und können deren elektrochemischen und thermische Eigenschaften mit Hilfe von Computersimulationen vorhersagen.		
13. Inhalt:		und Batteriekonzepte, Syster 2) Praxis: Messung von Kennlir Hybridisierung	: Materialien und Elektrochemie, Zell- mtechnik, Anwendungen nien, Rasterelektronenmikroskopie, Simulationen, Wärmemanagement,	
14. Literatur:		Skript zur Veranstaltung;		
		A. Jossen und W. Weydanz, Mod (2006).	lerne Akkumulatoren richtig einsetzen	
15. Lehrveranstaltungen und -fc	ormen:	368301 Vorlesung mit theoretisc Lithiumbatterien: Theoretisc	chen und praktischen Übungen ie und Praxis	
16. Abschätzung Arbeitsaufwan	d:	Präsenzzeit: 28 Stunden		
		Selbststudium und Prüfungsvorbe Summe: 90 Stunden	ereitung: 62 Stunden	
17. Prüfungsnummer/n und -naı	me:		und Praxis (BSL), schriftliche	

Stand: 25. März 2014 Seite 294 von 376

19. Medienform: a) Grundlagen und Hintergrund: Tafelanschrieb und Powerpoint-

Präsentation

b) Praxis: Experimentelles Arbeiten im Labor

c) Theorie: Computersimulationen

20. Angeboten von:

Stand: 25. März 2014 Seite 295 von 376

Modul: 36760 Wärmepumpen

2. Modulkürzel:	042410028	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Klaus Spi	ndler	
9. Dozenten:		Klaus Spindler		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik → Spezialisierungsfäche → Techniken zur effizier → Ergänzungsfächer mit	er nten Energienutzung	
		 M.Sc. Energietechnik, PO 2 → Gruppe 1: Fachspezif → Techniken zur effizier → Ergänzungsfächer mit 	isches Spezialisierungsfach nten Energienutzung	
11. Empfohlene Vorau	ssetzungen:	Thermodynamik, Ingenieur	wissenschaftliche Grundlagen	
12. Lernziele:		Die Studierenden beherrschen die Grundlagen der verschiedenen Wärmepumpenprozesse. Die Teilnehmer haben einen Überblick über die verwendeten Anlagenkomponenten und deren Funktion. Sie können Wärmepumpenanlagen mit unterschiedlichen Wärmequellen auslegen. Sie können die Wärmepumpen energetisch, ökologisch und ökonomisch bewerten. Sie kennen die geltenden Regeln und Normen zur Prüfung vo Wärmepumpenanlagen. Sie haben Grundkenntnisse zur hydraulischen Integration und zur Regelung der Wärmepumpe.		
13. Inhalt:		Wärmepumpen:		
		Thermodynamische Grundl Vergleichsprozess der Kom	agen, Ideal- Prozess, Theoretischer pressionswärmepumpe	
		Absorptionsprozess, Damp	npfkompressionswärmepumpe, Idealisierter fstrahlwärmepumpe, Thermoelektrische größen, Leistungszahl COP, Jahresarbeitsza gsgrad	
		Arbeitsmittel und Kompone Absorptionswärmepumpen	nten für Kompressionswärmepumpen und	
		Auslegungsbeispiele für Wä mit anderen Wärmeerzeug	ärmepumpen Wirtschaftlichkeit und Vergleich ungsanlagen	
		Heiz-/Kühlbetrieb von Wärmepumpen, Kühlen mit Erdsonden		
14. Literatur:		Manuskript		
15. Lehrveranstaltunge	en und -formen:	367601 Vorlesung Wärme	epumpen	
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 28 h Selbststudium, Prüfungsvoi Gesamt 90 h	rbereitung: 62 h	
17. Prüfungsnummer/r	und -name:	36761 Wärmepumpen (BS Gewichtung: 1.0	SL), mündliche Prüfung, 30 Min.,	
18. Grundlage für :				

Stand: 25. März 2014 Seite 296 von 376

19. Medienform:	Vorlesung als powerpoint-Präsentation, ergänzend Tafelanschrieb und
	Overhead- Folien, Begleitendes Manuskript

20. Angeboten von:

Stand: 25. März 2014 Seite 297 von 376

2162 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

18160 Berechnung von Wärmeübertragern

29200 Energiesysteme und effiziente Energieanwendung
 30790 Optimale Energiewandlung und Wärmeversorgung
 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte

Stand: 25. März 2014 Seite 298 von 376

Modul: 18160 Berechnung von Wärmeübertragern

2. Modulkürzel:	042410030	5. Moduldauer:	1 Semester	
3. Leistungspunkte: 6.0 LP		6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	Dr. Wolfgang Heidemann		
9. Dozenten:		Wolfgang Heidemann		
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Outgoing → Pflichtmodule mit Wahln		
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 6	Energiesysteme	
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifischerneitecherneitecherneitecherneitecherneitecherneitecherneitecherneitecherneiten → Kern- / Ergänzungsfächerneitecherneiten 	hes Spezialisierungsfach Energiesysteme	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakte → Energiespeicherung und -verteilung → Kern- / Ergänzungsfächer mit 6 LP 		
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Vorau	ssetzungen:	Grundkenntnisse in Wärme- u	nd Stoffübertragung	
12. Lernziele:		Erworbene Kompetenzen:		
		Dia Studiarandan		

Die Studierenden

- kennen die Grundgesetze der Wärmeübertragung und der Strömungen
- sind in der Lage die Grundlagen in Form von Bilanzen, Gleichgewichtsaussagen und Gleichungen für die Kinetik zur Auslegung von Wärmeübertragern anzuwenden

Stand: 25. März 2014 Seite 299 von 376

	 kennen unterschiedliche Methoden zur Berechnung von Wärmeübertragern kennen die Vor- und Nachteile verschiedener Wärmeübertragerbauformen 	
13. Inhalt:	Ziel der Vorlesung und Übung ist es einen wichtigen Beitrag zur Ingenieursausbildung durch Vermittlung von Fachwissen für die Berechnung von Wärmeübertragern zu leisten.	
	Die Lehrveranstaltung	
	 zeigt unterschiedliche Wärmeübertragerarten und Strömungsformen der Praxis, vermittelt die Grundlagen zur Berechnung (Temperaturen, k-Wert, Kennzahlen, NTU-Diagramm, Zellenmethode behandelt Sonderbauformen und Spezialprobleme(Wärmeverluste), vermittelt Grundlagen zur Wärmeübertragung in Kanälen und im Mantelraum (einphasige Rohrströmung, Plattenströmung, Kondensation, Verdampfung), führt in Fouling ein (Verschmutzungsarten, Foulingwiderstände, Maßnahmen zur Verhinderung/ Minderung, Reinigungsverfahren), behandelt die Bestimmung von Druckabfall und die Wärmeübertragun durch berippte Flächen vermittelt die Berechnung von Regeneratoren 	
14. Literatur:	Vorlesungsmanuskript,	
	 empfohlene Literatur: VDI: VDI-Wärmeatlas, Springer Verlag, Berlin Heidelberg, New York. 	
15. Lehrveranstaltungen und -formen:	181601 Vorlesung Berechnung von Wärmeübertragern181602 Übung Berechnung von Wärmeübertragern	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h	
	Selbststudiumszeit / Nacharbeitszeit: 124 h	
	Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	18161 Berechnung von Wärmeübertragern (PL), schriftliche Prüfung, 70 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Vorlesung: Beamerpräsentation	
	Übung: Overhead-Projektoranschrieb, Online-Demonstration von Berechnungssoftware	
20. Angeboten von:		

Stand: 25. März 2014 Seite 300 von 376

Modul: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

2. Modulkürzel:	042410042	5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Andreas Friedric	ch
9. Dozenten:		Andreas Friedrich	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Techniken zur effizienter → Kern- / Ergänzungsfäche	n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Techniken zur effizienter → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiesysteme und Energiewirtschaft → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 	
11. Empfohlene Vorau	ssetzungen:	Abgeschlossenes Grundstudium und Grundkenntnisse Ingenieurwe	

sen

12. Lernziele:

Die Teilnehmer/-innen verstehen das Prinzip der elektrochemischen Energiewandlung und können aus thermodynamischen Daten Zellspannungen und theoretische Wirkungsgrade ermitteln. Die Teilnehmer/-innen kennen die wichtigsten Werkstoffe und Materialien in der Brennstoffzellentechnik und können die Funktionsanforderungen benennen. Die Teilnehmer/innen beherrschen die mathematischen Zusammenhänge, um Verluste in Brennstoffzellen zu ermitteln und technische Wirkungsgrade zu bestimmen. Sie kennen die wichtigsten Untersuchungsmethoden für Brennstoffzellen und Brennstoffzellensystemen. Die Teilnehmer/-innen können die wichtigsten Anwendungsbereiche von Brennstoffzellensystemen und ihre Anforderungen benennen. Sie besitzen die Fähigkeit, typische Systemauslegungsaufgaben zu lösen. Die Teilnehmer/-innen verstehen die grundlegenden Veränderungen und Triebkräfte der relevanten Märkte, die zu der Entwicklung von Brennstoffzellen und der Einführung einer Wasserstoffinfrastruktur führen.

13. Inhalt:

- Einführung in die Energietechnik, Entwicklung nachhaltiger Energietechnologien, Erscheinungsformen der Energie; Energieumwandlungsketten, Elektrochemische Energieerzeugung: -Systematik -
- Thermodynamische Grundlagen der elektrochemischen Energieumwandlung, Chemische Thermodynamik: Grundlagen und Zusammenhänge, Elektrochemische Potentiale und die freie Enthalpie DeltaG, Wirkungsgrad der elektrochemischen

Stand: 25. März 2014 Seite 301 von 376

- Stromerzeugung, Druckabhängigkeit der elektrochemischen Potentiale / Zellspannungen, Temperaturabhängigkeit der elektrochemischen Potentiale
- Aufbau und Funktion von Brennstoffzellen, Komponenten: Anforderungen und Eigenschaften, Elektrolyt: Eigenschaften verschiedener Elektrolyte, Elektrochemische Reaktionsschicht von Gasdiffusionselektroden, Gasdiffusionsschicht, Stromkollektor und Gasverteiler, Stacktechnologie
- Technischer Wirkun gsgrad, Strom-Spannungskennlinien von Brennstoffzellen; U(i)-Kennlinien, Transporthemmungen und Grenzströme, zweidimensionale Betrachtung der Transporthemmungen, Ohm`scher Bereich der Kennlinie, Elektrochemische Überspannungen: Reaktionskinetik und Katalyse, experimentelle Bestimmung einzelner Verlustanteile

Technik und Systeme (SS):

- **Überblick:** Einsatzgebiete von Brennstoffzellensystemen, stationär, mobil, portabel
- Brennstoffzellensysteme, Niedertemperaturbrennstoffzellen, Alkalische Brennstoffzellen, Phosphorsaure Brennstoffzellen-, Polymerelektrolyt-Brennstoffzellen, Direktmethanol-Brennstoffzellen, Hochtemperaturbrennstoffzellen, Schmelzkarbonat-Brennstoffzellen, Oxidkeramische Brennstoffzellen
- Einsatzbereiche von Brennstoffzellensystemen, Verkehr: Automobilsystem, Auxiliary Power Unit (APU), Luftfahrt, stationäre Anwendung: Dezentrale Blockheizkraftwerke, Hausenergieversorgung, Portable Anwendung: Elektronik, Tragbare Stromversorgung, Netzunabhängige Stromversorgung
- Brenngasbereitstellung und Systemtechnik, Wasserstoffherstellung: Methoden, Reformierung, Systemtechnik und Wärmebilanzen,
- Ganzheitliche Bilanzierung , Umwelt, Wirtschaftlichkeit, Perspektiven der Brennstoffzellentechnologien

		•	
14. Literatur:	 Vorlesungszusammenfassungen, empfohlene Literatur: P. Kurzweil, Brennstoffzellentechnik, Vieweg Verlag Wiesbaden, ISB 3-528-03965-5 		
15. Lehrveranstaltungen und -formen:	 160201 Vorlesung Grundlagen Brennstoffzellentechnik 160202 Vorlesung Brennstoffzellentechnik, Technik und System 		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	56 h	
	Selbststudiumszeit / Nacharbeitszeit: 124 h		
	Gesamt:	180 h	
17. Prüfungsnummer/n und -name:		zellentechnik - Grundlagen, Technik und Systeme ftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :			
19. Medienform:	Kombination aus Multimediapräsentation, Tafelanschrieb und Übunge		
20. Angeboten von:	Institut für Thermo	dynamik und Wärmetechnik	

Stand: 25. März 2014 Seite 302 von 376

Modul: 29200 Energiesysteme und effiziente Energieanwendung

2. Modulkürzel:	041210010	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	3.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		Alfred Voß	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effizientel → Kern- / Ergänzungsfäche	n Energienutzung
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effizienter → Kernfächer mit 6 LP	
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Techniken zur effizienter → Kern- / Ergänzungsfäche	ches Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Techniken zur effizientel → Kernfächer mit 6 LP 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energiesysteme und Energiesysteme und Energiesysteme → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter ergiewirtschaft
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierur → Energiesysteme und Energiesysteme und Energiesysteme → Kernfächer mit 6 LP 	ngsfach mit Querschnittscharakter
11. Empfohlene Voraussetzungen:		Thermodynamik, Grundlagen Energieversorgung (z.B. Modu Energieversorgung")	
12. Lernziele:		Die Studierenden kennen die Energieanwendung und könne Methoden zur quantitativen Bi Energiesystemen anwenden u zu bewerten.	en die wichtigsten
13. Inhalt:		 Exergie-, Pinch-Point-, Proz Systemvergleiche von Ener Systeme mit Kraft-Wärme-k Abwärmenutzungssysteme Wärmerückgewinnung 	gieanlagen
14. Literatur: Online-Manuskript, Daten- und Arbeitsblätter			
15. Lehrveranstaltunge	en und -formen:		n der rationellen Energieanwendung er rationellen Energieanwendung

Stand: 25. März 2014 Seite 303 von 376

	begleitendes Manuskript Institut für Energiewirtschaft und Rationelle Energieanwendung
	• Lehrfilme
	teilweise Tafelanschrieb
19. Medienform:	Beamergestützte Vorlesung
18. Grundlage für :	
17. Prüfungsnummer/n und -name:	29201 Energiesysteme und effiziente Energieanwendung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h Selbststudium und Prüfungsvorbereitung: 138 h Gesamt: 180 h	

Stand: 25. März 2014 Seite 304 von 376

Modul: 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte

2. Modulkürzel:	041210009	5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		Heiko Gittinger Markus Blesl	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Techniken zur effizienter → Kern- / Ergänzungsfäche	n Energienutzung
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiespeicherung und → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter I-verteilung
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiesysteme und Energiesysteme und Energiesysteme → Kern- / Ergänzungsfäche 	ngsfach mit Querschnittscharakter ergiewirtschaft
11. Empfohlene Voraussetzungen:		Thermodynamik, Ingenieurwissenschaftliche un	d betriebswirtschaftliche Grundlagen
12. Lernziele:		Grundlagen der gekoppelten Kraft-Wärme-Erzeugung in KV die wesentlichen KWK-Techni und Wirtschaftlichkeitsbetrach Anlagen durchführen und Bew Wärmeversorgungskonzepten Wärmeversorgungssysteme u ökonomischen und ökologisch	vertungen von n vornehmen. Sie kennen nd -strukturen mit ihren technischen, nen rläutern. Sie haben die Kompetenz, KWK-
13. Inhalt:		Kopplung (KWK) Konfiguration und Systemin praktischer Beispiele Wirtschaftlichkeitsrechnunge Kraft-Wärme-Kopplung in D Bedeutung der Fern- und Na Deutschland Erstellung von Wärmeverso Wärmebedarfsermittlung Wärmeerzeugungsanlagen, übergabe	agen und Prozesse der Kraft-Wärme- tegration von KWK-Anlagen anhand en bei KWK-Anlagen eutschland ahwärme im Energiesystem von

Stand: 25. März 2014 Seite 305 von 376

	Umweltaspekte	
14. Literatur:	Online-Manuskript	
15. Lehrveranstaltungen und -formen:	 308001 Vorlesung Kraft-Wärme-Kopplung: Anlagen und Systeme 308002 Vorlesung Wärmeversorgungskonzepte 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudium: 124 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	30801 Kraft-Wärme-Kopplung und Versorgungskonzepte (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Beamergestützte Vorlesung, begleitendes Manuskript	
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung	

Stand: 25. März 2014 Seite 306 von 376

Modul: 30790 Optimale Energiewandlung und Wärmeversorgung

O. M. J. II. " I	0.40.44.0007	E Mad Harri	0.00
2. Modulkürzel:	042410027	5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Apl. Prof.DrIng. Klaus Spind	ler
9. Dozenten:		Klaus Spindler	_
10. Zuordnung zum C Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effiziente → Kern- / Ergänzungsfäch	n Energienutzung
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effiziente → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Techniken zur effiziente → Kern- / Ergänzungsfäch 	ches Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 20^o → Gruppe 1: Fachspezifisc → Techniken zur effiziente → Kernfächer mit 6 LP 	ches Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Empfohlen: Grundlagen Tech Wärmeübertragung	nischer Thermodynamik und
12. Lernziele:		Energiewandlung. Sie könner von technisch wichtigen Energie Sie kennen die Ansätze zur C Wärmepumpen- und Kältekre Prozessen. Sie können Niedribewerten. Sie haben Kenntnis Kraft-Wärme-Kälte-Kopplung die Verfahren zur geothermischen die Grundlagen zur Gebäuden. Sie sind mit dertraut. Sie können den Wärberechnen und Dämmstärken optimieren. Sie können versclenergetisch, wirtschaftlich und Vorgänge bei Verbrennungsper von Heizkesseln. Sie haben et Wärmeerzeugungs- und Wärreffizienz. Sie können wärme-	n die Grundlagen der optimalen n, energetische und exergetische Analysen giewandlungsprozessen durchführen. Optimierung von Wärmeübertragern, isläufen, Dampf- und Gasturbinen- ig-Exergie-Heizsysteme auslegen und s über verschiedene Koppelprozesse zur und deren Bewertungsgrößen. Sie kennen chen Energiewandlung. Die Studierenden zur energieeffizienten Wärmeversorgung en aktuellen Normen und Standards me- und Feuchtetransport durch Wände n durch Wirtschaftlich-keitsberechnungen niedene Wärmeversorgungsanlagen d ökologisch bewerten. Sie kennen die rozessen und die Bewertungsgrößen einen Überblick über verschiedene merückgewinnungssysteme und deren technische Komponenten und Systeme ur einen geeigneten ressourcen-schonende
13. Inhalt:			Energiewandlungskette, Exergieverlust- und Kältemaschinen nach dem

Stand: 25. März 2014 Seite 307 von 376

Kompressions- und Absorptionsverfahren, Brennstoffzelle, Dampfkraftprozess, offener Gasturbinenprozess, Gasturbinen-Dampfturbinen-Anlage, Wärme- Kraft- bzw. Kraft-Wärmekopplung,

Wärme-Kälte- Kopplung, ORC- und Kalina-Prozess

	II. Rationelle Wärmeversorgung Wärmedurchgang und Wasserdampfdiffusion durch geschichtete ebene Wände, Feuchtigkeitsausscheidung, Wirtschaftlichkeitsberechnungen, Wärmekosten einer Zentralheizung, Kostenrechnung für Wärmedämmung, Verbrennungsprozesse, Rechenbeispiel für Gasheizkessel, Kennwerte für Heizkessel, Kesselwirkungsgrad, Jahresnutzungsgrad, Teillastnutzungsgrad, Brennwerttechnik, Holzpelletfeuerung, Jahresheizwärme- und Jahresheizenergiebedarf, Luftwechsel, Lüftungswärmebedarf, Fugendurchlasskoeffizient, solare Wärmegewinne, Gesamt- energiedurchlassgrad, Energetische Bewertung heiz- u. raumlufttechn. Anlagen, Wärmedämmstandards, Wärmeschutzverordnung, Energieeinsparung in Gebäuden, Kontrollierte Lüftung mit Wärme-rückgewinnung, Zentrale Wärmeversorgungskonzepte.
14. Literatur:	Powerpoint-Folien der Vorlesungen, Daten- u. Arbeitsblätter
15. Lehrveranstaltungen und -formen:	 307901 Vorlesung mit integrierten Übungen Optimale Energiewandlung 307902 Vorlesung mit integrierten Übungen Rationelle Wärmeversorgung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudium, Prüfungsvorber.: 124 h Gesamt: 180h
17. Prüfungsnummer/n und -name:	 30791 Optimale Energiewandlung (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, 30792 Rationelle Wärmeversorgung (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Modulgesamtnote: Arthmetisches Mittel der Teilnoten von "Optimale Energiewandlung" und "Rationelle Wärmeversorgung".
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 25. März 2014 Seite 308 von 376

2161 Kernfächer mit 6 LP

Zugeordnete Module: 29200 Energiesysteme und effiziente Energieanwendung

30790 Optimale Energiewandlung und Wärmeversorgung

Stand: 25. März 2014 Seite 309 von 376

Modul: 29200 Energiesysteme und effiziente Energieanwendung

2. Modulkürzel:	041210010	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	3.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:		Alfred Voß	
10. Zuordnung zum Cu Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Techniken zur effizienter → Kern- / Ergänzungsfäche	n Energienutzung
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Techniken zur effizienter → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Techniken zur effizienten → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifiscl → Techniken zur effizienter → Kernfächer mit 6 LP 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiesysteme und Energiesysteme und Energiesysteme → Kern- / Ergänzungsfäche 	gsfach mit Querschnittscharakter ergiewirtschaft
		 M.Sc. Energietechnik, PO 201 → Gruppe 2: Spezialisierun → Energiesysteme und Energiesysteme und Energiesysteme → Kernfächer mit 6 LP 	gsfach mit Querschnittscharakter
11. Empfohlene Voraussetzungen:		Thermodynamik, Grundlagen of Energieversorgung (z.B. Modu Energieversorgung")	•
12. Lernziele:		Die Studierenden kennen die G Energieanwendung und könne Methoden zur quantitativen Bil Energiesystemen anwenden u zu bewerten.	n die wichtigsten
13. Inhalt:		 Exergie-, Pinch-Point-, Prozi Systemvergleiche von Energ Systeme mit Kraft-Wärme-K Abwärmenutzungssysteme Wärmerückgewinnung 	gieanlagen
14. Literatur: Online-Manuskript, Daten- und Arbeitsblätter			
15. Lehrveranstaltunge	en und -formen:		n der rationellen Energieanwendung r rationellen Energieanwendung

Stand: 25. März 2014 Seite 310 von 376

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudium und Prüfungsvorbereitung: 138 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	29201 Energiesysteme und effiziente Energieanwendung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform: • Beamergestützte Vorlesung • teilweise Tafelanschrieb • Lehrfilme • begleitendes Manuskript		
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung	

Stand: 25. März 2014 Seite 311 von 376

Modul: 30790 Optimale Energiewandlung und Wärmeversorgung

2. Modulkürzel:	042410027	5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Apl. Prof.DrIng. Klaus Spind	ler
9. Dozenten:		Klaus Spindler	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effiziente → Kern- / Ergänzungsfäch	n Energienutzung
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Techniken zur effiziente → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 20° → Gruppe 1: Fachspezifisc → Techniken zur effiziente → Kern- / Ergänzungsfäch 	ches Spezialisierungsfach n Energienutzung
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Techniken zur effizienten Energienutzung → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		Empfohlen: Grundlagen Tech Wärmeübertragung	nischer Thermodynamik und
12. Lernziele:		Energiewandlung. Sie könner von technisch wichtigen Energie Sie kennen die Ansätze zur C Wärmepumpen- und Kältekre Prozessen. Sie können Niedribewerten. Sie haben Kenntnis Kraft-Wärme-Kälte-Kopplung die Verfahren zur geothermischen zur geothermischen die Grundlagen zur Gebäuden. Sie sind mit der vertraut. Sie können den Wärberechnen und Dämmstärken optimieren. Sie können versclenergetisch, wirtschaftlich und Vorgänge bei Verbrennungsper von Heizkesseln. Sie haben et Wärmeerzeugungs- und Wärmeffizienz. Sie können wärme-	n die Grundlagen der optimalen n, energetische und exergetische Analysen giewandlungsprozessen durchführen. ptimierung von Wärmeübertragern, isläufen, Dampf- und Gasturbinen- ig-Exergie-Heizsysteme auslegen und is über verschiedene Koppelprozesse zur und deren Bewertungsgrößen. Sie kennen ichen Energiewandlung. Die Studierenden zur energieeffizienten Wärmeversorgung en aktuellen Normen und Standards me- und Feuchtetransport durch Wände in durch Wirtschaftlich-keitsberechnungen hiedene Wärmeversorgungsanlagen diökologisch bewerten. Sie kennen die rozessen und die Bewertungsgrößen hinen Überblick über verschiedene merückgewinnungssysteme und deren technische Komponenten und Systeme ur einen geeigneten ressourcen-schonende
13. Inhalt:			Energiewandlungskette, Exergieverlust-

analysen für Wärmepumpen und Kältemaschinen nach dem Kompressions- und Absorptionsverfahren, Brennstoffzelle, Dampfkraftprozess, offener Gasturbinenprozess, Gasturbinen-Dampfturbinen-Anlage, Wärme- Kraft- bzw. Kraft-Wärmekopplung, Wärme-Kälte- Kopplung, ORC- und Kalina-Prozess

Stand: 25. März 2014 Seite 312 von 376

	II. Rationelle Wärmeversorgung Wärmedurchgang und Wasserdampfdiffusion durch geschichtete ebene Wände, Feuchtigkeitsausscheidung, Wirtschaftlichkeitsberechnungen, Wärmekosten einer Zentralheizung, Kostenrechnung für Wärmedämmung, Verbrennungsprozesse, Rechenbeispiel für Gasheizkessel, Kennwerte für Heizkessel, Kesselwirkungsgrad, Jahresnutzungsgrad, Teillastnutzungsgrad, Brennwerttechnik, Holzpelletfeuerung, Jahresheizwärme- und Jahresheizenergiebedarf, Luftwechsel, Lüftungswärmebedarf, Fugendurchlasskoeffizient, solare Wärmegewinne, Gesamt- energiedurchlassgrad, Energetische Bewertung heiz- u. raumlufttechn. Anlagen, Wärmedämmstandards, Wärmeschutzverordnung, Energieeinsparung in Gebäuden, Kontrollierte Lüftung mit Wärme-rückgewinnung, Zentrale Wärmeversorgungskonzepte.
14. Literatur:	Powerpoint-Folien der Vorlesungen, Daten- u. Arbeitsblätter
15. Lehrveranstaltungen und -formen:	 307901 Vorlesung mit integrierten Übungen Optimale Energiewandlung 307902 Vorlesung mit integrierten Übungen Rationelle Wärmeversorgung
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudium, Prüfungsvorber.: 124 h Gesamt: 180h
17. Prüfungsnummer/n und -name:	 30791 Optimale Energiewandlung (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, 30792 Rationelle Wärmeversorgung (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Modulgesamtnote: Arthmetisches Mittel der Teilnoten von "Optimale Energiewandlung" und "Rationelle Wärmeversorgung".
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	

Stand: 25. März 2014 Seite 313 von 376

Modul: 30810 Praktikum: Techniken zur effizienten Energienutzung

2. Modulkürzel:	041210024	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes Semester
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.DrIng. Alfred Voß	
9. Dozenten:			
10. Zuordnung zum Cເ Studiengang:	ırriculum in diesem	DoubleM.D. Energietechnik, F → Chalmers → Incoming → Practical Work	PO 2011
		DoubleM.D. Energietechnik, F → Outgoing → Spezialisierungsfächer → Techniken zur effiziente	
		 M.Sc. Energietechnik, PO 20¹ → Spezialisierungsmodule → Gruppe 1: Fachspezifisc → Techniken zur effiziente 	ches Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:	Kenntnisse in der Energietech	nnik
12. Lernziele:		Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.	
13. Inhalt:		Spezialisierungsfachversuche	e zu belegen. Aus den folgenden en (SFV) sind 4 auszuwählen, für die jeweil ndestens ausreichender Qualität angefertig
		 Brennstoffzellentechnik (IEI Stirlingmotor (IER / ITW) Kraft-Wärme-Kopplung (BH Wärmepumpe (ITW) Sonnenkollektor (ITW) Wärmeübertrager (ITW) Kälteanlage (ITW) IR-Kamera (ITW) Energieeffizienzvergleich (II Messen elektrischer Arbeit Online-Praktikum: Stromver Lastmanagement (IER) 	IKW) (IER / ITW) ER)
		und 4 weitere Versuche aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB)	
14. Literatur:		Praktikumsunterlagen (online	verfügbar)
15. Lehrveranstaltunge	en und -formen:	308101 Praktikum: Auswahl	von 8 Versuchen
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 28 h	
		Selbststudium und Prüfungsv	orbereitung: 62 h
		Gesamt: 90 h	

Stand: 25. März 2014 Seite 314 von 376

17. Prüfungsnummer/n und -name:	30811 Praktikum: Techniken zur effizienten Energienutzung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Zu den 4 Spezialisierungsfachversuchen sind Praktikumsberichte von mindestens ausreichender Qualität anzufertigen.	
18. Grundlage für :		
19. Medienform:	Beamergestützte Einführung in das Thema; Praktische Übung an Exponaten und Maschinen im Labor	
20. Angeboten von:	Institut für Energiewirtschaft und Rationelle Energieanwendung	

Stand: 25. März 2014 Seite 315 von 376

217 Thermische Turbomaschinen

Zugeordnete Module: 2171 Kernfächer mit 6 LP

2172 Kern- / Ergänzungsfächer mit 6 LP

2173 Ergänzungsfächer mit 3 LP

30870 Praktikum Thermische Turbomaschinen

Stand: 25. März 2014 Seite 316 von 376

2173 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30540 Dampfturbinentechnologie

30840 Numerische Methoden in Fluid- und Strukturdynamik

30850 Turbochargers

30860 Strömungs- und Schwingungsmesstechnik für Turbomaschinen

Stand: 25. März 2014 Seite 317 von 376

Modul: 30540 Dampfturbinentechnologie

2. Modulkürzel:	042310016	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	ier:	UnivProf.Dr. Damian Vogt		
9. Dozenten:		Norbert Sürken		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Erneuerbare thermische → Ergänzungsfächer mit 3	Energiesysteme	
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP		
		DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Thermische Turbomaschinen → Ergänzungsfächer mit 3 LP		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Erneuerbare thermische Energiesysteme → Ergänzungsfächer mit 3 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Feuerungs- und Kraftwerkstechnik → Ergänzungsfächer mit 3 LP 		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Ergänzungsfächer mit 3 LP 		
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Gr	rundlagen, Technische Thermodynamik I+	
		Strömungsmechanik oder Technische Strömungslehre		
12. Lernziele:		Der Studierende		
		 und technischen Vorgänge beherrscht die Thermodyna Rankine-Prozesses ist in der Lage, die Funktion Dampfturbinen- Komponent erkennen und zu analysiere 	en und deren Zusammenwirken zu	
13. Inhalt:		Energieressourcen		
		Marktentwicklungen für Kraftwerke		
		Historische Entwicklung der	Dampfturbine	
		• Dompfturbinonborotollor		

Stand: 25. März 2014 Seite 318 von 376

• Dampfturbinenhersteller

	Einsatzspektrum	
	Thermodynamischer Arbeitsprozess	
	Arbeitsverfahren und Bauarten	
	Leistungsregelung	
	Beschaufelungen	
	Betriebszustände	
	Turbinenläufer und Turbinengehäuse	
	Systemtechnik und Regelung	
	Werkstofftechnik	
14. Literatur:	Bell, R., Dampfturbinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart	
	 Traupel, W., Thermische Turbomaschinen, 4. Aufl., Bd. 1 u. 2, Springe 2001 	
	Dietzel, F., Dampfturbinen; 3. Aufl.; Hanser 1980	
15. Lehrveranstaltungen und -formen:	305401 Vorlesung Dampfturbinentechnologie	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n und -name:	30541 Dampfturbinentechnologie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript	
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium	

Stand: 25. März 2014 Seite 319 von 376

Modul: 30840 Numerische Methoden in Fluid- und Strukturdynamik

2. Modulkürzel:	043210014	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	DrIng. Jürgen Mayer	
9. Dozenten:		Jürgen Mayer	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Thermische Turbomasch → Ergänzungsfächer mit 3	ninen
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Windenergie → Ergänzungsfächer mit 3	
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Ergänzungsfächer mit 3	ches Spezialisierungsfach ninen
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Ergänzungsfächer mit 3 LP 	
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Gr Technische Strömungslehre	rundlagen, Strömungsmechanik oder
12. Lernziele:		Der Studierende	
		 für die diskretisierten Gleich erkennt die möglichen Einsanumerischen Verfahren und Modellbildungen ist in der Lage, den unterscl 	ktur- und Fluiddynamik der verschiedenen gsverfahren der numerischen Mathemati nungen atzbereiche der verschiedenen I die Grenzen unterschiedlicher hiedlichen Rechenaufwand bei gen und Lösungsverfahren zu begründen
13. Inhalt:		 Einsatzbereiche numerische Wissenschaftliches Rechner Modellierung Strömungsmechanische Gru Turbulenzmodellierung Diskretisierung von Different Netzerzeugung Randbedingungen Finite-Differenzen-Verfahren Finite-Volumen-Verfahren Grundlagen der Finite-Eleme Lösungsverfahren Anwendungen 	n und Einfluss der Hardware-Entwicklung Indgleichungen ialgleichungen

Stand: 25. März 2014 Seite 320 von 376

14. Literatur:	 Mayer, J.F., Numerische Methoden in Fluid- und Strukturdynamik, Vorlesungsmanuskript, ITSM Univ. Stuttgart Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 1: The Fundamentals of Computational Fluid Dynamics, 2nd ed., Butterworth-Heinemann 2007 Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows, Wiley 1997 Casey, M., Wintergerste, T., Best Practice Guidelines, ERCOFTAC Special Interst Group on "Quality and Trust in Industrial CFD", 2000 Bathe, K. J., Finite-Elemente-Methoden, Springer 2002 	
15. Lehrveranstaltungen und -formen:	308401 Vorlesung + 2 Übungen + 1 Präsentation Numerische Methoden in Fluid- und Strukturdynamik	
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden		
17. Prüfungsnummer/n und -name:	30841 Numerische Methoden in Fluid- und Strukturdynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript	
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium	

Stand: 25. März 2014 Seite 321 von 376

Modul: 30860 Strömungs- und Schwingungsmesstechnik für Turbomaschinen

2. Modulkürzel:	043210015	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Jürgen MayerMarkus Schatz	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Thermische Turbomasch → Ergänzungsfächer mit 3	ninen
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Ergänzungsfächer mit 3	
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Ergänzungsfächer mit 3	hes Spezialisierungsfach ninen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Ergänzungsfächer mit 3 	hes Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Grundlagen, Technische Thermodynamik I+II Strömungsmechanik oder Technische Strömungslehre	
12. Lernziele:		Der Studierende	
		Anwendung von Messverfahkommen ist in der Lage, für unterschi Werkzeuge auszuwählen ur beherrscht den Umgang mit der Messdaten	nisse über die Grundlagen und die nren, die an Turbomaschinen zum Einsatz edlichste Messaufgaben die geeigneten nd anzuwenden. Verfahren zur Auswertung und Analyse gebnisse in Hinblick auf Plausibilität und
13. Inhalt:		 Grundlagen der Strömungsmesstechnik Messverfahren zur Strömungsmessung Einführung in die Schwingungsproblematik in Turbomaschinen Schwingungsmessverfahren Auswertung und Analyse dynamischer Signale Ergänzende Messverfahren Prüfstandstechnik 	
14. Literatur:		 Schatz, M., Eyb, G., Mayer, J.F., Strömungs- und Schwingungsmesstechnik für Turbomaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Nitsche W., Brunn, A., Strömungsmesstechnik, Springer 2006 	

Stand: 25. März 2014 Seite 322 von 376

	 Springer Handbook of Experimental Fluid Mechanics, 2007 Wittenburg, J., Schwingungslehre, Springer 1996 Karrenberg, U., Signale - Prozesse - Systeme, Springer 2005 	
15. Lehrveranstaltungen und -formen:	 308601 Vorlesung Strömungs- und Schwingungsmesstechnik für Turbomaschinen 308602 Praktikum Strömungs- und Schwingungmesstechnik für Turbomaschinen 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n und -name:	30861 Strömungs- und Schwingungsmesstechnik für Turbomaschinen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Übungen am PC, Vorlesungsmanuskript	
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium	

Stand: 25. März 2014 Seite 323 von 376

Modul: 30850 Turbochargers

2. Modulkürzel:	043210013	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Nach Ankuendigung
8. Modulverantwortlich	ner:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Damian Vogt	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Thermische Turbomascl → Ergänzungsfächer mit 3	hinen
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Ergänzungsfächer mit 3 LP 	
11. Empfohlene Voraussetzungen:		Basics of engineering science including Fluid Mechanics and Thermodynamics, Basics of Thermal Turbomachinery.	
12. Lernziele:		The students of this module learn the thermodynamic and mechanical factors which determine how a turbocharger works. They understand the design and operational principles of turbocharger turbine and compressors, together with typical design parameters and velocity triangles for these. They understand how an engine can be correctly matched to a turbocharger system for best performance and operating range, and have an overview of the latest research into new engine systems and turbocharger developments, which will influence the development of the turbocharger industry in the years to come.	
13. Inhalt:		 Introduction to turbocharging Thermodynamics of turbocharging Radial compressors for turbochargers Axial and radial turbines for turbochargers Mechanical design of turbochargers Matching of a turbocharger with a combustion engine Modern system developments Design exercise for a radial compressor and a radial turbine 	
14. Literatur:		 Vogt, D., Turbochargers, lecture notes, ITSM, University of Stuttgart Baines, N.C., Fundamentals of Turbocharging, ISBN 0-933283-14-8 Concepts/NREC, Vermont, USA, 2005 Heireth, H., Prenniger, P., Charging the internal combustion engine, ISBN 3-211-83747-7, Springer 2007 	
15. Lehrveranstaltungen und -formen:		308501 Verlesung und Übung Turbochargers	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n und -name:		30851 Turbochargers (BSL), schriftlich oder mündlich, 20 Min., Gewichtung: 1.0, mündlich, 20 min, od. schriftlich, 60 min	
18. Grundlage für :			
19. Medienform:		Podcasted whiteboard, blackb	poard, script of lecture notes

Stand: 25. März 2014 Seite 324 von 376

20. Angeboten von:

Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium

Stand: 25. März 2014 Seite 325 von 376

2172 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 14070 Grundlagen der Thermischen Strömungsmaschinen

30820 Thermische Strömungsmaschinen

30830 Numerik und Messtechnik für Turbomaschinen

Stand: 25. März 2014 Seite 326 von 376

Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel:	042310004	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Damian Vogt	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P0 → Chalmers → Outgoing → Pflichtmodule mit Wahlme	
		DoubleM.D. Energietechnik, P(→ Spezialisierungsfächer → Thermische Turbomasch → Kern- / Ergänzungsfäche	inen
		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Thermische Turbomasch → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Kernfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlme 	
11. Empfohlene Voraussetzungen:		 Ingenieurwissenschaftliche C Technische Thermodynamik Strömungsmechanik oder Te 	I + II
12. Lernziele:		Der Studierende	
		 verfügt über vertiefte Kenntnisse in Thermodynamik und Strömungsmechanik mit dem Fokus auf der Anwendung bei Strömungsmaschinen kennt und versteht die physikalischen und technischen Vorgänge Zusammenhänge in Thermischen Strömungsmaschinen (Turbine Verdichter, Ventilatoren) beherrscht die eindimensionale Betrachtung von Arbeitsumsetzu Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen ist in der Lage, aus dieser analytischen Durchdringung die Konsequenzen für Auslegung und Konstruktion von axialen und radialen Turbomaschinen zu ziehen 	
13. Inhalt:		 Anwendungsgebiete und wir Bauarten Thermodynamische Grundla Fluideigenschaften und Zust Strömungsmechanische Gru 	gen andsänderungen

Stand: 25. März 2014 Seite 327 von 376

	 Maschinenkomponente 	tertheorie sgrade, Möglichkeiten ihrer Beeinflussung en nnfelder, Regelungsverfahren
14. Literatur:	 Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery Elsevier 2005 Cohen H., Rogers, G.F.C., Saravanamutoo, H.I.H., Gas Turbine Theory, Longman 2000 Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001 Wilson D.G, and Korakianitis T., The design of high efficiency turboma chinery and gas turbines, 2nd ed., Prentice Hall 1998 	
15. Lehrveranstaltungen und -formen:	140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	42 h
	Selbststudiumszeit / Nac	charbeitszeit: 138 h
	Gesamt:	180 h
17. Prüfungsnummer/n und -name:	14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :	30820 Thermische Strömungsmaschinen	
19. Medienform:	Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung	
20. Angeboten von:	Institut für Thermische S	trömungsmaschinen und Maschinenlaboratorium

Stand: 25. März 2014 Seite 328 von 376

Modul: 30830 Numerik und Messtechnik für Turbomaschinen

2. Modulkürzel:	043210012	5. Moduldauer:	2 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes Semester
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Jürgen Mayer Markus Schatz	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Thermische Turbomasch → Kern- / Ergänzungsfäche	inen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Thermische Turbomasch → Kern- / Ergänzungsfäche 	nes Spezialisierungsfach inen
11. Empfohlene Vorau	issetzungen:	Ingenieurwissenschaftliche Gru Strömungsmechanik oder Tecl	undlagen, Technische Thermodynamik I+II, nnische Strömungslehre
12. Lernziele:		Der Studierende	
12. Lettiziele.		 verfügt über vertiefte Kenntnisse und Verständnis der Grundgleichungen von Struktur- und Fluiddynamik beherrscht die Grundlagen der verschiedenen Diskretisierungstechniken kennt die geeigneten Lösungsverfahren der numerischen Mathematik für die diskretisierten Gleichungen erkennt die möglichen Einsatzbereiche der verschiedenen numerischen Verfahren und die Grenzen unterschiedlicher Modellbildungen ist in der Lage, den unterschiedlichen Rechenaufwand bei verschiedenen Modellierungen und Lösungsverfahren zu begründen verfügt über Grundkenntnisse moderner Rechentechnik verfügt über vertiefte Kenntnisse über die Grundlagen und die Anwendung von Messverfahren, die an Turbomaschinen zum Einsatz kommen ist in der Lage, für unterschiedlichste Messaufgaben die geeigneten Werkzeuge auszuwählen und anzuwenden. beherrscht den Umgang mit Verfahren zur Auswertung und Analyse der Messdaten besitzt die Fähigkeit, die Ergebnisse in Hinblick auf Plausibilität und Aussage zu bewerten 	
13. Inhalt:		 Einsatzbereiche numerischer Wissenschaftliches Rechnen Modellierung Strömungsmechanische Grur Turbulenzmodellierung Diskretisierung von Differentie Netzerzeugung Randbedingungen Finite-Differenzen-Verfahren Finite-Volumen-Verfahren Grundlagen der Finite-Eleme 	und Einfluss der Hardware-Entwicklung ndgleichungen algleichungen

Stand: 25. März 2014 Seite 329 von 376

	 Lösungsverfahren Numerik-Anwendungen Grundlagen der Strömungsmesstechnik Messverfahren zur Strömungsmessung Einführung in die Schwingungsproblematik in Turbomaschinen Schwingungsmessverfahren Auswertung und Analyse dynamischer Signale Ergänzende Messverfahren Prüfstandstechnik
14. Literatur:	 Mayer, J.F., Numerische Methoden in Fluid- und Strukturmechanik, Vorlesungsmanuskript, ITSM Univ. Stuttgart Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 1: The Fundamentals of Computational Fluid Dynamics, 2nd ed., Butterworth-Heinemann 2007 Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows, Wiley 1997 Casey, M., Wintergerste, T., Best Practice Guidelines, ERCOFTAC Special Interst Group on "Quality and Trust in Industrial CFD", 2000 Bathe, K. J., Finite-Elemente-Methoden, Springer 2002 Schatz, M., Eyb, G., Mayer, J.F., Strömungs- und Schwingungsmesstechnik für Turbomaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Casey, M., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Nitsche W., Brunn, A., Strömungsmesstechnik, Springer 2006 Springer Handbook of Experimental Fluid Mechanics, 2007 Wittenburg, J., Schwingungslehre, Springer 1996 Karrenberg, U., Signale - Prozesse - Systeme, Springer 2005
15. Lehrveranstaltungen und -formen:	 308301 Vorlesung + 2 Übungen + 1 Präsentation Numerische Methoden in Fluid- und Strukturmechanik 308302 Vorlesung Strömungs- und Schwingungsmesstechnik für Turbomaschinen 308303 Praktikum Strömungs- und Schwingungmesstechnik für Turbomaschinen
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden Selbststudium: 138 Stunden Gesamt: 180 Stunden
17. Prüfungsnummer/n und -name:	 30831 Numerik und Messtechnik für Turbomaschinen - Teil Numerik (PL), mündliche Prüfung, 20 Min., Gewichtung: 0.5 30832 Numerik und Messtechnik für Turbomaschinen - Teil Messtechnik (PL), mündliche Prüfung, 20 Min., Gewichtung: 0.5
18. Grundlage für :	
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Skripten zu den Vorlesungen
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium

Stand: 25. März 2014 Seite 330 von 376

Modul: 30820 Thermische Strömungsmaschinen

2. Modulkürzel:	042310011	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Damian Vogt Markus Schatz	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Thermische Turbomasch → Kern- / Ergänzungsfäche	ninen
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Thermische Turbomasch → Kernfächer mit 6 LP	
		M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Kern- / Ergänzungsfäche	hes Spezialisierungsfach ninen
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:			rundlagen, Technische Thermodynamik I+I chnische Strömungslehre, Grundlagen der hinen
12. Lernziele:		Der Studierende	
		 verfügt über vertiefte Kenntnisse und Verständnis der physikalischen und technischen Vorgänge der Turbomaschinen in Gas- und Dampfturbinen und Turboladern beherrscht die Thermodynamik der zugrundeliegenden thermodynamischen Systeme: Joule-Brayton-Prozess, Clausius-Rankine-Prozess, aufgeladener Seiliger Prozess, GuD-Prozess. ist in der Lage, die Funktionsprinzipen der wesentlichen Turbomaschinen-Komponenten und deren Zusammenwirken zu erkennen und zu analysieren verfügt über Kenntnisse über die Auslegung von Turbomaschinen mit numerischen Methoden und Versuchstechnik in Turbomaschinen erkennt die technischen Grenzen der verschiedenen Turbomaschinentypen und kann diese begründen beherrscht die analytische Durchdringung der eindimensionalen Betrachtung von Arbeitsumsetzung, Geschwindigkeitsdreiecken und Verlusten bei axialen und radialen Turbokompressoren und Turbinen und den daraus resultierenden Konsequenzen für deren Konstruktion verfügt über vertiefte Kenntnisse des Betriebsverhaltens und der Regelungsarten von Kompressoren und Turbinen 	
13. Inhalt:		 Einführung und Grundlagen Bauarten von Thermischen I Thermodynamik der System Einsatzspektrum und Wahl d 	prozesse

Stand: 25. März 2014 Seite 331 von 376

	 Verdichter und Turbinen von Gasturbinen Dampfturbinen Radiale Turbomaschinen Betriebszustände, Regelung und Betriebsverhalten Auslegung mit numerischen Methoden Versuchstechnik in Turbomaschinen
14. Literatur:	 Vogt, D., Thermische Strömungsmaschinen, Vorlesungsmanuskript, ITSM Universität Stuttgart Saravanamuttoo, H.I.H., Rogers, G.F.C., Cohen H., Straznicky P. V., Gas Turbine Theory, 6th ed., Prentice Hall 2008 Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005 Whitfield, A. and Baines, N.C., Design of Radial Turbomachines, Wiley 1990
	- The Jet Engine, Rolls-Royce Technical Publ. 1996
15. Lehrveranstaltungen und -formen:	308201 Vorlesung und Übung Thermische Strömungsmaschinen
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden Selbststudium 138 Stunden Gesamt: 180 Stunden
17. Prüfungsnummer/n und -name:	30821 Thermische Strömungsmaschinen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratoriun

Stand: 25. März 2014 Seite 332 von 376

2171 Kernfächer mit 6 LP

Zugeordnete Module: 14070 Grundlagen der Thermischen Strömungsmaschinen

30820 Thermische Strömungsmaschinen

Stand: 25. März 2014 Seite 333 von 376

Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel:	042310004	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Damian Vogt	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Thermische Turbomasch → Kern- / Ergänzungsfäche	ninen
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Thermische Turbomasch → Kernfächer mit 6 LP	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach ninen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Kernfächer mit 6 LP 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Vorau	ssetzungen:	IngenieurwissenschaftlicheTechnische ThermodynamikStrömungsmechanik oder T	(+
12. Lernziele:		Der Studierende	
		Strömungsmaschinen • kennt und versteht die physi Zusammenhänge in Thermis Verdichter, Ventilatoren) • beherrscht die eindimension Verlusten und Geschwindigl • ist in der Lage, aus dieser a	m Fokus auf der Anwendung bei ikalischen und technischen Vorgänge und schen Strömungsmaschinen (Turbinen, nale Betrachtung von Arbeitsumsetzung, keitsdreiecken bei Turbomaschinen nalytischen Durchdringung die ng und Konstruktion von axialen und
13. Inhalt:		 Anwendungsgebiete und wirtschaftliche Bedeutung Bauarten Thermodynamische Grundlagen Fluideigenschaften und Zustandsänderungen Strömungsmechanische Grundlagen 	

Stand: 25. März 2014 Seite 334 von 376

	 Maschinenkomponen 	htertheorie Jagrade, Möglichkeiten ihrer Beeinflussung Jagrade, Möglichkeiten ihrer Beeinflussung Jagraden ihren
14. Literatur:	 Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachiner Elsevier 2005 Cohen H., Rogers, G.F.C., Saravanamutoo, H.I.H., Gas Turbine Theory, Longman 2000 Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001 Wilson D.G, and Korakianitis T., The design of high efficiency turbomachinery and gas turbines, 2nd ed., Prentice Hall 1998 	
15. Lehrveranstaltungen und -formen:	140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:	42 h
	Selbststudiumszeit / Na	charbeitszeit: 138 h
	Gesamt:	180 h
17. Prüfungsnummer/n und -name:	14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :	30820 Thermische Strömungsmaschinen	
19. Medienform:	Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung	
20. Angeboten von:	Institut für Thermische S	Strömungsmaschinen und Maschinenlaboratorium

Stand: 25. März 2014 Seite 335 von 376

Modul: 30820 Thermische Strömungsmaschinen

2. Modulkürzel:	042310011	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf.Dr. Damian Vogt		
9. Dozenten:		Damian Vogt Markus Schatz		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Thermische Turbomasch → Kern- / Ergänzungsfäche	inen	
		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Thermische Turbomasch → Kernfächer mit 6 LP		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Thermische Turbomasch → Kern- / Ergänzungsfäche 	nes Spezialisierungsfach inen	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Thermische Turbomaschinen → Kernfächer mit 6 LP 		
11. Empfohlene Voraussetzungen:			undlagen, Technische Thermodynamik I+II. nnische Strömungslehre, Grundlagen der ninen	
12. Lernziele:		Der Studierende		
		 verfügt über vertiefte Kenntnisse und Verständnis der physikalischen und technischen Vorgänge der Turbomaschinen in Gas- und Dampfturbinen und Turboladern beherrscht die Thermodynamik der zugrundeliegenden thermodynamischen Systeme: Joule-Brayton-Prozess, Clausius-Rankine-Prozess, aufgeladener Seiliger Prozess, GuD-Prozess. ist in der Lage, die Funktionsprinzipen der wesentlichen Turbomaschinen-Komponenten und deren Zusammenwirken zu erkennen und zu analysieren verfügt über Kenntnisse über die Auslegung von Turbomaschinen mit numerischen Methoden und Versuchstechnik in Turbomaschinen erkennt die technischen Grenzen der verschiedenen Turbomaschinentypen und kann diese begründen beherrscht die analytische Durchdringung der eindimensionalen Betrachtung von Arbeitsumsetzung, Geschwindigkeitsdreiecken und Verlusten bei axialen und radialen Turbokompressoren und Turbinen und den daraus resultierenden Konsequenzen für deren Konstruktion verfügt über vertiefte Kenntnisse des Betriebsverhaltens und der Regelungsarten von Kompressoren und Turbinen 		
13. Inhalt:		 Einführung und Grundlagen Bauarten von Thermischen T Thermodynamik der Systemp Einsatzspektrum und Wahl der 	rozesse	

Stand: 25. März 2014 Seite 336 von 376

	 Verdichter und Turbinen von Gasturbinen Dampfturbinen Radiale Turbomaschinen Betriebszustände, Regelung und Betriebsverhalten Auslegung mit numerischen Methoden Versuchstechnik in Turbomaschinen
14. Literatur:	 Vogt, D., Thermische Strömungsmaschinen, Vorlesungsmanuskript, ITSM Universität Stuttgart Saravanamuttoo, H.I.H., Rogers, G.F.C., Cohen H., Straznicky P. V., Gas Turbine Theory, 6th ed., Prentice Hall 2008 Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005 Whitfield, A. and Baines, N.C., Design of Radial Turbomachines, Wiley 1990
	- The Jet Engine, Rolls-Royce Technical Publ. 1996
15. Lehrveranstaltungen und -formen:	308201 Vorlesung und Übung Thermische Strömungsmaschinen
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 Stunden Selbststudium 138 Stunden Gesamt: 180 Stunden
17. Prüfungsnummer/n und -name:	30821 Thermische Strömungsmaschinen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium

Stand: 25. März 2014 Seite 337 von 376

Modul: 30870 Praktikum Thermische Turbomaschinen

2. Modulkürzel:	042310020	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Gerhard Eyb Markus Schatz	
10. Zuordnung zum Co Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, I → Outgoing → Spezialisierungsfächer → Thermische Turbomasc	
		M.Sc. Energietechnik, PO 20 → Spezialisierungsmodule → Gruppe 1: Fachspezifise → Thermische Turbomasc	ches Spezialisierungsfach
11. Empfohlene Vorau	ssetzungen:	Vorlesung Grundlagen der Tr	nermischen Strömungsmaschinen
12. Lernziele:		Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.	
13. Inhalt:		zudem unter http://www.uni-stuttgart.de/ma linksunddownloads.html Gasturbine: Die Studierend einer Gasturbine. Dabei we Belastungszuständen Mess wesentlichen Kenngrößen Radialverdichter: Es wird d abgefahren und an verschi wichtigsten Kenngrößen au Axialgebläse: An einem Ax durchgeführt, die Ergebniss Geschwindigkeitsdreiecker eingebunden. Labyrinthdichtung: Die Stud Labyrinthdichtung. Schwingungen in Turboma	den untersuchen des Betriebsverhaltens erden bei unterschiedlichen sgrößen erfasst und daraus die bestimmt. as Kennfeld eines Radialverdichters edenen Betriebspunkten werden die is den Messwerten bestimmt. ialgebläse werden Strömungsmessungen se daraus werden in Form von in die Charakteristik des Gebläses denten bestimmen an einer inderen Eigenschaften dieser Art von schinen: An einzelnen Schaufeln und rad werden Untersuchungen zum
14. Literatur:		Praktikumsunterlagen	
15. Lehrveranstaltungen und -formen:		 308701 Praktikumsversuch Gasturbine 308702 Praktikumsversuch Radialverdichter 308703 Praktikumsversuch Axialgebläse 308704 Praktikumsversuch Labyrinthdichtung 308705 Praktikumsversuch Schwingungen in Turbomaschinen 308706 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1 308707 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2 	

Stand: 25. März 2014 Seite 338 von 376

 308708 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
Präsenzzeit: 30 Stunden Selbststudium: 60 Stunden Gesamt: 90 Stunden
30871 Praktikum Thermische Turbomaschinen (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.
Institut für Thermische Strömungsmaschinen und Maschinenlaborator

Stand: 25. März 2014 Seite 339 von 376

218 Windenergie

Zugeordnete Module: 2181 Kernfächer mit 6 LP

2182 Kern- / Ergänzungsfächer mit 6 LP2183 Ergänzungsfächer mit 3 LP

56300 Praktikum Windenergie

Stand: 25. März 2014 Seite 340 von 376

2183 Ergänzungsfächer mit 3 LP

Zugeordnete Module: 30840 Numerische Methoden in Fluid- und Strukturdynamik

30860 Strömungs- und Schwingungsmesstechnik für Turbomaschinen

30900 Festigkeitslehre II

37010 Netzintegration von Windenergie

Stand: 25. März 2014 Seite 341 von 376

Modul: 30900 Festigkeitslehre II

2. Modulkürzel:	041810015	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	DrIng. Michael Seidenfuß	
9. Dozenten:		Michael Seidenfuß Ludwig Stumpfrock	
10. Zuordnung zum Cu Studiengang:	urriculum in diesem	DoubleM.D. Energietechnik, I → Spezialisierungsfächer → Windenergie → Ergänzungsfächer mit 3	
		M.Sc. Energietechnik, PO 20 → Gruppe 1: Fachspezifise → Windenergie → Ergänzungsfächer mit 3	ches Spezialisierungsfach
		M.Sc. Energietechnik, PO 20 → Gruppe 2: Spezialisieru → Festigkeitslehre und We → Ergänzungsfächer mit 3	ngsfach mit Querschnittscharakter erkstofftechnik
11. Empfohlene Vorau	ssetzungen:	Einführung in die Festigkeitsl	ehre, Werkstoffkunde I + II
12. Lernziele:		Sie können die entsprechend Die Verfahren zur Kennwertb Studierenden sind mit den Ve schwingend beanspruchter B in der Lage hochbeansprucht	en die Grundlagen der Bruchmechanik. Ilen Normen und Regelwerke anwenden. Ilestimmung sind ihnen bekannt. Die Ilestimmung sind ihnen bekannt. Die Ilestimmung sind ihnen bekannt. Die Ilestimmung sind ihnen zur Bewertung Ilestimetelle vertraut. Die Kursteilnehmer sind Ilestimetelle integere und angerissene Bauteile Ilestimetelle segen Versagen zu berechnen und zu
13. Inhalt:		1. Bruchmechanische Bauteil Linearelastische Bruchme Elastisch-plastische Bruch Zyklisches Risswachstum Kennwertermittlung Normung und Regelwerke Anwendung auf Bauteile Bauteilanalyse bei zyklisch Bauteilanalyse mit Finite E	echanik nmechanik e er Belastung
14. Literatur:		Anwendung der Rißwiderstar	ngerissener Bauteile, VDI Verlag, Reihe 18
15. Lehrveranstaltunge	en und -formen:	309001 Vorlesung Festigke	itslehre II
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h Selbststudium: 69 h Summe: 90 h			
17. Prüfungsnummer/r	und -name:	30901 Festigkeitslehre II (BS Gewichtung: 1.0	SL), schriftliche Prüfung, 60 Min.,

Stand: 25. März 2014 Seite 342 von 376

1Ω	Crur	ndlag	a für	
10.	Grui	iuiau	C IUI	

19. Medienform:	Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbare Zusatzmaterialien
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre

Stand: 25. März 2014 Seite 343 von 376

6.

Modul: 37010 Netzintegration von Windenergie

2. Modulkürzel:	050310026	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	2.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	ier:	UnivProf.DrIng. Stefan Ten	bohlen	
9. Dozenten:		Markus Pöller		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Windenergie → Ergänzungsfächer mit 3		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Ergänzungsfächer mit 3 	hes Spezialisierungsfach	
		 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Energiespeicherung und -verteilung → Ergänzungsfächer mit 3 LP 		
11. Empfohlene Vorau	ssetzungen:	Elektrische Energienetze 1		
12. Lernziele:		Der Studierende kann Probleme des Zusammenspiels von Windenergieanlagen und Energieversorgungsnetzen richtig im Zusammenhang einordnen und Ansätze für Problemlösungen identifizieren.		
13. Inhalt:		 Physikalische Grundlagen de Aerodynamische Grundlager Generatorkonzepte Netzrückwirkungen Betrieb von Netzen mit hohe Einfluss der Windenergie auf Fallbeispiele 	n m Windenergieanteil	
14. Literatur:		Regelung, 4. Aufl., 2005 • Hormann/Just/Schlabbach, • Oeding, Oswald: Elektrische Aufl., 2004		
15. Lehrveranstaltungen und -formen:		370101 Vorlesung Netzintegration von Windenergie		
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden Summe: 90 Stunden		
17. Prüfungsnummer/n und -name:		37011 Netzintegration von W 30 Min., Gewichtung:	/indenergie (BSL), mündliche Prüfung, 1.0	
18. Grundlage für :				
19. Medienform:				

Stand: 25. März 2014 Seite 344 von 376

20. Angeboten von:

Energieübertragung und Hochspannungstechnik

Stand: 25. März 2014 Seite 345 von 376

Modul: 30840 Numerische Methoden in Fluid- und Strukturdynamik

2. Modulkürzel:	043210014	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	DrIng. Jürgen Mayer	
9. Dozenten:		Jürgen Mayer	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Thermische Turbomasch → Ergänzungsfächer mit 3	ninen
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Ergänzungsfächer mit 3	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Thermische Turbomasch → Ergänzungsfächer mit 3 	hes Spezialisierungsfach ninen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Ergänzungsfächer mit 3 	hes Spezialisierungsfach
11. Empfohlene Vorau	issetzungen:	Ingenieurwissenschaftliche Gr Technische Strömungslehre	rundlagen, Strömungsmechanik oder
12. Lernziele:		Der Studierende	
		 für die diskretisierten Gleich erkennt die möglichen Einsanumerischen Verfahren und Modellbildungen ist in der Lage, den untersch 	ktur- und Fluiddynamik der verschiedenen gsverfahren der numerischen Mathemat aungen atzbereiche der verschiedenen I die Grenzen unterschiedlicher hiedlichen Rechenaufwand bei gen und Lösungsverfahren zu begründer
13. Inhalt:		 Einsatzbereiche numerische Wissenschaftliches Rechnen Modellierung Strömungsmechanische Gru Turbulenzmodellierung Diskretisierung von Different Netzerzeugung Randbedingungen Finite-Differenzen-Verfahren Finite-Volumen-Verfahren Grundlagen der Finite-Eleme Lösungsverfahren Anwendungen 	n und Einfluss der Hardware-Entwicklung Indgleichungen ialgleichungen

Stand: 25. März 2014 Seite 346 von 376

14. Literatur:	 Mayer, J.F., Numerische Methoden in Fluid- und Strukturdynamik, Vorlesungsmanuskript, ITSM Univ. Stuttgart Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 1: The Fundamentals of Computational Fluid Dynamics, 2nd ed., Butterworth-Heinemann 2007 Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows, Wiley 1997 Casey, M., Wintergerste, T., Best Practice Guidelines, ERCOFTAC Special Interst Group on "Quality and Trust in Industrial CFD", 2000 Bathe, K. J., Finite-Elemente-Methoden, Springer 2002
15. Lehrveranstaltungen und -formen:	308401 Vorlesung + 2 Übungen + 1 Präsentation Numerische Methoden in Fluid- und Strukturdynamik
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden
17. Prüfungsnummer/n und -name:	30841 Numerische Methoden in Fluid- und Strukturdynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Vorlesungsmanuskript
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium

Stand: 25. März 2014 Seite 347 von 376

Modul: 30860 Strömungs- und Schwingungsmesstechnik für Turbomaschinen

2. Modulkürzel:	043210015	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Damian Vogt	
9. Dozenten:		Jürgen MayerMarkus Schatz	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Thermische Turbomasch → Ergänzungsfächer mit 3 I	inen
		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Windenergie → Ergänzungsfächer mit 3 I	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Thermische Turbomasch → Ergänzungsfächer mit 3 I 	nes Spezialisierungsfach inen
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Windenergie → Ergänzungsfächer mit 3 l 	nes Spezialisierungsfach
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche Gru Strömungsmechanik oder Tech	undlagen, Technische Thermodynamik I+II, nnische Strömungslehre
12. Lernziele:		Der Studierende	
		Anwendung von Messverfah kommen ist in der Lage, für unterschie Werkzeuge auszuwählen un beherrscht den Umgang mit der Messdaten	isse über die Grundlagen und die ren, die an Turbomaschinen zum Einsatz edlichste Messaufgaben die geeigneten d anzuwenden. Verfahren zur Auswertung und Analyse ebnisse in Hinblick auf Plausibilität und
13. Inhalt:		 Grundlagen der Strömungsm Messverfahren zur Strömung Einführung in die Schwingung Schwingungsmessverfahren Auswertung und Analyse dyn Ergänzende Messverfahren Prüfstandstechnik 	smessung gsproblematik in Turbomaschinen
14. Literatur:		ITSM Univ. Stuttgart - Casey, M., Grundlagen der T Vorlesungsmanuskript, ITSM L	Furbomaschinen, Vorlesungsmanuskript, hermischen Strömungsmaschinen,

Stand: 25. März 2014 Seite 348 von 376

	 Springer Handbook of Experimental Fluid Mechanics, 2007 Wittenburg, J., Schwingungslehre, Springer 1996 Karrenberg, U., Signale - Prozesse - Systeme, Springer 2005 	
15. Lehrveranstaltungen und -formen:	 308601 Vorlesung Strömungs- und Schwingungsmesstechnik für Turbomaschinen 308602 Praktikum Strömungs- und Schwingungmesstechnik für Turbomaschinen 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 21 Stunden Selbststudium: 69 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n und -name:	30861 Strömungs- und Schwingungsmesstechnik für Turbomaschinen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PPT-Präsentationen, Tafelanschrieb, Übungen am PC, Vorlesungsmanuskript	
20. Angeboten von:	Institut für Thermische Strömungsmaschinen und Maschinenlaboratorio	

Stand: 25. März 2014 Seite 349 von 376

2182 Kern- / Ergänzungsfächer mit 6 LP

Zugeordnete Module: 12420 Windenergie 1 - Grundlagen Windenergie

14150 Leichtbau

17600 Numerische Strömungsmechanik

29150 Windenergie 2 - Planung und Betrieb von Windparks

30390 Festigkeitslehre I

30880 Windenergie 3 - Entwurf von Windenergieanlagen

30890 Windenergie 4 - Windenergie-Projekt

Stand: 25. März 2014 Seite 350 von 376

1 Semester

jedes 2. Semester, WiSe

Modul: 30390 Festigkeitslehre I

041810010

6.0 LP

2. Modulkürzel:

3. Leistungspunkte:

4. SWS: 4.0	7. Sprache: Deutsch
8. Modulverantwortlicher:	DrIng. Michael Seidenfuß
9. Dozenten:	Markus Rauch
10. Zuordnung zum Curriculum in diesem Studiengang:	DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing → Pflichtmodule mit Wahlmöglichkeit
	DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Festigkeitslehre und Werkstofftechnik → Kern- / Ergänzungsfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Gruppe 2: Spezialisierungsfach mit Querschnittscharakter → Festigkeitslehre und Werkstofftechnik → Kernfächer mit 6 LP
	 M.Sc. Energietechnik, PO 2011 → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit
11. Empfohlene Voraussetzungen:	 Einführung in die Festigkeitslehre Werkstoffkunde I + II
12. Lernziele:	Die Studierenden verstehen die Grundlagen des Spannungs- und Verformungszustandes von isotropen Werkstoffen. Sie sind in der Lage einen beliebigen mehrachsigen Spannungszustand mit Hilfe von Festigkeitshypothesen in Abhängigkeit vom Werkstoff und der Beanspruchungssituation zu bewerten. Sie können Festigkeitsnachweise für praxisrelevante Belastungen (statisch, schwingend, thermisch) durchführen. Die Grundlagen der Berechnung von Faserverbundwerkstoffen sind ihnen bekannt. Die Teilnehmer des Kurses sind in der Lage komplexe Bauteile auszulegen und sicherheitstechnisch zu bewerten.
13. Inhalt:	 Spannungs- und Formänderungszustand Festigkeitshypothesen bei statischer und schwingender Beanspruchun Werkstoffverhalten bei unterschiedlichen Beanspruchungsarten Sicherheitsnachweise Festigkeitsberechnung bei statischer Beanspruchung Festigkeitsberechnung bei schwingender Beanspruchung Berechnung von Druckbehältern

5. Moduldauer:

6. Turnus:

Stand: 25. März 2014 Seite 351 von 376

	Festigkeitsberechnung bei thermischer BeanspruchungBruchmechanik	
	Festigkeitsberechnung bei von Faserverbundwerkstoffen	
14. Literatur:	- Manuskript zur Vorlesung- Ergänzende Folien (online verfügbar)- Issler, Ruoß, Häfele: Festigkeitslehre Grundlagen, Springer-Verlag	
15. Lehrveranstaltungen und -formen:	303901 Vorlesung Festigkeitslehre I 303902 Übung Festigkeitslehre I	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Selbststudium: 138 h Summe: 180 h	
17. Prüfungsnummer/n und -name:	30391 Festigkeitslehre I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	Manuskript, PPT-Präsentationen, Interaktive Medien, Online verfügbar Zusatzmaterialien	
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre	

Stand: 25. März 2014 Seite 352 von 376

Modul: 14150 Leichtbau

2. Modulkürzel:	041810002	5. Moduldauer:	1 Semester	
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe	
4. SWS:	4.0	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	DrIng. Michael Seidenfuß		
9. Dozenten:				
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm		
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche		
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach	
		 M.Sc. Energietechnik, PO 2011, 2. Semester → Vertiefungsmodule → Pflichtmodule mit Wahlmöglichkeit 		
11. Empfohlene Voraussetzungen:		Einführung in die FestigkeitslehreWerkstoffkunde I und II		
12. Lernziele:		leichte Bauteile durch Auswah Verarbeitungstechnologie zu g bezüglich ihres Gewichtsoptim gegebenenfalls verbessern. D	generieren. Sie können eine Konstruktion nierungspotentials beurteilen und ie Studierenden sind mit den wichtigste chnung, der Herstellung und des Füger	
13. Inhalt:		 Werkstoffe im Leichtbau Festigkeitsberechnung Konstruktionsprinzipien Stabilitätsprobleme: Knicker Verbindungstechnik Zuverlässigkeit Recycling 	n und Beulen	
14. Literatur:		 - Manuskript zur Vorlesung - Ergänzende Folien (online verfügbar) - Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft - Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft 		
15. Lehrveranstaltunge	en und -formen:	• 141501 Vorlesung Leichtbau • 141502 Leichtbau Übung	I	
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit:	42 h	
		Selbststudiumszeit / Nacharbe	eitszeit: 138 h	
		Gesamt:	180 h	

Stand: 25. März 2014 Seite 353 von 376

17. Prüfungsnummer/n und -name:	14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für :	
19. Medienform:	PPT auf Tablet PC, Animationen u. Simulationen
20. Angeboten von:	Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre

Stand: 25. März 2014 Seite 354 von 376

Modul: 17600 Numerische Strömungsmechanik

2. Modulkürzel:	042000300	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe		
4. SWS:	4.0	7. Sprache:	Deutsch		
8. Modulverantwortlicher:		DrIng. Albert Ruprecht	DrIng. Albert Ruprecht		
9. Dozenten:		Albert Ruprecht	Albert Ruprecht		
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, → Spezialisierungsfächer → Strömungsmechanik u → Kern- / Ergänzungsfäc	r ınd Wasserkraft		
		DoubleM.D. Energietechnik, → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäc	r		
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Strömungsmechanik und Wasserkraft → Kern- / Ergänzungsfächer mit 6 LP 			
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP 			
11. Empfohlene Voraussetzungen:		Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik			
12. Lernziele:		Die Studierenden erlernen die Grundlagen der numerischen Berechnung von Strömungen sowie das Vorgehen bei der Lösung von Strömungsproblemen mittels CFD. Sie sollten in der Lage sein, problemspezifische Modelle und Algorithmen auszuwählen und zu bewerten. Sie erhalten die Voraussetzung zu einer richtigen Anwendur von kommerzieller Berechnungssoftware.			
13. Inhalt:		 Einführung in die numerische Strömungsmechanik, Navier-Stokes-Gleichungen, Turbulenzmodelle, Finite Differenzen, Finite Volumen, Finite Elemente, Lineare Gleichungslöser, Algorithmen zur Strömungsberechnungen, CFD-Anwendungen. 			
14. Literatur:		Vorlesungsmanuskript "Numerische Strömungsmechanik"			
15. Lehrveranstaltungen und -formen:		176001 Vorlesung Numerische Strömungsmechanik176002 Übung Numerische Strömungsmechanik			
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 42 h			
		Selbststudiumszeit / Nacharbeitszeit: 138 h			
		Gesamt: 180 h			
17. Prüfungsnummer/n und -name:		17601 Numerische Strömu Min., Gewichtung: 1	ngsmechanik (PL), mündliche Prüfung, 40 .0		
18. Grundlage für:					

Stand: 25. März 2014 Seite 355 von 376

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Computerübungen

20. Angeboten von:

Stand: 25. März 2014 Seite 356 von 376

Modul: 12420 Windenergie 1 - Grundlagen Windenergie

2. Modulkürzel:	060320011	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Kernfächer mit 6 LP 	
		M.Sc. Energietechnik, PO 201→ Vertiefungsmodule→ Pflichtmodule mit Wahlm	
11. Empfohlene Voraussetzungen:		Technische Mechanik I	
12. Lernziele:		 Studierende erlangen Kenntnisse über die Grundlagen der Windenergienutzung insbes. durch netzgekoppelte Windenergieanlagen. Die Studierenden sind in der Lage eine elementare Auslegung von Windenergieanlagen auszuführen unter der Berücksichtigung der lokalen Windpotenzials, des aerodynamischen, mechanischen und elektrischen Anlagenkonzepts sowie deren Regelung und Betrieb ir elektrischen Netz. Ebenfalls können die Wirtschaftlichkeit sowie Aspekte der Energiepolitik und des Natur- u. Umweltschutzes beurteilt werden. 	
13. Inhalt:		Ertragsberechung, Standort Funktion von Windenergiea Blattelement-Impulstheorie, Konstruktiver Aufbau: 1. Me	nziale, Windbeschreibung für wahl und Windparkaspekte, Typologie und nlagen, Aerodynamische Auslegung und Kennlinien und Leistungsbegrenzung, chanik, 2. Elektrisches System und stungen, Offshore-Windenergieanlagen, blitische Fragen

Stand: 25. März 2014 Seite 357 von 376

	Es werden Hörsaal- und Hausübungen sowie der Hochlaufversuch ir Böenwindkanal angeboten bzw. durchgeführt.	
14. Literatur:		
	 R. Gasch, J. Twele, Windkraftanlagen James F. Manwell, Jon G. McGowan, Anthony L. Rogers, Wind Energy Explained: Theory, Design and Application http://www.wind-energie.de/infocenter/technik 	
15. Lehrveranstaltungen und -formen:	124201 Vorlesung Windenergienutzung I124202 Übung Windenergienutzung I	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit Windenergienutzung I , Vorlesung: 24 Stunden	
	Selbststudium Windenergienutzung I , Vorlesung: 63 Stunden	
	Präsenzzeit Windenergienutzung I , Übung: 8 Stunden	
	Selbststudium Windenergienutzung I , Übung: 77 Stunden	
	Präsenzzeit Windkanalversuch: 3 Stunden	
	Bearbeitungszeit Versuchsauswertung: 5 Stunden	
	Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	12421 Windenergie 1 - Grundlagen Windenergie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Alle 4 Hausübungen und der Laborbericht während des Semesters sind Voraussetzung für die Teilnahme an der Prüfung. Die Prüfung umfasst einen Fragenteil (15min) und einen Rechenteil (45min)	
18. Grundlage für :	30880 Windenergie 3 - Entwurf von Windenergieanlagen30890 Windenergie 4 - Windenergie-Projekt	
9. Medienform:	PowerPoint, Tafelanschrieb	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 358 von 376

Modul: 29150 Windenergie 2 - Planung und Betrieb von Windparks

The Chalmers → Incoming → Specialization Modules DoubleM.D. Energietechnik, PO 2011 → Spezialisierrungsfächer → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierrungsfächer → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie II → 291501 Vorlesung Windenergie II → 291501 Übung Windenergie II	2. Modulkürzel:	060320012	5. Moduldauer:	1 Semester
8. Modulverantwortlicher: 10. Zuordnung zum Curriculum in diesem Studiengang: 10. Zuordnung zum Curriculum in diesem Studiengang: 10. Zuordnung zum Curriculum in diesem Studiengang: 10. DubleM.D. Energietechnik, PO 2011 → Chalmers → Incoming → Specialization Modules DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kern / Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kern / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern - / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern - / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern - / Ergänzungsfächer mit 6 LP 11. Empfohlene Voraussetzungen: 12. Lernziele: After attending the class the students should be have the basic understanding for the planning and realization of a wind park encessary knowledge on the regulatory, economic and environ issues related to the construction and operation of wind farms. 13. Inhalt: 14. Inhalt: 15. Inhalt: 16. Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment Offshore: environment Offshore: environment Offshore: environment Offshore: environment Offshore: environment PowerPoint stides available in ILIAS etassroom exercise material available in ILIAS text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.wind-energie.de/infocenter/technik	3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
9. Dozenten: 10. Zuordnung zum Curriculum in diesem Studiengang: DoubleM.D. Energietechnik, PO 2011 Chalmers Incoming Specialization Modules DoubleM.D. Energietechnik, PO 2011 Specialization Modules DoubleM.D. Energietechnik, PO 2011 Spezialisierungsfächer Windenergie Kern-/ Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 Spezialisierungsfächer Windenergie Kern-/ Ergänzungsfächer Windenergie Kern-/ Ergänzungsfächer Windenergie Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialisierungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fachspezifisches Spezialiserungsfach Windenergie Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 Gruppe 1: Fa	4. SWS:	4.0	7. Sprache:	Englisch
DoubleM.D. Energietechnik, PO 2011 → Chalmers → Incoming → Specialization Modules DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kemr. / Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kemr. / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kemr. / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kemr. / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kemrlächer mit 6 LP 11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie 12. Lernziele: After attending the class the students should be have the basic understanding for the planning and realization of a wind park are necessary knowledge on the regulatory, economic and environ issues related to the construction and operation of wind farms. 13. Inhalt: Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment Offshore: environment Offshore: environment Offshore: environment Offshore: environment Offshore: environment Offshore: foundation, logistics, floating wind turbines text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.windenergie.il 291501 Vorlesung Windenergie II 291502 Übung Windenergie II	8. Modulverantwortlich	er:	UnivProf.Dr. Po Wen Cheng	
A Chalmers → Incoming → Specialization Modules DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kern. / Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern. / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern. / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Miterialisierungsfach → Windenergie → Kernfächer → Windenergie → Kernfächer → Windenergie → Kernfächer → Winde	9. Dozenten:		Po Wen Cheng	
→ Spezialisierungsfächer → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP DoubleM.D. Energietechnik, PO 2011 → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern-/ Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP 11. Empfohlene Voraussetzungen: 12. Lernziele: After attending the class the students should be have the basic understanding for the planning and realization of a wind park at necessary knowledge on the regulatory, economic and environt issues related to the construction and operation of wind farms. 13. Inhalt: Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbi	10. Zuordnung zum Curriculum in diesem Studiengang:		→ Chalmers→ Incoming	PO 2011
→ Spezialisierungsfächer → Windenergie → Kemfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kemfächer mit 6 LP 11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie 12. Lernziele: After attending the class the students should be have the basic understanding for the planning and realization of a wind park an necessary knowledge on the regulatory, economic and environi issues related to the construction and operation of wind farms. 13. Inhalt: Preliminary site assessment Extreme value distribution • Wake models for loads and park efficiency • Site specific load assessment • Environmental impact (noise, shadow) • Onshore: foundation and logistics • Grid connection and integration • Reliability of wind turbines • Load monitoring of wind turbine components • Offshore: environment • Offshore: environment • Offshore: foundation, logistics, floating wind turbines 14. Literatur: PowerPoint slides available in ILLAS • classroom exercise material available in ILLAS • text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner • http://www.wind-energie.de/infocenter/technik 15. Lehrveranstaltungen und -formen: • 291501 Vorlesung Windenergie II			→ Spezialisierungsfächer→ Windenergie	
→ Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP 11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie 12. Lernziele: After attending the class the students should be have the basic understanding for the planning and realization of a wind park ar necessary knowledge on the regulatory, economic and environ issues related to the construction and operation of wind farms. 13. Inhalt: Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: foundation, logistics, floating wind turbines Load monitoring of wind turbines Load monitoring of wind turbines Loads monitoring of wind turbines Loads monitoring of wind turbines Loads monitoring of wind turbines Load monitoring of wind turbines Loads monitoring of winds tur			→ Spezialisierungsfächer→ Windenergie	PO 2011
→ Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP 11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie After attending the class the students should be have the basic understanding for the planning and realization of a wind park ar necessary knowledge on the regulatory, economic and environ issues related to the construction and operation of wind farms. 13. Inhalt: • Preliminary site assessment • Extreme value distribution • Wake models for loads and park efficiency • Site specific load assessment • Environmental impact (noise, shadow) • Onshore: foundation and logistics • Grid connection and integration • Reliability of wind turbines • Load monitoring of wind turbine components • Offshore: environment • Offshore: environment • Offshore: foundation, logistics, floating wind turbines 14. Literatur: • PowerPoint slides available in ILIAS • classroom exercise material available in ILIAS • text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner • http://www.wind-energie.de/infocenter/technik 15. Lehrveranstaltungen und -formen: • 291501 Vorlesung Windenergie II • 291502 Übung Windenergie II			 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie 	
After attending the class the students should be have the basic understanding for the planning and realization of a wind park ar necessary knowledge on the regulatory, economic and environ issues related to the construction and operation of wind farms. Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment Offshore: foundation, logistics, floating wind turbines Lassroom exercise material available in ILIAS classroom exercise material available in ILIAS text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.wind-energie.de/infocenter/technik 291501 Vorlesung Windenergie II 291502 Übung Windenergie II			 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie 	
understanding for the planning and realization of a wind park ar necessary knowledge on the regulatory, economic and environt issues related to the construction and operation of wind farms. 13. Inhalt: Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment Offshore: foundation, logistics, floating wind turbines 14. Literatur: PowerPoint slides available in ILIAS classroom exercise material available in ILIAS text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.wind-energie.de/infocenter/technik 291501 Vorlesung Windenergie II 291502 Übung Windenergie II	11. Empfohlene Vorau	ssetzungen:	060320011 Windenergie 1 - G	Grundlagen Windenergie
Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment Offshore: foundation, logistics, floating wind turbines 14. Literatur: PowerPoint slides available in ILIAS classroom exercise material available in ILIAS text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.wind-energie.de/infocenter/technik 15. Lehrveranstaltungen und -formen: 291501 Vorlesung Windenergie II 291502 Übung Windenergie II	12. Lernziele:		understanding for the planning necessary knowledge on the r	g and realization of a wind park and the regulatory, economic and environmental
 classroom exercise material available in ILIAS text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.wind-energie.de/infocenter/technik 15. Lehrveranstaltungen und -formen: 291501 Vorlesung Windenergie II 291502 Übung Windenergie II 	13. Inhalt:		 Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment 	
• 291502 Übung Windenergie II	14. Literatur:		classroom exercise material available in ILIAStext book: R. Gasch, J. Twele, Windkraftanlagen, Teubner	
16. Abschätzung Arbeitsaufwand: Time of lecture attendance: 28 hours	15. Lehrveranstaltungen und -formen:			
	16. Abschätzung Arbe	itsaufwand:	Time of lecture attendance: 28	3 hours

Stand: 25. März 2014 Seite 359 von 376

	Self-study time for lectures: 62 hours	
	Time of classroom exercise attendance : 16 hours	
	Self-study time for exercises: 74 hours	
17. Prüfungsnummer/n und -name:	29151 Windenergie 2 - Planung und Betrieb von Windparks (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PowerPoint slides and blackboard	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 360 von 376

Modul: 30880 Windenergie 3 - Entwurf von Windenergieanlagen

2. Modulkürzel:	060320013	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	PO 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Kernfächer mit 6 LP 	
11. Empfohlene Vorau	ssetzungen:	060320011 Windenergie 1 - G	Grundlagen Windenergie
12. Lernziele:		Windenergieanlage (WEA) Sie können numerisch und e Windenergieanlagen ermitteln - Sie können Bemessungsverf Komponenten und des Gesam - Die Studierenden sind in der	i. fahren zur Auslegung der wichtigsten ntsystems anwenden. Lage kommerzielle Simulationsprogrammo Beispiel einer typischen Multi-MW
13. Inhalt:		Strukturdynamik, Modellierung - Blattentwurf mit Nachlaufdral - Blattelement-Impulstheorie (I dynamische Effekte, Schrägar - Offshore-Umgebungsbeding Bodenbedingungen - Hydrodynamische Belastung - Dynamik des Gesamtsystem - Regelung und Betriebsführur	tlinien ffe, emereignisse) is (Campbell-Diagramm, Simulation, g, Messtechnik) II BEM-Algorithmus, empirische Korrekturen, nströmung) ungen (Wind, Wellen, Strömung, Eis) und gen

Stand: 25. März 2014 Seite 361 von 376

Beispiel

- Messung von Belastungen und Leistung nach IEC 61400-12/-13 am

	 Betriebsfestigkeit (Nachweiskonzepte für WEA, Rainflow, Palmgren-Miner, schädigungs-äquivalente Lasten, Lastverweildauer) Auslegung von WEA-Komponenten (Turm, Nabe, Blatt, maschinenbauliche Komponenten) Software(Simpack): Einführung in Benutzung der Programme und die Grundlagen aeroelastischer Berechnungen bzw. Mehr-körpersimulation Übung und Seminar Es werden Hörsaalübungen sowie Simulationsseminar angeboten bzw. 	
	durchgeführt.	
14. Literatur:	Skript zur VorlesungÜbung unter ILIASBegleitbuch: R. Gasch, J. Twele, Windkraftanlage	
	- James F. Manwell, Jon G. McGowan, Anthony L. Rogers, Wind Energy Explained: Theory, Design and Application	
	- http://www.wind-energie.de/infocenter/technik	
15. Lehrveranstaltungen und -formen:	 308801 Vorlesung Entwurf von Windenergieanlagen I (WEA I) 308802 Übung Entwurf von Windenergieanlagen I (WEA I) 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit Entwurf von Windenergieanlagen I, Vorlesung: 24 Stunden Selbststudium Entwurf von Windenergieanlagen I, Vorlesung: 62 Stunden Präsenzzeit Entwurf von Windenergieanlagen I, Übung: 8 Stunden Selbststudium Entwurf von Windenergieanlagen I, Übung: 70 Stunden	
	Präsenzzeit Simulationseminar: 8 Stunden	
	Selbststudium Simulationseminar: 8 Stunden Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	30881 Windenergie 3 - Entwurf von Windenergieanlagen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0	
18. Grundlage für :	30890 Windenergie 4 - Windenergie-Projekt	
19. Medienform:	PowerPoint, Tafelanschrieb	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 362 von 376

Modul: 30890 Windenergie 4 - Windenergie-Projekt

2. Modulkürzel:	060320014	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich		UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	PO 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisc → Windenergie → Kern- / Ergänzungsfäche 	hes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		060320011 Windenergie 1 - G 060320013 Windenergie 3 - E	rundlagen Windenergie ntwurf von Windenergieanlagen
12. Lernziele:			Teamarbeit ein Projekt entwickeln, das die hen Produktentwicklungsprozesses erfüllt
		 Die Studierenden sind in der Entwicklungsprozess beispielt umzusetzen. 	Lage einen industrienahen naft und in den wesentlichen Elementen
		Windenergie 3 erworben wurd	s in den Modulen Windenergie 1 und le, setzen die Studierenden in Teamarbeit n der Lage ihre Entwurfsentscheidungen z enschaftlich zu untermauern.
13. Inhalt:		Entwurf von Windenergieanlag - Teambildung, Ressourcenve - Marktdefinition & Festlegen v - Definition des Pflichtenhefts - Aerodynamische Rotorausle - Konzeptionierung und Layou - Analyse der Wirtschaftlichke	rteilung, Projektplanung von Standortbedingungen gung und Anlagenregelung t
		- Dokumentation und Präsenta	ation der Ergebnisse
14. Literatur:		Unterlagen zur VorlesungÜbung unter ILIASBegleitbuch: R. Gasch, J. Twhttp://www.wind-energie.de/i	vele, Windkraftanlagen, Teubner, 6. Aufl. nfocenter/technik
15. Lehrveranstaltunge	en und -formen:	308901 Vorlesung Entwurf v	on Windenergieanlagen II (WEA II)

Stand: 25. März 2014 Seite 363 von 376

16. Abschätzung Arbeitsaufwand:	Präsenzzeit Entwurf von Windenergieanlagen II, Vorlesung: 20 Stunder Selbststudium Entwurf von Windenergieanlagen II, Vorlesung: 160 Stunden	
	Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	30891 Windenergie 4 - Windenergie-Projekt (PL), Sonstiges, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PowerPoint, Tafelanschrieb, Gruppenarbeit	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 364 von 376

2181 Kernfächer mit 6 LP

Zugeordnete Module: 12420 Windenergie 1 - Grundlagen Windenergie

29150 Windenergie 2 - Planung und Betrieb von Windparks30880 Windenergie 3 - Entwurf von Windenergieanlagen

30890 Windenergie 4 - Windenergie-Projekt

Stand: 25. März 2014 Seite 365 von 376

Modul: 12420 Windenergie 1 - Grundlagen Windenergie

2. Modulkürzel:	060320011	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, P → Chalmers → Outgoing → Pflichtmodule mit Wahlm	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Windenergie → Kernfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201 → Vertiefungsmodule → Pflichtmodule mit Wahlm 	
11. Empfohlene Vorau	ssetzungen:	Technische Mechanik I	
12. Lernziele:		Windenergieanlagen auszuf lokalen Windpotenzials, des elektrischen Anlagenkonzep elektrischen Netz. • Ebenfalls können die Wirtsc	
13. Inhalt:		Ertragsberechung, Standort Funktion von Windenergiear Blattelement-Impulstheorie, Konstruktiver Aufbau: 1. Me	nziale, Windbeschreibung für wahl und Windparkaspekte, Typologie und nlagen, Aerodynamische Auslegung und Kennlinien und Leistungsbegrenzung, chanik, 2. Elektrisches System und stungen, Offshore-Windenergieanlagen, plitische Fragen

Stand: 25. März 2014 Seite 366 von 376

	Es werden Hörsaal- und Hausübungen sowie der Hochlaufvers Böenwindkanal angeboten bzw. durchgeführt.	
14. Literatur:		
	 R. Gasch, J. Twele, Windkraftanlagen James F. Manwell, Jon G. McGowan, Anthony L. Rogers, Wind Ener Explained: Theory, Design and Application http://www.wind-energie.de/infocenter/technik 	
15. Lehrveranstaltungen und -formen:	124201 Vorlesung Windenergienutzung I124202 Übung Windenergienutzung I	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit Windenergienutzung I , Vorlesung: 24 Stunden	
	Selbststudium Windenergienutzung I , Vorlesung: 63 Stunden	
	Präsenzzeit Windenergienutzung I , Übung: 8 Stunden	
	Selbststudium Windenergienutzung I , Übung: 77 Stunden	
	Präsenzzeit Windkanalversuch: 3 Stunden	
	Bearbeitungszeit Versuchsauswertung: 5 Stunden	
	Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	12421 Windenergie 1 - Grundlagen Windenergie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Alle 4 Hausübungen und der Laborbericht während des Semesters sind Voraussetzung für die Teilnahme an der Prüfung. Die Prüfung umfasst einen Fragenteil (15min) und einen Rechenteil (45min)	
18. Grundlage für :	30880 Windenergie 3 - Entwurf von Windenergieanlagen30890 Windenergie 4 - Windenergie-Projekt	
19. Medienform:	PowerPoint, Tafelanschrieb	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 367 von 376

Modul: 29150 Windenergie 2 - Planung und Betrieb von Windparks

O Modulkürzok	060220042	F. Moduldouer	1 Compoter
2. Modulkürzel:	060320012	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlicher:		UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, Po → Chalmers → Incoming → Specialization Modules	O 2011
		DoubleM.D. Energietechnik, P0 → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, P(→ Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kern- / Ergänzungsfächer mit 6 LP 	
		 M.Sc. Energietechnik, PO 201² → Gruppe 1: Fachspezifisch → Windenergie → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		060320011 Windenergie 1 - Gr	rundlagen Windenergie
12. Lernziele:		After attending the class the students should be have the basic technical understanding for the planning and realization of a wind park and the necessary knowledge on the regulatory, economic and environmental issues related to the construction and operation of wind farms.	
13. Inhalt:		 Preliminary site assessment Extreme value distribution Wake models for loads and park efficiency Site specific load assessment Environmental impact (noise, shadow) Onshore: foundation and logistics Grid connection and integration Reliability of wind turbines Load monitoring of wind turbine components Offshore: environment Offshore: foundation, logistics, floating wind turbines 	
14. Literatur:		 PowerPoint slides available in ILIAS classroom exercise material available in ILIAS text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner http://www.wind-energie.de/infocenter/technik 	
15. Lehrveranstaltungen und -formen:		291501 Vorlesung Windenergie II291502 Übung Windenergie II	
16. Abschätzung Arbeitsaufwand:		Time of lecture attendance: 28	hours

Stand: 25. März 2014 Seite 368 von 376

	Self-study time for lectures: 62 hours	
	Time of classroom exercise attendance : 16 hours	
	Self-study time for exercises: 74 hours	
17. Prüfungsnummer/n und -name:	29151 Windenergie 2 - Planung und Betrieb von Windparks (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PowerPoint slides and blackboard	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 369 von 376

Modul: 30880 Windenergie 3 - Entwurf von Windenergieanlagen

2. Modulkürzel:	060320013	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, F → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	PO 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Windenergie → Kern- / Ergänzungsfäche 	ches Spezialisierungsfach
		 M.Sc. Energietechnik, PO 20² → Gruppe 1: Fachspezifisc → Windenergie → Kernfächer mit 6 LP 	
11. Empfohlene Vorau	ssetzungen:	060320011 Windenergie 1 - G	Grundlagen Windenergie
12. Lernziele:		Windenergieanlage (WEA) Sie können numerisch und e Windenergieanlagen ermittelr - Sie können Bemessungsver Komponenten und des Gesan - Die Studierenden sind in der	n. fahren zur Auslegung der wichtigsten ntsystems anwenden. r Lage kommerzielle Simulationsprogramme Beispiel einer typischen Multi-MW
13. Inhalt:		Strukturdynamik, Modellierung - Blattentwurf mit Nachlaufdra - Blattelement-Impulstheorie (dynamische Effekte, Schrägar - Offshore-Umgebungsbeding Bodenbedingungen - Hydrodynamische Belastung - Dynamik des Gesamtsystem - Regelung und Betriebsführu - Lastfälle und Nachweise nach	tlinien ffe, pemereignisse) ns (Campbell-Diagramm, Simulation, g, Messtechnik) II BEM-Algorithmus, empirische Korrekturen, nströmung) pungen (Wind, Wellen, Strömung, Eis) und gen ns

Stand: 25. März 2014 Seite 370 von 376

Beispiel

- Messung von Belastungen und Leistung nach IEC 61400-12/-13 am

	 Betriebsfestigkeit (Nachweiskonzepte für WEA, Rainflow, Palmgren-Miner, schädigungs-äquivalente Lasten, Lastverweildauer) Auslegung von WEA-Komponenten (Turm, Nabe, Blatt, maschinenbauliche Komponenten) Software(Simpack): Einführung in Benutzung der Programme und die Grundlagen aeroelastischer Berechnungen bzw. Mehr-körpersimulation Übung und Seminar Es werden Hörsaalübungen sowie Simulationsseminar angeboten bzw. durchgeführt. 	
14. Literatur:	 Skript zur Vorlesung Übung unter ILIAS Begleitbuch: R. Gasch, J. Twele, Windkraftanlage James F. Manwell, Jon G. McGowan, Anthony L. Rogers, Wind Energy Explained: Theory, Design and Application 	
	- http://www.wind-energie.de/infocenter/technik	
15. Lehrveranstaltungen und -formen:	 308801 Vorlesung Entwurf von Windenergieanlagen I (WEA I) 308802 Übung Entwurf von Windenergieanlagen I (WEA I) 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit Entwurf von Windenergieanlagen I, Vorlesung: 24 Stunden Selbststudium Entwurf von Windenergieanlagen I, Vorlesung: 62 Stunden Präsenzzeit Entwurf von Windenergieanlagen I, Übung: 8 Stunden Selbststudium Entwurf von Windenergieanlagen I, Übung: 70 Stunden Präsenzzeit Simulationseminar: 8 Stunden Selbststudium Simulationseminar: 8 Stunden Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	30881 Windenergie 3 - Entwurf von Windenergieanlagen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0	
18. Grundlage für :	30890 Windenergie 4 - Windenergie-Projekt	
19. Medienform:	PowerPoint, Tafelanschrieb	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 371 von 376

Modul: 30890 Windenergie 4 - Windenergie-Projekt

2. Modulkürzel:	060320014	5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Windenergie → Kern- / Ergänzungsfäche	
		DoubleM.D. Energietechnik, Po → Spezialisierungsfächer → Windenergie → Kernfächer mit 6 LP	O 2011
		 M.Sc. Energietechnik, PO 201 → Gruppe 1: Fachspezifisch → Windenergie → Kern- / Ergänzungsfäche 	nes Spezialisierungsfach
		 M.Sc. Energietechnik, PO 2011 → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie → Kernfächer mit 6 LP 	
11. Empfohlene Voraussetzungen:		060320011 Windenergie 1 - Gi 060320013 Windenergie 3 - Er	rundlagen Windenergie ntwurf von Windenergieanlagen
12. Lernziele:			Feamarbeit ein Projekt entwickeln, das di nen Produktentwicklungsprozesses erfüll
		 Die Studierenden sind in der Entwicklungsprozess beispielh umzusetzen. 	Lage einen industrienahen aft und in den wesentlichen Elementen
		Windenergie 3 erworben wurde	in den Modulen Windenergie 1 und e, setzen die Studierenden in Teamarbei der Lage ihre Entwurfsentscheidungen z enschaftlich zu untermauern.
13. Inhalt:		Entwurf von Windenergieanlag - Teambildung, Ressourcenver - Marktdefinition & Festlegen von Definition des Pflichtenhefts - Aerodynamische Rotorausleg - Konzeptionierung und Layout - Analyse der Wirtschaftlichkeit	rteilung, Projektplanung on Standortbedingungen gung und Anlagenregelung
		- Dokumentation und Präsenta	tion der Ergebnisse
14. Literatur:		 - Unterlagen zur Vorlesung - Übung unter ILIAS - Begleitbuch: R. Gasch, J. Tw. - http://www.wind-energie.de/ir 	ele, Windkraftanlagen, Teubner, 6. Aufl. nfocenter/technik
15. Lehrveranstaltunge	n und formon:	308901 Vorlesung Entwurf vo	on Windenergieanlagen II (WEA II)

Stand: 25. März 2014 Seite 372 von 376

16. Abschätzung Arbeitsaufwand:	Präsenzzeit Entwurf von Windenergieanlagen II, Vorlesung: 20 Stunden Selbststudium Entwurf von Windenergieanlagen II, Vorlesung: 160 Stunden	
	Summe: 180 Stunden	
17. Prüfungsnummer/n und -name:	30891 Windenergie 4 - Windenergie-Projekt (PL), Sonstiges, 120 Min., Gewichtung: 1.0	
18. Grundlage für :		
19. Medienform:	PowerPoint, Tafelanschrieb, Gruppenarbeit	
20. Angeboten von:	Lehrstuhl Windenergie	

Stand: 25. März 2014 Seite 373 von 376

Modul: 56300 Praktikum Windenergie

2. Modulkürzel:	060220016	5. Moduldauer:	1 Competer
	060320016		1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	0.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Po Wen Cheng	
9. Dozenten:		Po Wen Cheng	
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PC → Outgoing → Spezialisierungsfächer → Windenergie	O 2011
		 M.Sc. Energietechnik, PO 2011 → Spezialisierungsmodule → Gruppe 1: Fachspezifisches Spezialisierungsfach → Windenergie 	
11. Empfohlene Voraussetzungen:		Spezialisierungsfach Windenergie	
12. Lernziele:		Die Studierenden sind in der Lage theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.	
13. Inhalt:		Es sind folgende 4 Spezialisierungsfachversuche zu belegen, dazu ist jeweils eine Ausarbeitung anzufertigen:	
		Leistungskurvenvermessung nach Norm IEC 61400-12	
		Fernerkundungverfahren	
		Statischer Rotorblatttest	
		Dynamischer Rotorblatttest	
		Versuchsbeispiel: Bestimmung der Leistungskurve nach IEC 61400-12	
		Die Leistungskurve ist das wichtigste Merkmal einer Windenergieanlage Sie gibt an wie viel Energie durch den Rotor aus dem Wind entnommen werden kann. In diesem Praktikum sollen die Studenten eine Leistungskurve nach Norm generieren und dabei alle relevanten Aspekt berücksichtigen: Verteilung der Windrichtung, Bestimmung des Einfluss von Hindernissen auf den Messsektor, Auswahl eines geeigneten Sektors, Luftdichte Korrektur, fehlerbehaftete Messsignale filtern, Daten "binnen".	
		Weitere Kenngrößen die es zu bestimmen gilt, sind der Leistungsbeiwer und die jährliche Energieproduktion.	
		4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:	
14. Literatur:		Skript zur Vorlesung	
		Begleitbuch: R. Gasch, J. Twele, Windkraftanlagen, Teubner	
		http://www.wind-energie.de/de/technik/	
15. Lehrveranstaltungen und -formen:		563001 Spezialisierungsfachversuch 1563002 Spezialisierungsfachversuch 2	

Stand: 25. März 2014 Seite 374 von 376

	 563003 Spezialisierungsfachversuch 3 563004 Spezialisierungsfachversuch 4 563005 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1 563006 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2 563007 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3 563008 Praktische Übungen: Allgemeines Praktikum Maschinenbau 		
	(APMB) 4		
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 30 Stunden		
	Selbststudium: 60 Stunden		
	Summe: 90 Stunden		
17. Prüfungsnummer/n und -name:	56301 Praktikum Windenergie (USL), Sonstiges, 90 Min., Gewichtung: 1.0		
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:			

Stand: 25. März 2014 Seite 375 von 376

Modul: 80690 Studienarbeit Energietechnik

2. Modulkürzel:	042500004	5. Moduldauer:	1 Semester
3. Leistungspunkte:	12.0 LP	6. Turnus:	jedes Semester
4. SWS:	0.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf.Dr. Andreas Kronenburg	
9. Dozenten:			
10. Zuordnung zum Curriculum in diesem Studiengang:		DoubleM.D. Energietechnik, PO 2011 → Chalmers → Outgoing	
11. Empfohlene Vorauss	etzungen:		
12. Lernziele:		Die / der Studierende hat die Fähigkeit zur selbständigen Durchführung einer wissenschaftlichen Arbeit erworben. Hierzu gehören: das Erkennen und die klare Formulierung der Aufgabenstellung, die Erfassung des Standes der Technik oder Forschung in einem begrenzten Bereich durch die Anfertigung und Auswertung einer Literaturrecherche, die Erstellung eines Versuchsprogramms, die praktische Durchführung von Versuchen oder die Anwendung eines Simulationsprogramms, die Auswertung und grafische Darstellung von Versuchsergebnissen und deren Beurteilung. Mit diesen Fähigkeiten besitzt die / der Studierende im Fachgebiet entsprechende experimentelle oder modellhafte Ansätze zur Problemlösung, um diese selbständig zu planen und auszuführen. Generell hat die /der Studierende in der Studienarbeit das Rüstzeug zur selbständigen wissenschaftlichen Arbeit erworben.	
13. Inhalt:		in schriftlicher Form bei der bzv Zusätzlich muss ein Exemplar i werden. Bestandteil der Studiel Seminarvorträgen (Teilnahmeb	(6 Monate) ist die fertige Studienarbeit v. dem/der Prüfer(in) abzugeben. n elektronischer Form eingereicht narbeit ist der Besuch von mindestens 9 estätigung auf Formblatt des Instituts) und Minuten Dauer über deren Inhalt.
14. Literatur:			
15. Lehrveranstaltungen	und -formen:		
16. Abschätzung Arbeitsaufwand:		360 h	
17. Prüfungsnummer/n u	nd -name:		
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:			

Stand: 25. März 2014 Seite 376 von 376